請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林金福(King-Fu Lin) | |
| dc.contributor.author | shu-Chuan Lee | en |
| dc.contributor.author | 李淑娟 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:30:44Z | - |
| dc.date.available | 2011-08-19 | |
| dc.date.available | 2021-05-20T21:30:44Z | - |
| dc.date.copyright | 2010-08-19 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-18 | |
| dc.identifier.citation | [1] S. Iijima, Nature 1991, 354, 56.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. [3] B. Z. Jang, A. Zhamu, J Mater Sci 2008, 43, 5092. [4] S. De, P. J. King, M. Lotya, A. O'Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, J. N. Coleman, Small 2010, 6, 458. [5] W. S. Hummers, R. E. Offeman, J Am Chem Soc 1958, 80, 1339. [6] A. K. Geim, K. S. Novoselov, Nat Mater 2007, 6, 183. [7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, P Natl Acad Sci USA 2005, 102, 10451. [8] C. Soldano, A. Mahmood, E. Dujardin, Carbon 2010, 48, 2127. [9] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. [10] I. W. Frank, D. M. Tanenbaum, A. M. Van der Zande, P. L. McEuen, J Vac Sci Technol B 2007, 25, 2558. [11] C. Gomez-Navarro, M. Burghard, K. Kern, Nano Lett 2008, 8, 2045. [12] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282. [13] D. Y. Cai, K. Yusoh, M. Song, Nanotechnology 2009, 20. [14] Y. G. Yang, C. M. Chen, Y. F. Wen, Q. H. Yang, M. Z. Wang, New Carbon Mater 2008, 23, 193. [15] J. R. Williams, L. DiCarlo, C. M. Marcus, Science 2007, 317, 638. [16] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature 2007, 448, 457. [17] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J Am Chem Soc 2007, 129, 7758. [18] Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, F. Atamny, Thin Solid Films 2004, 460, 156. [19] P. G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Phys Rev Lett 2001, 86, 3128. [20] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706. [21] http://www.physics.gatech.edu/npeg/publications/BergerJPhysChemCondMat04.pdf [22] H. Y. He, J. Klinowski, M. Forster, A. Lerf, Chem Phys Lett 1998, 287, 53. [23] S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Carbon 2006, 44, 3342. [24] C. Xu, X. D. Wu, J. W. Zhu, X. Wang, Carbon 2008, 46, 386. [25] Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J Am Chem Soc 2008, 130, 5856. [26] T. Nakajima, Y. Matsuo, Carbon 1994, 32, 469. [27] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat Nanotechnol 2008, 3, 101. [28] G. H. Chen, W. G. Weng, D. J. Wu, C. L. Wu, J. R. Lu, P. P. Wang, X. F. Chen, Carbon 2004, 42, 753. [29] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, Acs Nano 2008, 2, 463. [30] C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett 2007, 7, 3499. [31] Y. Si, E. T. Samulski, Nano Lett 2008, 8, 1679. [32] H. F. Yang, C. S. Shan, F. H. Li, Q. X. Zhang, D. X. Han, L. Niu, J Mater Chem 2009, 19, 8856. [33] Y. X. Xu, W. J. Hong, H. Bai, C. Li, G. Q. Shi, Carbon 2009, 47, 3538. [34] X. Zhao, Q. H. Zhang, D. J. Chen, P. Lu, Macromolecules 2010, 43, 2357. [35] http://ck10628.spaces.live.com/Blog/cns!B464FC89830FEE3E!33422.entry [36] http://tw.myblog.yahoo.com/jw!gfF5gRmaQE5oQtPhRc1MyCLDsQ--/article?mid=1454 [37] H. Dohle, J. Mergel, D. Stolten, J Power Sources 2002, 111, 268. [38] X. M. Ren, T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J Electrochem Soc 2000, 147, 466. [39] K. A. Mauritz, R. B. Moore, Chem Rev 2004, 104, 4535. [40] Z. Ogumi, T. Kuroe, Z. Takehara, J Electrochem Soc 1985, 132, 2601. [41] H. G. Haubold, T. Vad, H. Jungbluth, P. Hiller, Electrochim Acta 2001, 46, 1559. [42] P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics 1999, 125, 431. [43] F. Pereira, K. Valle, P. Belleville, A. Morin, S. Lambert, C. Sanchez, Chem Mater 2008, 20, 1710. [44] C. H. Rhee, H. K. Kim, H. Chang, J. S. Lee, Chem Mater 2005, 17, 1691. [45] C. Felice, S. Ye, D. Y. Qu, Ind Eng Chem Res 2010, 49, 1514. [46] R. Kannan, B. A. Kakade, V. K. Pillai, Angew Chem Int Edit 2008, 47, 2653. [47] W. F. Chen, J. S. Wu, P. L. Kuo, Chem Mater 2008, 20, 5756. [48] Y. L. Liu, Y. H. Su, C. M. Chang, Suryani, D. M. Wang, J. Y. Lai, J Mater Chem 2010, 20, 4409. [49] W. F. Chen, P. L. Kuo, Macromolecules 2007, 40, 1987. [50] K. Miyatake, Y. Chikashige, M. Watanabe, Macromolecules 2003, 36, 9691. [51] B. Lafitte, P. Jannasch, Adv Funct Mater 2007, 17, 2823. [52] C. H. Lee, S. Y. Lee, Y. M. Lee, S. Y. Lee, J. W. Rhim, O. Lane, J. E. McGrath, Acs Appl Mater Inter 2009, 1, 1113. [53] B. Bae, K. Miyatake, M. Watanabe, Acs Appl Mater Inter 2009, 1, 1279. [54] M. Gil, X. L. Ji, X. F. Li, H. Na, J. E. Hampsey, Y. F. Lu, J Membrane Sci 2004, 234, 75. [55] B. J. Liu, G. P. Robertson, D. S. Kim, M. D. Guiver, W. Hu, Z. H. Jiang, Macromolecules 2007, 40, 1934. [56] S. H. Tian, Y. Z. Meng, A. S. Hay, Macromolecules 2009, 42, 1153. [57] C. J. Zhao, H. D. Lin, M. M. Han, H. Na, J Membrane Sci 2010, 353, 10. [58] J. H. Fang, X. X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules 2002, 35, 9022. [59] N. W. Li, S. B. Zhang, J. Liu, F. Zhang, Macromolecules 2008, 41, 4165. [60] Y. Yin, J. H. Fang, Y. F. Cui, K. Tanaka, H. Kita, K. Okamoto, Polymer 2003, 44, 4509. [61] S. Xue, G. P. Yin, Eur Polym J 2006, 42, 776. [62] B. Yang, A. Manthiram, J Power Sources 2006, 153, 29. [63] Y. Kozawa, S. Suzuki, M. Miyayama, T. Okumiya, E. Traversa, Solid State Ionics 2010, 181, 348. [64] R. Wycisk, J. K. Lee, P. N. Pintauro, J Electrochem Soc 2005, 152, A892. [65] H. Bai, W. S. W. Ho, Ind Eng Chem Res 2009, 48, 2344. [66] H. J. Xu, K. C. Chen, X. X. Guo, J. H. Fang, J. Yin, Polymer 2007, 48, 5556. [67] H. R. Allcock`, F. W. Lampe`, “Contemporary Polymer Chemistry”`, New Jersey: Prentice Hall (1990) [68] http://www.polymer.cn/UploadFile/ResearchPic/Polymer2005_2006118171213841.pdf [69] W. Y. Chuang, T. H. Young, C. H. Yao, W. Y. Chiu, Biomaterials 1999, 20, 1479. [70] D. K. Kweon, D. W. Kang, J Appl Polym Sci 1999, 74, 458. [71] J. H. Kim, J. Y. Kim, Y. M. Lee, K. Y. Kim, J Appl Polym Sci 1992, 44, 1823. [72] M. Kobayashi, J. Toguchida, M. Oka, Knee 2003, 10, 53. [73] D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, J Membrane Sci 2004, 240, 37. [74] J. L. Qiao, T. Hamaya, T. Okada, Polymer 2005, 46, 10809. [75] C. W. Lin, R. Thangamuthu, C. J. Yang, J Membrane Sci 2005, 253, 23. [76] C. W. Lin, Y. F. Huang, A. M. Kannan, J Power Sources 2007, 164, 449. [77] Y. Chen, S. J. Wang, M. Xiao, Y. Z. Meng, Chem J Chinese U 2007, 28, 362. [78] V. Tricoli, J Electrochem Soc 1999, 146, 1612. [79] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. [80] L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu, J. H. Li, Adv Funct Mater 2009, 19, 2782. [81] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, Adv Funct Mater 2009, 19, 1987. [82] T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem Mater 2006, 18, 2740. [83] C. K. Kim, B. S. Kim, F. A. Sheikh, U. S. Lee, M. S. Khil, H. Y. Kim, Macromolecules 2007, 40, 4823. [84] R. Ricciardi, F. Auriemma, C. De Rosa, F. Laupretre, Macromolecules 2004, 37, 1921. [85] 高分子材料科學 第三版,林建中編著 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10453 | - |
| dc.description.abstract | 本研究將未改質過的石墨在硫酸與強氧化劑過錳酸鉀參與環境下,氧化形成氧化石墨片,再與聚乙烯醇水溶液混合形成均勻溶液後,直接倒入塑膠培養皿烘乾成膜,成功製備出聚乙烯醇與氧化石墨片的複合材料。由X光繞射圖譜中可以發現氧化石墨片以脫層結構的方式存在在高分子基材裡面。其玻璃轉移溫度會因加入氧化石墨片使得分子鏈段難移動而有所上升,但添加量變多反而又呈現下降的趨勢,可能是因為過量的氧化石墨片在高分子基材中分散性變差了。我們選用兩種不同分子量的聚乙烯醇,將試片置於20% RH、60% RH、80% RH三種不同的相對濕度下,藉由拉伸實驗來測定機械性質,比較分子量大小與不同相對濕度間結果的差異。加入氧化石墨片後,其楊式模數都有提升。其中高分子量的聚乙烯醇在相對濕度為80% RH下表現出優異的延展性,極限應變為1275.5%,添加1wt%的氧化石墨片下,其極限應變也可達968.2%。
我們更進一步將其應用在質子交換膜上,加入聚磺酸化苯乙烯於上述膜材中提供質子傳導途徑,選用戊二醇當交聯劑,對所製備的膜材進行質子傳導度、甲醇滲透率和吸水飽和率進行研究。本研究成功地利用氧化石墨片的添加大幅降低甲醇滲透率,結果交聯前的聚乙烯醇/3wt%的氧化石墨片下,選擇性為3.36×103 Ss/cm,比起Nafion117(2.55×103 Ss/cm)的表現還要優異。 | zh_TW |
| dc.description.abstract | In this thesis, graphite oxide was prepared from the natural graphite powder through the Hummer’s method, by which the unmodified graphite was treated with sulfuric acid and potassium permanganate to prepare the water-soluble graphite oxide. 10 wt% of poly(vinyl alcohol) (PVA) in aqueous solution was then mixed with graphite oxide in various concentrations to form a homogeneous solution. The well-mixed solutions were cast onto plastic petri dishes and dried in an oven. The polymer membranes were successfully fabricated by solution casting method. The exfoliated morphology was confirmed by the X-ray diffraction patterns. For the PVA/graphite oxide membrane, the glassy transition temperature was increased with the content of graphite oxide and then decreased as the graphite oxide restacked due to the van der Waals attraction of the nanoplatelets. The mechanical properties of composite films have been investigated for the PVA/graphite oxide membranes with two different molecular weight (Mw=20,000∼30,000 and Mw=88,000), which have been conditioned at 20% RH(relative humidity),60% RH and 80% RH. It is obvious that the addition of graphite oxide into the polymer matrix has a significant influence on the mechanical behavior. The ultimate strain of PVA film of high molecular weight at 80%RH reached 1275.5%. It was only decreased to 968.2% for the nanocomposite containing 1 wt % graphite oxide, indicating that the nanocomposite membrane is still highly ductile.
Furthermore, we applied these PVA/graphite oxide nanocomposites for proton exchange membrane by mixing with poly(sodium 4-styrenesulfonate) and with glutaraldehyde(GA) acting as a cross-linking agent. The membrane properties such as methanol permeability, proton conductivity and water uptake were investigated. From the methanol permeability measurement, the methanol permeability could be decreased in the presence of graphite oxide. As the result, the selectivity of the nanocomposite with 3 wt% graphite oxide before cross-linking increased to 3.36×103 Ss/cm, higher than that of Nafion 117 (2.55×103 Ss/cm). | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:30:44Z (GMT). No. of bitstreams: 1 ntu-99-R97549014-1.pdf: 6635489 bytes, checksum: 736181c3bfb21680f7fc1784923d957b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………….I
英文摘要…………………………………………………………………………II 目錄………………………………………………………………………..……IV 表目錄………………………………..................................................................IX 圖目錄………………………………...................................................................X 第一章 緒論……………………………………………………………………..1 1-1前言………………………………………………………………………..1 1-2 研究動機與目的………………………………………………………….1 第二章 文獻回顧………………………………………………………………..4 2-1 石墨烯簡介……………………………………………………………….4 2-1-1 石墨烯的發現………………………………………………………..4 2-1-2 石墨烯的機械性質…………………………………………………..8 2-1-3 石墨烯的導電性質……………………………………………….….9 2-1-4 石墨烯的熱傳導……………………………………………………10 2-2製備石墨烯的方法………………………………………………..……...11 2-2-1機械分離法……………………………………………..…………...11 2-2-2加熱 SiC法………………………………………………..………...11 2-2-3氧化石墨烯法………………………………………………..……...11 2-2-3-1 製備氧化石墨烯……………………………………...…….....12 2-2-3-2 製備石墨烯…………………………………………..…..…....12 2-3 石墨烯與高分子複合材料………………………………………….......15 2-3-1 石墨烯/聚苯乙烯高分子複合材料…………………......................16 2-3-2 氧化石墨烯/環氧樹脂(epoxy)高分子複合材料……......................19 2-3-3石墨烯/聚乙烯醇高分子複合材料……............................................21 2-4 燃料電池簡介……...................................................................................23 2-4-1 質子交換膜燃料電池……................................................................23 2-4-2 直接甲醇燃料電池……....................................................................25 2-4-3甲醇滲透現象 (Methanol Crossover) …….......................................27 2-5 質子交換膜(PEM) ……...........................................................................28 2-5-1 含氟素質子交換膜(Nafion)的改質……..........................................30 2-5-1-1 Nafion-二氧化矽混成膜…….....................................................30 2-5-1-2 Nafion-蒙脫石混成膜…….........................................................31 2-5-1-3 Nafion-碳管混成膜…….............................................................33 2-5-1-4 Nafion/高分子混成膜…….........................................................34 2-5-2非氟素質子交換膜的改質…….........................................................34 2-6 聚乙烯醇……...........................................................................................35 2-6-1 聚乙烯醇簡介……............................................................................35 2-6-2聚乙烯醇在質子交換膜上的應用…….............................................37 第三章 實驗部分……........................................................................................40 3-1實驗藥品……............................................................................................40 3-2實驗儀器……............................................................................................41 3-3實驗步驟……............................................................................................43 3-3-1氧化石墨片的製備步驟.....................................................................43 3-3-2聚乙烯醇高分子膜的製備步驟.........................................................44 3-3-3 氧化石墨片/聚乙烯醇複合材料的製備步驟...................................44 3-3-4 聚乙烯醇/聚磺酸化苯乙烯/氧化石墨片複合材料的製備步驟….45 3-4 測試與分析...............................................................................................46 3-4-1 X-光粉末繞射儀分析.....................................................................46 3-4-2 熱性質分析........................................................................................47 3-4-2-1: 熱重分析儀 (TGA) .................................................................47 3-4-2-2:熱示差掃描分析儀 (DSC) ........................................................47 3-4-2-3: 動態機械分析儀 (DMA) ........................................................48 3-4-3 抗張強度測試....................................................................................49 3-4-4 含水飽和率........................................................................................50 3-4-5 質子導電度量測................................................................................50 3-4-6甲醇滲透率.........................................................................................51 3-4-7 選擇性................................................................................................53 第四章 實驗結果與討論....................................................................................54 4-1氧化石墨片結構與型態分析....................................................................54 4-1-1 TEM....................................................................................................54 4-1-2 SEM....................................................................................................55 4-1-3 XPS.....................................................................................................55 4-2聚乙烯醇/氧化石墨片複合材料的製備...................................................56 4-3 X-光粉末繞射儀分析................................................................................57 4-3-1 未氧化前的石墨與氧化石墨片XRD分析......................................57 4-3-2 聚乙烯醇複合材料XRD分析..........................................................57 4-3-2-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片系統.........57 4-3-2-2 分子量為88,000的聚乙烯醇/氧化石墨片系統.......................58 4-3-2-3 比較兩系統間的差異................................................................59 4-4 熱性質分析...............................................................................................59 4-4-1 熱重分析............................................................................................59 4-4-1-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片系統........59 4-4-1-2分子量為88,000的聚乙烯醇/氧化石墨片系統.........................60 4-4-2熱示差掃描分析.................................................................................61 4-4-2-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片系統........61 4-4-2-2分子量為88,000的聚乙烯醇/氧化石墨片系統........................62 4-4-3 動態機械分析....................................................................................62 4-4-3-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片系統........62 4-4-3-2分子量為88,000的聚乙烯醇/氧化石墨片系統.........................63 4-5抗張強度分析............................................................................................63 4-5-1 含水率................................................................................................64 4-5-2 相對溼度為20%RH下的抗拉分析..................................................64 4-5-2-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片試片分析.64 4-5-2-2分子量為88,000的聚乙烯醇/氧化石墨片試片分析.................65 4-5-2-3比較不同分子量的抗拉強度測試結果......................................66 4-5-3 相對溼度為60%RH下的抗拉分析..................................................66 4-5-3-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片試片分析.66 4-5-3-2分子量為88,000的聚乙烯醇/氧化石墨片試片分析. ..............67 4-5-3-3比較不同分子量的抗拉強度測試結果......................................67 4-5-4 相對溼度為80%RH下的抗拉分析..................................................68 4-5-4-1分子量為20,000∼30,000的聚乙烯醇/氧化石墨片試片分析.68 4-5-4-2分子量為88,000的聚乙烯醇/氧化石墨片試片分析................69 4-5-4-3比較不同分子量的抗拉測試結果..............................................69 4-5-5分子量為20,000∼30,000的聚乙烯醇/氧化石墨片試片在三種不同 相對濕度下的結果比較…………………………………………....70 4-5-6分子量為88,000的聚乙烯醇/氧化石墨片試片在三種不同相對濕度 下的結果比較……………………………………………………....70 4-6 材料的阻燃性質…………………………………………………….......71 4-7 質子交換膜的性質測試………………………………...........................71 4-7-1 PVA/PSSNa/GO膜材的製備……………………………….............71 4-7-2 含水飽和率………………………………........................................72 4-7-3 質子導電度………………………………........................................73 4-7-4 甲醇滲透率………………………………........................................74 4-7-5 選擇性………………………………................................................74 第五章 結論………………………………........................................................75 第六章 參考文獻………………………………................................................78 | |
| dc.language.iso | zh-TW | |
| dc.title | 聚乙烯醇/氧化石墨片複合材料之製備、性質與其應用探討 | zh_TW |
| dc.title | Fabrication,properties and applications of Poly (vinyl alcohol)/graphite oxide composite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),廖文彬(Wen-Bin Liau),薛景中(Jing-Jong Shyue) | |
| dc.subject.keyword | 聚乙烯醇,氧化石墨片,拉伸測試,相對濕度,質子交換膜, | zh_TW |
| dc.subject.keyword | PVA,graphite oxide,tensile test,relative humidity,proton exchange membrane, | en |
| dc.relation.page | 131 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 6.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
