Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙本秀
dc.contributor.authorCheng-Hsien Tsaien
dc.contributor.author蔡承憲zh_TW
dc.date.accessioned2021-05-20T21:25:41Z-
dc.date.available2011-08-22
dc.date.available2021-05-20T21:25:41Z-
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation1. Kloth, L.C., Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds, 2005. 4(1): p. 23-44.
2. Aaron, R.K., D.M. Ciombor, and B.J. Simon, Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res, 2004(419): p. 21-9.
3. Akai, M., et al., Electrical stimulation of ligament healing. An experimental study of the patellar ligament of rabbits. Clin Orthop Relat Res, 1988(235): p. 296-301.
4. Chao, P.H., et al., Effects of applied DC electric field on ligament fibroblast migration and wound healing. Connect Tissue Res, 2007. 48(4): p. 188-97.
5. Carley, P.J. and S.F. Wainapel, Electrotherapy for acceleration of wound healing: low intensity direct current. Arch Phys Med Rehabil, 1985. 66(7): p. 443-6.
6. Campbell, C.E., D.V. Higginbotham, and T.J. Baranowski, Jr., A constant cathodic potential device for faradic stimulation of osteogenesis. Med Eng Phys, 1995. 17(5): p. 337-46.
7. Ciullo, J.V. and B. Zarins, Biomechanics of the musculotendinous unit: relation to athletic performance and injury. Clin Sports Med, 1983. 2(1): p. 71-86.
8. Philipson, T., et al., [The effect of diadynamic current on chronic soft-tissue pain in the neck and shoulder girdle]. Ugeskr Laeger, 1983. 145(7): p. 479-81.
9. Lisinski, P., W. Zapalski, and W. Stryla, [Physical agents for pain management in patients with gonarthrosis]. Ortop Traumatol Rehabil, 2005. 7(3): p. 317-21.
10. Romanenko, S.G., O.P. Tokarev, and S. Vasilenko Iu, [Electrostimulation of laryngeal muscles with fluctuating currents in the treatment of patients with unilateral laryngeal paralysis]. Vestn Otorinolaringol, 2001(3): p. 52-4.
11. Rusiaev, V.F., Z.N. Salienko, and V.F. Pavlenko, [Effect of a diadynamic current on the development of thromboembolism]. Patol Fiziol Eksp Ter, 1983(1): p. 10-4.
12. Dobrova, A.M., et al., [Use of diadynamic currents to treat suppurating wounds]. Sov Med, 1979(9): p. 55-8.
13. Brown, M., et al., High-voltage galvanic stimulation on wound healing in guinea pigs: longer-term effects. Arch Phys Med Rehabil, 1995. 76(12): p. 1134-7.
14. Gogia, P.P., R.R. Marquez, and G.M. Minerbo, Effects of high voltage galvanic stimulation on wound healing. Ostomy Wound Manage, 1992. 38(1): p. 29-35.
15. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
16. Cho, M.R., et al., Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann Biomed Eng, 2000. 28(3): p. 234-43.
17. Sun, S. and M. Cho, Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. II. Identification of electrocoupling molecular mechanisms. Tissue Eng, 2004. 10(9-10): p. 1558-65.
18. Cho, M.R., et al., Induced redistribution of cell surface receptors by alternating current electric fields. FASEB J, 1994. 8(10): p. 771-6.
19. Giancotti, F.G. and E. Ruoslahti, Integrin signaling. Science, 1999. 285(5430): p. 1028-32.
20. Calderwood, D.A., S.J. Shattil, and M.H. Ginsberg, Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem, 2000. 275(30): p. 22607-10.
21. Carman, C.V. and T.A. Springer, Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol, 2003. 15(5): p. 547-56.
22. Yamada, K.M. and S. Miyamoto, Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol, 1995. 7(5): p. 681-9.
23. Ridley, A.J. and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 1992. 70(3): p. 389-99.
24. Hotchin, N.A. and A. Hall, The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol, 1995. 131(6 Pt 2): p. 1857-65.
25. Yang, B., et al., p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol. 31(2): p. 376-83.
26. Whitehead, I.P., et al., Dbl family proteins. Biochim Biophys Acta, 1997. 1332(1): p. F1-23.
27. Ren, X.D., W.B. Kiosses, and M.A. Schwartz, Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J, 1999. 18(3): p. 578-85.
28. Barry, S.T., et al., Requirement for Rho in integrin signalling. Cell Adhes Commun, 1997. 4(6): p. 387-98.
29. Chong, L.D., et al., The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell, 1994. 79(3): p. 507-13.
30. Clark, E.A., et al., Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol, 1998. 142(2): p. 573-86.
31. Pozo, D., et al., Identification of G-protein coupled receptor subunits in normal human dental pulp. J Endod, 2000. 26(1): p. 16-9.
32. Kumanogoh, H., et al., Biochemical and morphological analysis on the localization of Rac1 in neurons. Neurosci Res, 2001. 39(2): p. 189-96.
33. Carmena, M.J., et al., Cholesterol modulation of membrane fluidity and VIP receptor/effector system in rat prostatic epithelial cells. Regul Pept, 1991. 33(3): p. 287-97.
34. Axelrod, D., et al., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J, 1976. 16(9): p. 1055-69.
35. Sprague, B.L., et al., Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J, 2004. 86(6): p. 3473-95.
36. McLaughlin, S. and M.M. Poo, The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J, 1981. 34(1): p. 85-93.
37. Bourguignon, G.J. and L.Y. Bourguignon, Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J, 1987. 1(5): p. 398-402.
38. Zhao, M., et al., Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J, 2002. 16(8): p. 857-9.
39. van Ginkel, G., H. van Langen, and Y.K. Levine, The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols. Biochimie, 1989. 71(1): p. 23-32.
40. Yeagle, P.L., Lipid regulation of cell membrane structure and function. FASEB J, 1989. 3(7): p. 1833-42.
41. Lang, P., et al., Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J, 1996. 15(3): p. 510-9.
42. Machacek, M., et al., Coordination of Rho GTPase activities during cell protrusion. Nature, 2009. 461(7260): p. 99-103.
43. Fukata, M., M. Nakagawa, and K. Kaibuchi, Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol, 2003. 15(5): p. 590-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10389-
dc.description.abstract電刺激被臨床使用在疼痛的治療以及促進傷口癒合。在骨科的處理上,施予電場可以促進骨頭的癒合以及促進韌帶的復原。在實驗中,我們選用物理治療上時常使用的電刺激波形並檢視對於前十字韌帶纖維母細胞移動以及型態的影響,我們選用的大部分刺激參數都可以增加纖維母細胞的移動,然而對於移動方向上有著十分顯著的差異。此外,前十字韌帶纖維母細胞只有在直流電刺激下會造成細胞有延伸排列的情形。實驗的結果使我們發現細胞移動速度與方向性上有不耦合的情形,這可能是因為不同的機制在進行調控。我們發現整合素蛋白在電場誘發細胞方向性改變的傳導機轉上扮演重要的控制角色,另外也發現整合素蛋白的重新排列也會帶動RhoA排列在負極的現象,這表示電場藉由整合素蛋白的不平均分佈調控了下游重要的傳導分子的分布狀態。本篇研究有助於了解物理治療臨床電療在細胞層面的行為影響,以及建立與釐清電場誘導細胞方向性改變的傳導機轉與整合素蛋白的關係。zh_TW
dc.description.abstractElectrical stimulation is clinically used for the treatment of pain and to promote wound healing. In orthopaedic practices, applied electric fields (EFs) promote bone healing and improve lapine ligament repair in vivo. In the current study, several stimulation waveforms used in physical therapy were adapted to examine their effects on anterior cruciate ligament fibroblast (ACLF) migration and morphology. Most of the waveforms we tested resulted in enhanced fibroblast migration, while their effects on migration directionality were noticeably different. Furthermore, ACLFs elongation and alignment were only found in the DC groups. These findings suggest a decoupling of migration speed and directionality, which may arise from disparate mechanisms. We found that integrin acts as a major player of EF-induced directionality. We also found that integrin redistribution mediate the cathodal redistribution of RhoA. This introduces EF mediates one of the major signaling molecules, which is downstream from the integrin asymmetrically, with stronger redistribution on the cathode, is highly significant functionally. Results from this study may benefit our understanding the electro-therapy treatment on cell behavior and the relation between integrin and EF-induced directionality.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:25:41Z (GMT). No. of bitstreams: 1
ntu-100-R98548017-1.pdf: 2275312 bytes, checksum: e44efd654e5bba29043b3a7922363923 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
List of figures vi
Chapter 1 Introduction 1
Integrin: important role for mediating cell migration 2
EF-induced integrin redistribution 3
Members of the Rho Family of GTPases are regulated by Integrin-mediated Signals 4
Chapter 2 Materials and methods 7
Cell culture 7
Electric field 7
Pharmacological treatment 8
FRAP measurements 9
Migration analysis 10
Immunohistochemistry 10
Statistical analysis 11
Chapter 3 Results 12
EF-induced migration 12
EF- induced cell surface marker redistribution 13
Integrin distribution mediate EF-induced directionality 13
EF- induced RhoA redistribution 15
RhoA activity mediate EF-induced directionality 15
Chapter 4 Discussion 16
Reference 34
dc.language.isoen
dc.title利用電場調變整合素蛋白極化及引導細胞移動現象zh_TW
dc.titleElectric field modulation of integrin polarization and directed cell migrationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡,林峰輝
dc.subject.keyword電場,移動,整合素蛋白,RhoA,zh_TW
dc.subject.keywordElectric field,Migration,Integrin,RhoA,en
dc.relation.page39
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf2.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved