Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德
dc.contributor.authorHung-Nung Yangen
dc.contributor.author楊宏農zh_TW
dc.date.accessioned2021-05-20T21:23:43Z-
dc.date.available2011-11-02
dc.date.available2021-05-20T21:23:43Z-
dc.date.copyright2010-08-24
dc.date.issued2010
dc.date.submitted2010-08-20
dc.identifier.citation1. 左明雪。2003。細胞和分子神經生物學。初版。台北:藝軒。
2. 張恒維。2008。小鼠神經動作電位四聯電極訊號分群演算法之研究。碩士論
文。台北:國立臺灣大學生物產業機電工程學研究所。
3. Bartlett M. S., H. M. Lades, and T. J. Sejnowski. 1998. Independent component
representations for face recognition. In ─Proc. of the SPIE: Conference on Human
Vision and Electronic Imaging III∥. 528-539.
4. Bellman, R. E. 1961. Adaptive Control Processes. Princeton, New Jersey.
Princeton University Press.
5. Bourke, P. 1998. Generating noise with different power spectra laws. Available at:
http://local.wasp.uwa.edu.au/~pbourke/fractals/noise/. Accessed 10/10 2009.
6. Brock, L. G., J. S. Coombs, and J. C. Eccles. 1952. The recording of potentials
from motoneurones with an intracellular electrode. Journal of Physiology. 117(4):
431-460.
7. Buzsaki, G. 2004. Large-scale recording of neuronal ensembles. Nature
Neuroscience. 7(5): 446-51.
8. Campbell, N. A., J. B. Reece, L. G. Mitchell, and M. R. Taylor. 2003. Biology:
Concepts and Connections. 4th ed. San Francisco: Benjamin Cummings.
9. Chandra, R., and L. M. Optican. 1997. Detection, classification, and superposition
resolution of action potentials in multiunit single-channel recordings by an on-line
real-time neural network. IEEE Transactions on Biomedical Engineering. 44(5):
403-412.
10. Chelaru, M. I., and M. S. Jog. 2005. Spike source localization with tetrodes.
Journal of Neuroscience Methods. 142(2): 305-315.
11. Davies, D. L., and D. W. Bouldin. 1979. A cluster separation measure. IEEE
Transactions on In Pattern Analysis and Machine Intelligence. 1(2): 224-227.
12. Dayan, P., and L. F. Abbott. 2001. Theoretical Neuroscience. Massachusetts: The
MIT Press.
13. Dinning, G. J., A. C. Sanderson. 1981. Real-time classification of multiunit neural
signals using reduced feature sets. IEEE Trans Biomed Eng. 28: 804-812.
14. Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification. New York:
John Wiley & Sons.
15. Dunn, J. C. 1974. Well-separated clusters and optimal fuzzy partitions. Cybernetics
and Systems. 4(1): 95-104.
16. Fee, M. S., P. P. Mitra, and D. Kleinfeld. 1996. Variability of extracellular spike
waveforms of cortical neurons. Journal of Neurophysiology. 7(6): 3823-3833.
17. Fred, A. L., and A. K. Jain. 2002. Data clustering using evidence accumulations. In
─Proc. of the 16th Int’l Conference on Pattern Recognition∥. 4: 276-280.
18. Fred, A. L., and A. K. Jain. 2005. Combining multiple clusterings using evidence
accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
27(6): 835-850.
19. Frey, B. J., and D. Dueck. 2007. Clustering by passing messages between data
points. Science 315(5814): 972-976.
20. Gabbiani, F., and C. Koch. 1998. Principles of spike train analysis. Methods in
Neuronal Modeling: From Synapses to Networks: Chapter 9. 2nd ed., 313-360.
Massachusetts: The MIT Press.
21. Gray, C. M., P. E. Maldonado, M. Wilson, and B. McNaughton. 1995. Tetrodes
markedly improve the reliability and yield of multiple single-unit isolation from
multi-unit recordings in cat striate cortex. Neuroscience Methods. 63(1-2): 43-54.
22. Halliday, D., R. Resnick, and J. Walker. 2000. Fundamentals of Physics. 6th ed.
New York: John Wiley & Sons.
23. Hubert, L., and P. Arabie. 1985. Comparing partitions. Journal of Classification. 2
(1): 193–218.
24. Hulata, E., R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob. 2000. Detection
and sorting of neural spikes using wavelet packets. Physical Review Letters.
85(21): 4637-4640.
25. Hyvarinen, A., and E. Oja. 2000. Independent component analysis: Algorithms and
applications. Neural Network. 13(4-5): 411-430.
26. Jog, M. S., C. I. Connolly, Y. Kubota, D. R. Iyengar, L. Garrido, R. Harlan, and A.
M. Graybiel. 2002. Tetrode technology: Advances in implantable hardware,
neuroimaging, and data analysis techniques. Neuroscience Methods. 117(2):
141-152.
27. Jolliffe, I. T. 2002. Principal Component Analysis. Springer Series in Statistics, 2nd
ed. New York: Springer.
28. Kim, K. H., and S. J. Kim. 2000. Neural spike sorting under nearly 0-dB
signal-to-noise ratio using nonlinear energy operator and artificial neural-network
classifier. IEEE Transactions on Biomedical Engineering. 47(10): 1406-1411.
29. Kohavi, R., and F. Provost. 1998. Glossary of terms. Machine Learning. 30(2-3):
271-274.
30. Kohonen, T. 1982. Self-organized formation of topologically correct feature maps.
Biological Cybernetics. 43(1): 59-69.
31. Kohonen, T. 1988. Self-Organization and Associative Memory. Springer Series in
Information Sciences. 2nd ed. New York: Springer.
32. Lee, C. W., H. Dang, and Z. Nenadic. 2007. An efficient algorithm for current
source localization with tetrodes. In Proceedings of the 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. 1282-1285.
33. Lemon, R. 1984. Methods for neuronal recording in conscious animals. IBRO
Handbook Series: Methods in the Neurosciences, Vol. 4. New York: John Wiley &
Sons.
34. Letelier, J. C., and P. P. Weber. 2000. Spike sorting based on discrete wavelet
transform coefficients. Neuroscience Methods. 101(2): 93-106.
35. Lewicki, M. S. 1998. A review of methods for spike sorting: The detection and
classification of neural action potentials. Network. 9(4): 53-78.
36. Lodish, H. F., D. Baltimore, A. Berk, L. Zipursky, P. Matsudaira, and J. E. Darnell.
1999. Molecular Cell Biology. 3rd ed. New York: W. H. Freeman Company.
37. MacQueen, J. B. 1967. Some methods for classification and analysis of
multivariate observations. Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability. Berkeley, University of California Press. 1:
281-297.
38. McNaughton, B. L., J. O'Keefe, and C. A. Barnes. 1983. The stereotrode: A new
technique for simultaneous isolation of several single units in the central nervous
system from multiple unit records. Neuroscience Methods. 8(4): 391-7.
39. Modenesi, M. V., M. C. A. Costa, A. G. Evsukoff, and N. F. F. Ebecken. 2006.
Parallel Fuzzy c-Means Cluster Analysis. Proceedings of the 7th VECPAR. 4395:
52-65.
40. Mtetwa, N., and L.S. Smith. 2006. Smoothing and thresholding in neuronal spike
detection. Neurocomputing. 69(10-12): 1366-1370.
41. Pakhira, M. K., S. Bandyopadhyay, and U. Maulik. 2004. Validity index for crisp
and fuzzy clusters. Pattern Recognition. 37(3): 487-501.
42. Pearson, K. 1901. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine. 2(6): 559–572.
43. Rall, W. 1962. Electrophysiology of a dendritic Neuron Model. Biophys. J. 2:
145-167.
44. Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association. 66: 846-850.
45. Schuster, H. G., and W. Just. 2005. Deterministic Chaos. 5th ed. New York: John
Wiley & Sons.
46. Smith, L. S., and N. Mtetwa. 2007. A tool for synthesizing spike trains with
realistic interference. Neuroscience Methods. 159(1): 170-180.
47. Stone, J. V. 2004. Independent Component Analysis. Massachusetts: The MIT
Press.
48. Takahashi S., Y. Anzai., and Y. Sakurai. 2003. A new approach to spike sorting for
multi-neuronal activities recorded with a tetrode—how ICA can be practical.
Neuroscience Research. 46(3): 265-272.
49. Vogelstein, R. J., K. Murari, P. H. Thakur, C. Diehl, S. Chakrabartty, and G.
Cauwenberghs. 2004. Spike sorting with support vector machines. Proceedings of
26th Annual International Conference of IEEE Engineering in Medicine and
Biology Society. 1: 546-549.
50. Wang, K., J. Zhang, D. Li, X. Zhang, and T. Guo. 2007. Adaptive affinity
propagation clustering. Acta Automatica Sinica. 33(12): 1242-1246.
51. Weiss, N. A. 2002. Introductory Statistics. 6th ed. Boston: Addison-Wesley.
52. Wu, S., A. W. -C. Liew, H. Yan, and M. Yang. 2004. Cluster analysis of gene
expression data based on self-splitting and merging competitive learning. IEEE
Transactions on Information Technology in Biomedicine. 8(1): 5-15.
53. Xu, R., and D. Wunsch II. 2005. Survey of clustering algorithms. IEEE
Transactions on Neural Networks. 6(3): 645-678.
54. Yen, C. C., W. C. Shann, C. T. Yen, and M. L. Tsai. 2009. Spike sorting by a
minimax reduced feature set based on finite differences. The Journal of
Physiological Sciences. 59(2): 143-147.
55. Yow, K. C., and R. Cipolla. 1997. Feature-based human face detection. Image and
Vision Computing. 15(9): 713-735.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10364-
dc.description.abstract本研究主要在探討以神經訊號 (spike) 為對象的分群演算法。神經訊號在無複
合電位或連續激發放電時,假設神經元訊號波形各不相同,在此基礎下,以四聯
電極(tetrode) 為訊號接收儀器,將訊號拆解出波形解析度(waveform resolution)
及空間解析度 (spatial resolution)。波形訊號往往受到生物體內複雜環境的干擾,
因此,本研究針對波形進行線性度前處理,並在頻域上去除高頻雜訊,留下平滑
訊號(low-pass),並放大波形中差異性(difference) 較大的細節成分做為人工高頻,
使得波形保留大部分的原形又能突顯變化較大的特徵,最後以主成分分析(PCA)
降維,組成LDPCA 特徵;空間解析度來自於神經訊號在空間中傳輸造成的衰減,
因距離而有所不同。
神經訊號分群採用 AP (affinity propagation) 非監督式分群演算法,排除了主觀
判斷。在低SNR (3 dB) 的狀態下,分群正確率仍有70%以上,並且隨SNR 上升
正確率明顯改善,而傳統的k-means 分群演算法卻無法隨SNR 提升而進步。
而神經訊號分群的任務之一是要描述神經元活動的狀態,藉由掌握神經元放
電的模式及頻率,即可推估出一指數機率模型配適的神經元發射訊號模式。在低
SNR 的狀態下,只要訊號數量能多於50 個,即可以保證指數機率模型參數μ 的錯
誤率低於20%。
最後本研究中嘗詴解決共平面四聯電極無法定位神經元的問題,利用一虛擬
位移,使得共平面的數值方法有解,模擬實驗證實在高SNR 的環境中,可以看出
訊號在2 維平面上的散布狀態,而定位後的座標值和模擬神經元位置的平均均方
根差可以小於25 μm,有助於生物實驗人員判斷AP 分群結果之優劣程度。
zh_TW
dc.description.abstractThis study has developed a clustering algorithm for spike sorting. It assumes that
neuron signal waveform is different from each neuron when there is not overlapping
and bursting in neuron signal. Based on the previous hypothesis, tetrode, which is an
instrument detecting a neuron signal consisting of waveform resolution and spatial
resolution. Waveform that is detected from a tetrode is consisting of neuron signals and
noise. This study has pre-processed the linearity of tetrode waveforms, and filtered the
signal out high frequency component which usually is noise. In order to amplify the
difference between different neuron waveform, we further add the artifical detail
component into the waveform in time domain. This process will output waveform with
noise-reduced and detail-included. Finally, the principal component analysis (PCA) is
applied to reduce number of dimensionality. The feature which is extracted from these
previous methods is called LDPCA (low-pass difference PCA) feature. On the other
hand, the spatial resolution is defined as the decay which is a result of spatial distance
from neuron to tetrode based on signal transmitting model.
In clustering computing, an unsupervised clustering algorithm, affinity propagation
(AP), is employed, and the result of this algorithm can output an objective clustering
result. Even in low SNR environment (about 3 dB), the clustering accuracy is still
higher than 70%, and the accuracy is getting better when the SNR is getting higher.
Another clustering algorithm, k-means, can’t improve the accuracy even in higher SNR
environment (about 10 dB).
One of the advantages of the spike sorting is to express the model of neuron spikes
firing. An exponential probability distribution and the main parameter μ can be used to
describe the firing model. The false rate of μ is lower than 20% when the spike number
is more than 50.
Excepting the developed clustering algorithm, the method of signal source
localization based on planar tetrode signal has been developed. The co-planar tetrode is
virtually shifted from the 2-D tetrode to 3-D tetrode in this method. The error of
distance from localization can be considered as noise interference. In high SNR
environment, we can clearly observe the distribution of the localized points. The root
mean square error is less than 25 μm. The result shows that the method of localization
can help biological researchers to estimate the performance of spike sorting result.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:23:43Z (GMT). No. of bitstreams: 1
ntu-99-R97631017-1.pdf: 11948064 bytes, checksum: 16969bdf7ff93d46ea9edafc887e79d5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 .................................................................................................................................. i
Abstract ............................................................................................................................. ii
目錄................................................................................................................................ iv
圖目錄............................................................................................................................ vii
表目錄............................................................................................................................ xii
第一章 緒論.................................................................................................................... 1
1.1 前言................................................................................................................... 1
1.2 研究目的........................................................................................................... 2
第二章 文獻探討............................................................................................................ 4
2.1 神經細胞........................................................................................................... 4
2.1.1 神經細胞構造........................................................................................ 4
2.1.2 神經動作電位訊號................................................................................ 6
2.2 神經訊號偵測................................................................................................... 9
2.2.1 單電極.................................................................................................... 9
2.2.2 多電極.................................................................................................. 10
2.3 四聯電極神經訊號模型................................................................................. 14
2.4 神經動作電位訊號特徵擷取......................................................................... 15
2.4.1 主成分分析(principal component analysis, PCA) ............................. 16
2.4.2 獨立成分分析(independent component analysis, ICA) ..................... 17
2.4.3 小波係數(wavelet coefficient) ............................................................ 19
2.4.4 差分法(finite difference) ..................................................................... 21
2.5 神經動作電位分群演算法............................................................................. 24
2.5.1 k-means 分群演算法............................................................................. 25
2.5.2 Affinity propagation (AP) 分群演算法................................................ 26
2.5.3 Self-organizing map (SOM) 分群演算法............................................ 28
2.6 神經訊號序列................................................................................................. 30
2.7 神經動作電位訊號源定位............................................................................. 32
第三章 材料與方法...................................................................................................... 34
3.1 神經訊號擷取................................................................................................. 36
3.2 神經訊號模擬................................................................................................. 38
3.2.1 建立動作電位模板.............................................................................. 38
3.2.2 雜訊...................................................................................................... 39
3.2.3 模擬神經訊號SNR (signal-to-noise ratio) 之調整............................ 41
3.3 神經訊號前處理............................................................................................. 42
3.4 動作電位特徵擷取......................................................................................... 44
3.4.1 低通濾波.............................................................................................. 44
3.4.2 人工高頻成分...................................................................................... 45
3.4.3 主成分分析(principal component analysis, PCA) ............................. 47
3.5 動作電位分群................................................................................................. 48
3.6 動作電位分群之分析..................................................................................... 49
3.6.1 混淆矩陣(confusion matrix) .............................................................. 50
3.6.2 Dunn’s index (Dunn, 1974) ................................................................... 52
3.6.3 Davies-Bouldin validation index (DBVI).............................................. 52
3.6.4 Adjusted Rand index .............................................................................. 53
3.6.5 PBM index ............................................................................................. 55
3.7 神經訊號序列生成......................................................................................... 56
3.8 動作電位訊號源定位..................................................................................... 60
第四章 結果與討論...................................................................................................... 64
4.1 神經訊號模擬與分群演算............................................................................. 64
4.1.1 四聯電極之空間位置.......................................................................... 64
4.1.2 神經元模擬.......................................................................................... 64
4.1.3 神經訊號模擬....................................................................................... 67
4.1.4 模擬訊號之前處理............................................................................... 73
4.1.5 模擬訊號之動作電位特徵擷取.......................................................... 78
4.1.6 模擬訊號之動作電位分群................................................................... 98
4.2 動作電位分群之分析.................................................................................... 101
4.2.1 特徵擷取............................................................................................. 101
4.2.2 分群演算法......................................................................................... 105
4.3 神經訊號序列................................................................................................117
4.4 神經訊號源定位........................................................................................... 122
4.5 實際訊號分析................................................................................................ 133
第五章 結論與建議.................................................................................................... 174
5.1 結論............................................................................................................... 174
5.2 建議............................................................................................................... 176
參考文獻..................................................................................................................... 177
dc.language.isozh-TW
dc.title小鼠神經動作電位訊號分群與訊號源定位演算法之研究zh_TW
dc.titleAlgorithms for Spike Sorting and Source Localization of Mice Neuron Signalsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡孟利,陳倩瑜
dc.subject.keyword四聯電極,特徵擷取,神經動作電位分群,神經訊號源定位,zh_TW
dc.subject.keywordtetrode,feature extraction,spike sorting,source localization,en
dc.relation.page180
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf11.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved