Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10329
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorYi-Fen Lanen
dc.contributor.author藍伊奮zh_TW
dc.date.accessioned2021-05-20T21:20:50Z-
dc.date.available2010-11-15
dc.date.available2021-05-20T21:20:50Z-
dc.date.copyright2010-11-15
dc.date.issued2010
dc.date.submitted2010-10-29
dc.identifier.citation1 M. Ardenne, Zeitschrift für technische Physik, 1938, 19, 407.
2 D. H. Kruger, P. Schneck, H. R. Gelderblom, Lancet, 2000, 355, 1713.
3 F. J. Giessibl, Rev. Mod. Phys., 2003, 75, 949.
4 R. X. Dong, C. C. Chou, J. J. Lin, J. Mater. Chem., 2009, 19, 2184.
5 Y. H. Pai, J. H. Ke, C. C. Chou, J. J. Lin, J. M. Zen, F. S. Shieu, J. Power Sources,
2006, 163, 398.
6 D. Jain, A. Winkel, R. Wilhelm, Small, 2006, 2, 752.
7 Y. F. Lan, J. J. Lin, J. Phys. Chem. A, 2009, 113, 8654.
8 Y. Si, E. T. Samulski, Nano Lett., 2008, 8, 1679.
9 J. J. Lin, Y. M. Chen, Langmuir, 2004, 20, 4261.
10 Y. M. Chen, R. S. Hsu, H. C. Lin, S. J. Chang, S. C. Chen, J. J. Lin, J. Coll. Inter.
Sci., 2009, 334, 42.
11 J. J. Lin, Y. C. Hsu, J. Coll. Inter. Sci., 2009, 336, 82.
12 E. N. Salgado, R. A. Lewis, S. Mossin, A. L. Rheingold, F. A. Tezcan, Inorg. Chem.,
2009, 48, 2726.
13 Z. Xu, X. Yang, Z. Yang, Langmuir, 2007, 23, 9201.
14 H. L. Su, C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X.
Dong, J. J. Lin, Biomaterials, 2009, 30, 5979.
15 J. J. Lin, C. C. Chu, M. L. Chiang, W. C. Tsai, Adv. Mater., 2006, 18, 3248.
16 C. M. Chang, J. C. Chiu, Y. F. Lan, J. W. Lin, C. Y. Yeh, W. S. Jou, J. J. Lin, W. H.
Cheng, J. Lightwave Tech., 2008, 26, 1256.
17 J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J.
Lin, W. H. Cheng, Optics Express, 2010, 18, 3592.
18 R. J. Jeng, S. M. Shau, J. J. Lin, W. C. Su, Y. S. Chiu, Euro. Polym. J., 2002, 38,
683.
19 I. N. Jan, T. M. Lee, K. C. Chiou, J. J. Lin, Indus. Eng. Chem. Res., 2005, 44, 2086.
20 J. J. Lin, J. C. Wei, W. C. Tsai, J. Phys. Chem. B, 2007, 111, 10275.
21 (a) S. K. Pang, J. D. Saxby, S. P. Chatfield, J. Phys. Chem., 1993, 97, 6941. (b) J. P.
Lu, Phys. Rev. Lett., 1995, 74, 1123. (c) H. Dai, E. W. Wong, C. M. Lieber, Science,
1996, 272, 523. (d) A. M. Rao, P. C. Eklund. S. Bandow, A. Thess, R. E. Smalley,
Nature, 1997, 388, 257.
22 (a) J. Liu, S. Tian, W. Knoll, Langmuir, 2005, 21, 5596. (b) K. Kim, S. H. Lee, W.
Yi, J. Kim, J. W. Choi, Y. Park, J. I. Jin, Adv. Mater., 2003, 15, 1618. (c) H. M. So, K.
Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, J. O. Lee, J. Am. Chem. Soc.
2005, 127, 11906. (d) Z. Q. Tian, S. P. Jiang, Y. M. Liang, P. K. Shen, J. Phys. Chem. B,
2006, 110, 5343.
23 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T.
Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T.
Colbert, R. E. Smalley, Science, 1998, 280, 1253.
24 K. S. Coleman, J. Am. Chem. Soc., 2003, 125, 8722.
25 A. Adronov, J. Am. Chem. Soc., 2003, 125, 16015.
26 (a) C. C. Tsiang, Macromolecules, 2004, 37, 283. (b) Q. Liangwei, Macromolecules,
2005, 38, 10328.
27 (a) K. A. Williams, Nature, 2002, 420, 761. (b) K. Jiang, J. Mater. Chem., 2004, 14,
37. (c) M. Guo, Bioelectrochemistry, 2004, 62, 29.
28 (a) J. Chen, Scienec, 1998, 282, 95. (b) Y. Qin, L. Liu, J. Shi, W. Wu, J. Zhang, Z. X.
Guo, Y. Li, D. Zhu, Chem. Mater., 2003, 15, 3256. (c) H. Kong, Macromolecules, 2004,
37, 4022. (d) U. D. Weglikowska, J. Am. Chem. Soc., 2005, 127, 5125.
29 (a) W. T. Ford, J. Am. Chem. Soc., 2004, 126, 170. (b) W. T. Ford, Macromolecules,
2004, 37, 752. (c) G. Gao, J. Am. Chem. Soc., 2004, 126, 412. (d) G. Gao,
Macromolecules, 2005, 38, 8634. (e) G. Gao, Polymer, 2005, 46, 2472.
30 (a) R. Jerome, Polymer, 2004, 45, 6097. (b) A. Adronov, Macromolecules, 2005, 38,
1172.
31 A. Hirsch, Angew. Chem. Int. Ed., 2002, 41, 1853.
32 (a) H. T. Ham, Y. S. Choi, I. J. Chung, J. Colloid Interf. Sci., 2005, 286, 216. (b) D.
Chattopadhyay, I Galeska, F. Papadimitrakopoulos, J. Am. Chem. Soc., 2003, 125,
3370. (c) E. Camponeschi, B. Florkowski, R. Vance, G. Garett, H. Garmestani, R.
Tannenbaum, Langmuir, 2006, 22, 1858. (d) Y. Tan, D. E. Resasco, J. Phys. Chem. B,
2005, 109, 14454. (e) O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, D.
Resasco, J. Phys. Chem. B, 2003, 107, 13357.
33 (a) G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commun.,
1998, 435. (b) L. Jiang, L. Gao, J. Sun, J. Colloid Interf. Sci., 2003, 260, 89. (c) K.
Shen, S. Curran, H. Xu, S. Rogelj, Y. Jiang, J. Phys. Chem. B, 2005, 109, 4455. (c) M.
F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A. G. Yodh, Nano Lett., 2003, 3, 269.
(d) K. Yurekli, C. A. Mitchell, R. Krishnamootri, J. Am. Chem. Soc., 2004, 126, 9902.
(e) T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, Nano Lett.,
2005, 5, 511. (f) P. Poulin, B. Vigolo, P. Launois, Carbon, 2002, 40, 1741. (g) B.
Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin,
Science, 2000, 290, 1331. (h) M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C.
Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J.
Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, J. Dewald, T. Pietrass, Science, 2002,
297, 593.
34 (a) V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, S. Roth, Chem. Mater., 1998,
10, 2338. (b) T. Chatterjee, K. Yurekli, V. G. Hadjiev, R. Krishnamoorti, Adv. Func.
Mater., 2005, 15, 1832.
35 (a) V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, Nano Lett.,
2003, 3, 1379. (b) L. Vaisman, G. Marom, H. D. Wagner. Adv. Funct. Mater., 2006, 16,
357. (c) M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz,
Chem. Phys. Lett., 2001, 342, 265.
36 E. V. Basiuk, V. A. Basiuk, J. G. Bañuelos, J. M. Saniger-Blesa, V. A. Pokrovskiy, T.
Y. Gromovoy, A. V. Mischanchuk, B. G. Mischanchuk, J. Phys. Chem. B, 2002, 106,
1588.
37 (a) J. Kong, H. Dai, J. Phys. Chem. B, 2001, 105, 2890. (b) N. Choi, M. Kimura, H.
Kataura, S. Suzuki, Y. Achiba, Jpn. J. Appl. Phys., 2002, 41, 6264.
38 Y. Maeda, S. I. Kimura, Y. Hirashima, M. Kanda, Y. Lian, T. Wakahara, T. Akasaka,
T. Hasegawa, H. Tokumoto, J. Phys. Chem. B, 2004, 108, 18395.
39 S. Bandow, A. M. Rao, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B, 1997, 101,
8839.
40 X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young, Chem. Mater., 2000, 12,
1049.
41 H. Wang, W. Zhou, D. L. Ho, J. E. Fischer, C. J. Glinka, E. K. Hobbie, Nano Lett.,
2004, 4, 1789.
42 S. Cui, R. Canet, A. Derre, M. Couzi, P. Delhaes, Carbon, 2003, 41, 797.
43 E. Gregan, S. M. Keogh, A. Maguire, T. G. Hedderman, L. O. Neill, G. Chambers, H.
J. Byrne, Carbon, 2004, 42, 1031.
44 C. Y. Li, L. Li, W. Cai, S. L. Kodjie, K. K. Tenneti, Adv. Mater., 2005, 17, 1198.
45 A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S.
W. Chung, H. Choi, J. R. Heath, Angew. Chem., 2001, 113, 1771.
46 M. Yudasaka1, M. Zhang, C. Jabs, S. Iijima, Appl. Phys. A, 2000, 71, 449.
47 J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, G. C. Walker, J. Am.
Chem. Soc., 2002, 124, 9034.
48 A. Carrillo, J. A. Swartz, J. M. Gamba, R. S. Kane, Nano Lett., 2003, 3, 1437.
49 Y. Kang, T. A. Taton. J. Am. Chem. Soc., 2003, 125, 5650.
50 X. Lou, R. Daussin, S. Cuenot, A. S. Duwez, C. Pagnoulle, C. Detrembleur, C.
Bailly, R. Jérôme, Chem. Mater., 2004, 16, 4005.
51 K. El-Hami, K. Matsushige, Chem. Phys. Let., 2003, 368, 168.
52 V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Rakhnyanskaya, K. Sun, A. A.
Mamedov, J. P. Wicksted, N. A. Kotov, J. Am. Chem. Soc., 2005, 127, 3463.
53 H. Kitano, K. Tachimoto, T. Nakaji-Hirabayashi, H. Shinohara, Macromol. Chem.Phys., 2004, 205, 2064.
54 (a) F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, C. Mioskowski, Angew. Chem. Int. Ed., 1999, 38, 1912. (b) K. Bradley, M. Briman, A. Star, G. Gru1ner,
Nano Lett., 2004, 2, 253.
55 (a) S. C. Tsang, Z. Guo, Y. K. Chen, M. L. H. Green, H. A. Hill, T. W. Hambley, P. J.
Sadler, Angew. Chem. Int. Ed. Engl., 1997, 36, 2198. (b) Z. Guo., P. J. Sadler, S. C.
Tsang, Adv. Mater., 1998, 10, 701. (c) M. Zheng, A. Jagota, M. S. Strano, A. P. Santos,
P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G.
Samsonidze, E. D. Semke, M. Usrey, D. J. Walls, Science, 2003, 302, 1545.
56 G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E.
Muñoz, I. H. Musselman, J. Am. Chem. Soc., 2003, 125, 1770.
57 A. Ortiz-Acevedo, H. Xie, V. Zorbas, W. M. Sampson, A. B. Dalton, R. H.
Baughman, R. K. Draper, I. H. Musselman, G. R. Dieckmann, J. Am. Chem. Soc., 2005,
127, 9512.
58 Y. Wu, J. S. Hudson, Q. Lu, J. M. Moore, A. S. Mount, A. M. Rao, E. Alexov, P. C.
Ke, J. Phys. Chem. B, 2006, 110, 2475.
59 S. S. Karajanagi, H Yang, P. Asuri, E. Sellitto, J. S. Dordick, R. S. Kane, Langmuir,
2006, 22, 1392.
60 A. Ikeda, T. Hamano, K. Hayashi, J. Kikuchi, Org. Lett., 2006, 8, 1153.
61 T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida,
Science, 2003, 300, 2072.
62 H. B. Kim, J. S. Chio, S. T. Lim, H. J. Lim, H. S. Kim, Syn. Met., 2005, 154, 189.
63 Y. Zhang, Y. Shen, J. Li, L. Niu, S. Dong, A. Ivaska, Langmuir, 2005, 21, 4797.
64 B. K. Price, J. L. Hudson, J. M. Tour, J. Am. Chem. Soc., 2005, 127, 14867.
65 A. Star, D. W. Steuerman, J. R. Heath, J. F. Stoddart, Angew. Chem., 2002, 41, 2508.
66 Q. Li, I. A. Kinloch, A. H. Windle, Chem. Commun., 2005, 3283.
67 (a) R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett.,
2002, 2, 25. (b) Y. Dror, W. Pyckhout-Hintzen, Y. Cohen, Macromolecules, 2005, 38,
7828.
68 O. K. Kim, J. Je, J. W. Baldwin, S. Kooi, P. E. Pehrsson, L. J. Buckley, J. Am. Chem.
Soc., 2003, 125, 4426.
69 R. J. Chen, Y. Zhang, D. Wang, H Dai, J. Am. Chem. Soc., 2001, 123, 3838.
70 J. Chen, M. J. Dyer, M. F. Yu, J. Am. Chem. Soc., 2001, 123, 6201.
71 D. Uy, A. E. O’Neill, S. J. Simko, A. K. Gangopadhyay, Lubrication Science, 2010,
22, 19.
72 J. S. Im, J. G. Kim, Y. S. Lee, Carbon, 2009, 47, 2640.
73 Y. W. Chen-Yang, T. F. Hung, J. Huang, F. L. Yang, J. Power Sources, 2007, 173,
183.
74 C. K. Leong, D. D. L. Chung, Carbon, 2003, 41, 2459.
75 (a) L. Jong, Composites: Part A, 2007, 38, 252. (b) G.. Sui, W. H. Zhong, X. P. Yang,
Y. H. Yu, S. H. Zhao, Polym. Adv. Technol., 2008, 19, 1543.
76 (a) P. C. Ma, M. Y. Liu, H. Zang, S. Q. Wang, R. Wang, K. Wang, Y. K. Wong, B. Z.
Tang, S. H. Hong, K. W. Paik, J. K. Kim, ACS Appl. Mater. Interfaces, 2009, 1, 1090.
(b) X. Y. Ji, H. Li, D. Hui, K. T. Hsiao, J. P. Ou, A. K.T. Lau, Composites: Part B, 2010,
41, 25.
77 N. Wang, X. X. Zang, X. F. Ma, J. M. Fang, Polym. Degrad. Stab., 2008, 93, 1044.
78 S. Xu, M. Wen, J. Li, S. Guo, M. Wang, Q. Du, J. Shen, Y. Zhang, S. Jiang, Polymer,
2008, 49, 4861.
79 T. Noguchi, T. Nagai, J. Seto, J. Appl. Polym. Sci., 1986, 31, 1913.
80 Q. Li, G. Wu, Y. Ma, C. Wu, Carbon, 2007, 45, 2411.
81 Y. S. Kim, Curr. Appl. Phys., 2010, 10, 10.
82 (a) W. J. Thomas, Carbon, 1966, 3, 435. (b) J. Rappeneau, J. L. Taupin, J. Grehier,
Carbon, 1966, 4, 135. (c) K. Kamegawa, K. Nishikubo, H. Yoshidak, Carbon, 1998, 36,
433. (d) 1998 Kamegaw, K. Nishikubo, M. Kodama, Y. Adachi, H. Yoshida, Carbon,
2002, 40, 1447.
83 N. Tsubokawa, K. Fujiki, T. Sasaki, Y. Sone, Kobunshi Ronbunshu, 1987, 44, 605.
84 (a) S. Hayashi, T. Iida, N. Tsubokawa, J. Macromol. Sci., Pure Appl. Chem., 1997,
A34, 1381. (b) N. Tsubokawa, K. Fujijki, Y. Sone, Polym. J., 1988, 20, 213. (c) K.
Fujiki, N. Tsubokawa, Y. Sone, Polym. J., 1990, 22, 661. (d) N. Tsubokawa, K. Seno, J.
Macromol. Sci. Pure Appl. Chem., 1994, A31, 1135.
85 (a) S. Hayashi, Dr. Thesis, Niigata University, 1997, 90. (b) T. Yamamoto, K.
Aoshima, H. Ohmura, Y. Moriya, N. Suzuki, Y. Oshibe, Polymer, 1991, 32, 19. (c) K.
Ohkita, N. Tsubokawa, E. Saitoh, M. Noda, N. Takashima, Carbon, 1975, 13, 443. (d)
K. Ohkita, N. Tsubokawa, E. Saitoh, Carbon, 1978, 16, 41.
86 (a) Y. Shirai, N. Tsubokawa, Reactive Functional Polym., 1997, 32, 153. (b) Y.
Shirai, K. Shirai, N. Tsubokawa, J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2157.
87 (a) N. Tsubokawa, N. Takeda, T. Iwasa, Polym. J., 1981, 13, 1093. (b) N.
Tsubokawa, N. Takeda, K. Kudoh, Nippon Kagaku Kaishi, 1980, 1264. (c) N.
Tsubokawa, N. Takeda, A. Kanamaru, J. Polym.
Sci., Polym. Lett. Ed., 1980, 18, 625. (d) N. Tsubokawa, Carbon, 1993, 31, 1257. (e) S.
Yoshikawa, R. Nishizaka, K. Oyanagi, N. Tsubokawa, J. Polym. Sci., Part A: Polym.
Chem., 1995, 33, 2251. (f) N. Tsubokawa, K. Oyanagi, S. Yoshikawa, J. Macromol.
Sci., Pure Appl. Chem., 2000, A37, 529. (g) K. Fujiki, J. Chen, W. Gang, S. Saitoh, N.
Tsubokawa, Polymer Preprints, Jpn., 2001, 50, 2696.
88 (a) S. Hayashi, S. Handa, N. Tsubokawa, J. Polym. Sci., Part A: Polym. Chem.,
1996, 34, 1589. (b) S. Yoshikawa, S. Machida, N. Tsubokawa, J. Polym. Sci., Part A:
Polym. Chem., 1998, 36, 3165.
89 (a) N. Tsubokawa, K. Yanadori, Kobunshi Ronbunshu, 1992, 49, 865. (b) N.
Tsubokawa, S. Handa, J. Jpn. Soc. Color Mater., 1993, 66, 468. (c) S. Hayashi, N.
Tsubokawa, J. Macromol. Sci., Pure Appl. Chem., 1998, A35, 1781.
90 J. Chen, Y. Maekawa, M. Yoshida, N. Tsubokawa, Polym. J., 2002, 34, 30.
91 J. Lin, H. Chen, K. Tung, F. Liaw, J. Mater. Chem., 1998, 8, 2169.
92 (a) E. Papirer, N. Tao, J. B. Donner, J. Polym. Sci., Polym. Lett. Ed., 1971, 9, 195. (b)
E. Papirer, N. Tao, J. B. Donnet, Angew. Makromol. Chem., 1971, 19, 65. (c) S.
Yoshikawa, N. Tsubokawa, Polym. J., 1996, 28, 317.
93 N. Tsubokawa, N. Abe, Y. Seida, K. Fujiki, Chem. Lett., 2000, 900.
94 N. Tsubokawa, T. Saitoh, M. Murota, S. Sato, H. Simizu, Polym. Adv. Technol.,
2001, 12, 596.
95 K. Fujiki, T. Ogasawara, N. Tsubokawa, J. Mater. Sci., 1998, 33, 1871.
96 (a) N. Tsubokawa, T. Ogasawara, J. Inaba, K. Fujiki, J. Polym. Sci.: Part A: Polym.
Chem., 1999, 37, 3591. (b) N. Tsubokawa, J. Inaba, K. Arai, K. Fujiki, Polym. Bull.,
2000, 44, 317.
97 T. Liu, S. Jia, T. Kowalewski, K. Matyjaszewski, Langmuir, 2003, 19, 6342.
98 A. Basch, R. Horn, J. O. Besenhard, Coll. Sur. A: Physicochem. Eng. Aspects, 2005,
253, 155.
99 L. Bossolelti; R. Ricceri;G. Giabrielli, J. Disper. Sci. Tech., 1995, 16, 205.
100 H. Ridaoui, A. Jada, L. Vidal, J. B. Donnet, Coll. Sur. A: Physicochem. Eng.
Aspects, 2006, 278, 149.
101 Y. Lin, T. W. Smith, P. Alexandridis, J. Coll. Inter. Sci., 2002, 255, 1.
102 D. Kozaka, D. Moretonb, B. Vincenta, Coll. Sur. A: Physicochem. Eng. Aspects,
2009, 347, 245.
103 H. Y. Li, H. Z Chen, J. Z. Sun, J. Cao, Z. L. Yang, M. Wang, Macromol. Rapid
Commun., 2003, 24, 715.
104 K. Nagai, Y. Igarashi, T. Taniguchi, Coll. Sur. A: Physicochem. Eng. Aspects, 1999,
153, 161.
105 F. Nsib, N. Ayed, Y. Chevalier, Progress in Organic Coatings, 2006, 55, 303.
106 (a) C. S. Hutchins, A. C. Shor, US Patent 4 656 226, 1987. (b) J. A. Simms, H. J.
Spinelli, J. Coat. Technol. 1987, 59, 125.
107 W. Hertler, S. Ma, US Patent 5 519 085, 1996.
108 I. C. Chu, M. Fryd, L. E. Lynch, US Patent 5 231 131, 1993.
109 H. J. Spinelli, US Patents 4 659 782 and 4 659 783, 1987. H. J. Spinelli, in Proc.
13th Int. Conf. in Organic Coatings Science and Technology (Ed: A. Patsis), SUNY
New Platz, New York 1987, Vol. 13, p. 417.
110 (a) C. Johans, J. Clohessy, S. Fantini, K. Kontturi, V. J. Cunnane, Electrochemistry Commu.,
2002, 227. (b) Y. Zhang, F. Chen, J. Zhuang, Y. Tang, D. Wang, Y. Wang, A. Dong, N. Ren, Chem.
Commu., 2002, 24, 2814. (c) H. Ma, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen, F. Meng,
ChemPhysChem, 2004, 24, 68–75.
111 (a) Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen, Adv. Mater., 1999, 850. (b)
Y. Socol, O. Abramson, A. Gedanken, Y. Meshorer, L. Berenstein, A. Zaban, Langmuir, 2002, 18,
4736.
112 (a) D. G. Shchukin, I. L. Radtchenko, G. B. Sukhorukov, ChemPhysChem, 2003, 4, 1101. (b) R.
Jin,; Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature, 2003, 425, 487.
113 (a) F. K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, T. C. Chu, J. Mater. Res., 2004, 19, 469. (b)
S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A. S. Bhalla, Langmuir, 2002, 18, 5959. (c) H. Yin,
T. Yamamoto, Y. Wada, S. Yanagida, Mater. Chem. Phys., 2004, 83, 66.
114 (a) V. Hornebecq, M. Antonietti, T. Cardinal, M. Treguer-Delapierre, Chem. Mater., 2003, 15,
1993. (b) S. H. Choi, S. H. Lee, Y. M. Hwang, K. P. Lee, H. D. Kang, Radi. Phys. Chem., 2003, 67,
517. (c) T. Tsuji, T. Kakita, M. Tsuji, Appl. Surf. Sci., 2003, 206, 314.
115 (a) X. Zheng, L. Zhu, X. Wang, A. Yan, Y. Xie, J. Crystal Growth, 2004, 260, 255. (b) J. Zhang,
B. Han, M. Liu, D. Liu, Z. Dong, J. Liu, D. Li, J. Wang, B. Dong, H. Zhao, L. Rong, J. Phys. Chem.
B, 2003, 107, 3679. (c) M. C. McLeod, R. S. McHenry, E. J. Beckman, C. B. Roberts, J. Phys.
Chem. B, 2003, 107, 2693.
116 (a) R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, M. O. Stone, Nature, 2002, 1, 169. (b) M.
Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J.Urban, S. K. Kulkarni, K. M. Paknikar,
Nanotechnology, 2003, 95. (c) S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interf. Sci.,
2004, 275, 496.
117 (a) K. K. Caswell, C. M. Bender, C. J. Murphy, Nano Lett., 2003, 3, 667. (b) Z. S. Pillai, P. V.
Kamat, J. Phys. Chem. B, 2004, 108, 945. (c) K. S. Chou, C. Y. Ren, Mater. Chem. Phys., 2000, 64,
241. (d) Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett., 2003, 3, 955. (e) Y. Sun, Y. Xia,
Science, 2002, 298, 2176.
118 (a) D. H. Chen, Y. W. Huang, J. Colloid Interf. Sci., 2002, 255, 299. (b) X. Wang, H. Itoh, K.
Naka, Y. Chujo, Langmuir, 2003, 19, 6242.
119 (a) S. Yang, W. Cai, G. Liu, H. Zeng, P. Liu, J. Phys. Chem. C, 2009, 113, 6480. (b) H. Muto, K.
Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C, 2007, 111, 17221. (c) P. Liu, W. Cai, H. Zeng,
J. Phys. Chem. C, 2008, 112, 3261. (d) S. Hashimoto, T. Uwada, H. Masuhara, T. Asahi, J. Phys.
Chem. C, 2008, 112, 15089.
120 (a) K. Wegner, B. Walker, S. Tsantilis, S. E. Pratsinis, Chem. Eng. Sci., 2002, 57, 1753. (b) C. C.
Chen, C. C. Yeh, Adv. Mater., 2000, 12, 738.
121 R. Sardar, J. W. Park, J. S. Shumaker-Parry, Langmuir, 2007, 23, 11883.
122 L. Longenberger, G. Mills, J. Phys. Chem., 1995, 99, 475.
123 T. Sakai, P. Alexandridis, Chem. Mater., 2006, 18, 2577.
124 I. Pastoriza-Santos, L. M. Liz-Marzan, Nano Letters, 2002, 2, 903.
125 L. K. Kurihara, G. M. Chow, P. E. Schoen, NanaShuchued Mater., 1995, 5, 607.
126 I. Sondi, D. V. Goia, E. Matijevic, J Colloid Interf. Sci., 2003, 260, 75.
127 Y. Yin, Z. Y. Li, Z. Zhong, B. Gates, Y. Xia, S. Venkateswaran, J Mater. Chem.,
2002, 12, 522.
128 S. H. Hu , T. Y. Liu, H. Y. Huang, D. M. Liu, S. Y. Chen, Langmuir, 2008, 24, 239.
129 F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh,
Biomaterials, 2005, 26, 729.
130 C. L. Lin, C. F. Lee, W. Y. Chiu, J. Colloid Interf. Sci., 2005, 291, 411.
131 (a) Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning,; X. P. Luo, D. Y.
Tian, D. J. Xi, Mat. Sci., 2004, 39, 2633. (b) H. S. Lee, W. C. Lee, J. Appl. Phys., 1999, 85, 5231. (c) L.
Liz, M. A. L. Quintela, J. Mira, J. Rivas, J. Mater. Sci., 1994, 29, 3797. (d) V. Chhabra, P. Ayyub, A. N.
Maitra, S. Chattopadhyay, Mater. Lett., 1996, 26, 21. (e) S. Bandow, K. Kimure, K. Kimura, K. Kon-on,
A. Kitahara, Jpn. J. Appl. Phys., 1987, 26, 713.
132 (a) R. E. Rosensweig, Scientific American, 1992, 247, 136. (b) Magnetic Fluids and Applications
Handbook. B. Berkovski, Begell House: New York, 1996.
133 (a) A. M. Gadalla, H. Yu, J. Mater. Res., 1990, 5, 1233. (b) T. G. Cattenom, P.
Morales, Mater. Lett., 1993, 18, 151. (c) W. W. Yu, J. C. Falkner, C. T. Yavuz, V.
L.Colvin, Chem. Commun., 2004, 20, 2306.
134 S. Franger, P. Berthet, J. Berthon, J. Solid State Electr., 2004, 8, 218.
135 M. Wu, Y. Xiong, Y. Jia, H. Niu, H. Qi, J. Ye, Q. Chen, Chem. Phys. Lett., 2005, 401, 374.
136 P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G. C.
Lisensky, J. Chem. Edu., 1999, 76, 943.
137 (a) B. Karakaya, W. Claussen, K. Gessler, W. Saenger, S A. D. chlüter, J. Am.
Chem. Soc., 1997, 119, 3296. (b) W. Stocker, B. Karakaya, B. L. Schürmann, J. P. Rabe,
A. D. Schlüter, J. Am. Chem. Soc., 1998, 120, 7691. (c) Z. S. Bo, J. P. Rabe, A. D.
Schlüter, Angew. Chem. Int. Ed., 1999, 38, 2370.
138 Z. N. Bao, K. R. Amundson, A. J. Lovinger, Macromolecules, 1998, 31, 8647.
139 T. Sato, D. L. Jiang, T. Aida, J. Am. Chem. Soc., 1999, 121, 10658.
140 (a) A. G. MacDiarmid, Synth. Met., 1997, 84, 27. (b) R. H. Lee, H. S. Lai, J. J.
Wang, R. J. Jeng, J. J. Lin, Thin Solid Films, 2008, 517, 50.
141 A. P. H. J. Schenning, R. E. Martin, M. Ito, F. Diederich, C. Boudon, J. P.
Gisselbrecht, M. Gross, Chem. Commun., 1998, 1013.
142 T. Kaneko, T. Horie, M. Asano, T. Aoki, E. Oikawa, Macromolecules, 1997, 30,
3118.
143 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.
Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de
Leeuw, Nature, 1999, 401, 685.
144 J. F. Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Commun., 2005, 26,
761.
145 (a) K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 2001, 123,
946. (b) C. H. Chou, C. F. Shu, Macromolecules, 2002, 35, 9673.
146 (a) D. W. Lee, T. M. Swager, Synlett., 2004, 149. (b) H. Korri-Youssoufi, A. Yassar,
Biomacromolecules, 2001, 2, 58. (c) A. Satrijo, T. M. Swager, J. Am. Chem. Soc., 2007,
129, 16020.
147 (a) S. Kumaraswamy, T. Bergstedt, X. Shi, F. Rininsland, S. Kushon, W. S. Xia, K.
Ley, K. Achyuthan, D. McBranch, D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A., 2004,
101, 7511. (b) M. R. Pinto, K. S. Schanze, Proc. Natl. Acad. Sci. U.S.A., 2004, 101,
7505.
148 (a) B. Karakaya, W. Claussen, K. Gessler, W. Saenger, S A. D. chlüter, J. Am.
Chem. Soc., 1997, 119, 3296. (b) W. Stocker, B. Karakaya, B. L. Schürmann, J. P. Rabe,
A. D. Schlüter, J. Am. Chem. Soc., 1998, 120, 7691. (c) Z. S. Bo, J. P. Rabe, A. D.
Schlüter, Angew. Chem. Int. Ed., 1999, 38, 2370. (d) Z. N. Bao, K. R. Amundson, A. J.
Lovinger, Macromolecules, 1998, 31, 8647. (e) T. Sato, D. L. Jiang, T. Aida, J. Am.
Chem. Soc., 1999, 121, 10658. (f) A. P. H. J. Schenning, R. E. Martin, M. Ito, F.
Diederich, C. Boudon, J. P. Gisselbrecht, M. Gross, Chem. Commun., 1998, 1013. (g) T.
Kaneko, T. Horie, M. Asano, T. Aoki, E. Oikawa, Macromolecules, 1997, 30, 3118. (h)
R. D. McCullough, Adv. Mater., 1998, 10, 93. (i) J. V. Grazuleviciusa, P. Strohrieglb, J.
Pielichowskic, K. Pielichowskic, Prog. Polym. Sci., 2003, 28 1297.
149 (a) M. D. McGehee, A. J. Heeger, Adv. Mater., 2000, 12, 1655. (b) D. T. McQuade,
A. E. Pullen, T. M. Swager, Chem. Rev., 2000, 100, 2537.
150 (a) K. Faid, M. Leclerc, Chem. Commun., 1996, 2761. (b) C. Y. Yang, P. J.
Mauricio, K. Schanze, W. H. Tan, Angew. Chem. Int. Ed., 2005, 44, 2572.
151 (a) K. W. Lee, L. K. Povlich, J. Kim, Adv. Funct. Mater., 2007, 17, 2580.
152 (a) A. O. Patil, Y. Ikenoue, F. Wudl, A. J. Heeger, J. Am. Chem. Soc. 1987, 109,
1858. (b) P. Pickup, J. Electroanal. Chem., 1987, 225, 273. (c) S. Shi, F. Wudl,
Macromolecules, 1990, 23, 2119. (d) T. I. Wallow, B. M. Novak, J. Am. Chem. Soc.,
1991, 113, 7411. (e) A. D. Child, J. R. Reynolds, Macromolecules, 1994, 27, 1975. (f)
R. Matthias, S. Arnulf-Dieter, W. Gerhard, Polymer, 1989, 30, 1054. (g) B. Balanda, M.
B. Ramey, J. R. Reynolds, Macromolecules, 1999, 32, 3970.
153 J. Bieleman, Additives for Coatings, WILEY-VCH, Weinheim, 2000.
154 H. J. Spinelli, Adv. Mater., 1998, 10, 1215.
155 (a) K. H. Kuo, Y. H. Peng, W. Y. Chiu, T. M. Don, J. Polym. Sci. A: Polym. Chem.,
2008, 46, 6185. (b) S. Creutz, R. Jerome, Langmuir, 1999, 15, 7145.
156 (a) N. A. D. Burke, H. D. H. Stover, F. P. Dawson, Chem. Mater., 2002, 14, 4752.
(b) Y. Kang, T. A. Taton, Macromolecules, 2005, 38, 6115. (c) M. Nuopponen, H.
Tenhu, Langmuir, 2007, 23, 5352. (d) Y. M. Chen, H. C. Lin, R. S. Hsu, B. Z. Hsieh, Y.
A. Su, Y. J. Sheng, J. J. Lin, Chem. Mater., 2009, 21, 4071.
157 (a) H. J. Spinelli, H. L. Jakubauskas, P. F. McIntyre, J. G. King, US Patent
6306521B1, 2001. (b) C. Auschra, A. Muhlebach, E. Eckstein, US Patent 7199177B2,
2007.
158 C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 2001, 101, 3661.
159 G.. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem., 2005, 58, 379.
160 J. Wang, K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117, 5614.
161 X. Yan, F. Liu, Z. Li, G.. Liu, Macromolecules, 2001, 34, 9112.
162 F. Zeng, Y. Shen, S. Zhu, R. Pelton, Macromolecules, 2000, 33, 1628.
163 Z. Chen, H. Cui, K. Hales, Z. Li, K. Qi, D. Pochan, K. Wooley, J. Am. Chem. Soc.,
2005, 127 8592.
164 (a) J. Merrington, P. Hodge, S. Yeates, Macromol. Rapid Commun., 2006, 27, 835.
(b) C. Auschra, E. Eckstein, A. Muhlebach, M. Zink, F. Rime, Prog. Org. Coat., 2002,
45, 83. (c) D. Nguyen, H. S. Zondanos, J. M. Farrugia, A. K. Serelis, C. H. Such, B. S.
Hawkett, Langmuir, 2008, 24, 2140.
165 Y. F. Lan, New Method of Dispersing Carbon Nanotubes. Master Thesis, National
Chung Hsing University, Taichung, Taiwan, 2006.
166 G. L. Hwang, S. J. Tsai, J. J. Lin, Y. F. Lan, New Method of Dispersing Carbon
Nanocapsule by Geometric Shape Inhomogeneity Factor. US Patent 7,625,952, 2010.
167 R. S. Hsu, W. H. Chang, J. J. Lin, ACS Applied Materials & Interfaces, 2010, 2,
1349.
168 Y. F. Lan, J. J. Lin, Y. C. Hsu New method of dispersing pigments by layered clays. Application
No.: USPTO 20090145333, 2009.
169 (a) Y. F. Lan, R. H. Lee, J. J. Lin, J. Phys. Chem. B, 2010, 114, 1897. (b) Y. F. Lan,
B. Z. Hsieh, H. C. Lin, Y. A. Su, Y. N. Chan, J. J. Lin, Langmuir, 2010, 26, 10572.
170 (a) M. D. Gawryla, L. Liu, J. C. Grunlan, D. A. Schiraldi. Macromol. Rapid
Commun., 2009, 30, 1669. (b) Y. Q. Zhao, K. T. Lau, Z. Wang, Z. C. Wang, H. Y.
Cheung, Z. Yang, H. L. Li, Polymer Composites, 2009, 30, 702. (c) L. Liu, J. C.
Grunlan, Adv. Funct. Mater., 2007, 17, 2343.
171 V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang,
Nano Lett., 2009, 9, 1949.
172 D. S. Yu, L. Dai, J. Phys. Chem. Lett., 2010, 1, 467.
173 H. Wang, X Xiang, F. Li, An official publication of the American Institute of
Chemical Engineers (AIChE Journal), 2010, 56, 768.
174 T. J. Pinnavaia, Science, 1983, 220, 365.
175 (a) G. Qi, Y. Yang, H. Yan, L. Guan, Y. Li, X. Qiu, C. Wang, J. Phys. Chem. C,
2009, 113, 204. (b) T. Saito, M. Okamoto, R. Hiroi, M. Yamamoto, T. Shiroi,
Macromol. Mater. Eng., 2006, 291, 1367. (c) L. A. Utracki, M. Sepehr, E. Boccaleri,
Polym. Adv. Technol., 2007, 18, 1. (d) C. W. Chiu, C. C. Chu, S. A. Dai, J. J. Lin, J.
Phys. Chem. C, 2008, 112, 17940.
176 Y. N. Chan, T. Y. Juang, Y. L. Liao, S. A. Dai, J. J. Lin, Polymer, 2008, 49, 4796.
177 (a) V. Rives, M. A. Ulibarri, Coord. Chem. Rev., 1999, 181, 61. (b) V. Rives, Mater.
Chem. Phys., 2002, 75, 19.
178 R. Roto, G. Villemure, J. Electroanal. Chem., 2006, 588, 140.
179 (a) R. H. Lee, H. S. Lai, J. J. Wang, R. J. Jeng, J. J. Lin, Thin Solid Films, 2008,
517, 500. (b) R. H. Lee, G. H. Hsiue, R. J. Jeng, Polymer, 1998, 40, 13.
180 C. C. Chu, M. L. Chiang, C. M. Tsai, J. J. Lin, Macromolecules, 2005, 38, 6240.
181 (a) N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C. E. Koning, Anal. Chem., 2005,
77, 5135. (b) J. Yu, N. Grossiord, C. E. Koning, J. Loos, Carbon, 2007, 45, 618.
182 (a) D. Baskaran, J. W. Mays, M. S. Bratcher, Chem. Mater., 2005, 17, 3389.
183 G. L. Hwang, S. J. Tsai, J. J. Lin, Y. F. Lan, New Method of Dispersing Carbon
Nanocapsule by Geometric Shape Inhomogeneity Factor. US Patent 7,625,952, 2010.
184 R. S. Hsu, W. H. Chang, J. J. Lin, ACS Applied Materials & Interfaces, 2010, 2,
1349.
185 R. Traiphol, P. Sanguansat, T. Srikhirin, T. Kerdcharoen, T. Osotchan,
Macromolecules, 2006, 39, 1165.
186Y. F. Lan, B. Z. Hsieh, H. C. Lin, Y. A. Su, Y. N. Chan, J. J. Lin, Langmuir, 2010, 26,
10572.
187 T. Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, J. Phys. Chem. B, 2000, 104,
237.
188 R. B. Grubbs, J. M. Dean, F. S. Bates, Macromolecules, 2001, 34, 8593.
189 Fu, S. H.; Fang, K. J. J. Dispersion Sci. Technol., 2006, 27, 971.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10329-
dc.description.abstract奈米技術發展數十年,各式各樣的奈米材料已被發現或製備,為了應用這些奈米材料,分散技術是關鍵點。在文獻中已提出各種化學或物理的分散方法,然而,這些技術仍無法配合分散和應用間的需求。因此,我們建立了一個新式的分散系統-幾何形態分散,其分散概念為利用材料在幾何形態上的高度差異性,可提升材料的分散性。在本研究中,各種奈米材料(奈米碳管、奈米碳球、奈米炭黑、
奈米銀粒子、奈米鐵粒子)、疏水性共軛高分子和有機顏料被用來應證“幾何形態影響分散”之通則性。
zh_TW
dc.description.abstractNanotechnology has been developed for decades and various nanomaterials were created and discovered. To apply these nanomaterials in advanced applications, dispersion techniques are the key issue for utilizing the novel nanomaterials. In the literatures, a variety of dispersion methods involving chemical and physical approaches were proposed. However, these techniques are still not meeting the requirements for the applications. Therefore, we established a new dispersion method based on the concept of using the distinct difference of geometric shapes of
nanomaterials namely, “Geometric-Shape Inhomogeneity Factor” (GIF) for Dispersion. Various nanomaterials, including carbon nanotubes, carbon blacks, carbon
nanocapsules, silver nanoparticles, iron-oxide nanoparticles, hydrophobic conjugated polymers and organic pigments were selected to generalize the GIF. All practical
applications have been successfully improved on utilizing GIF for dispersing nanomaterials.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:20:50Z (GMT). No. of bitstreams: 1
ntu-99-D95549006-1.pdf: 31567479 bytes, checksum: 57b43bee97848dbf7a8fefefbd58b4b0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents國立臺灣大學博士學位論文口試委員會審定書...................................................................................... I
謝 誌..........................................................................................................................................................II
CONTENT.............................................................................................................................................. III
LIST OF TABLES....................................................................................................................................V
LIST OF FIGURES................................................................................................................................ VI
摘 要........................................................................................................................................................ IX
ABSTRACT..............................................................................................................................................X
CHAPTER 1. INTRODUCTION OF DISPERSION TECHNIQUES FOR NANOMATERIALS- 12 -
1.1. HISTORY AND DEVELOPMENT OF NANOTECHNOLOGY AND DISPERSION TECHNIQUES ..........- 12 -
1.1.1. Dispersion Techniques for Carbon Nanotubes ................................................................ - 14 -
1.1.2. Dispersion Techniques for Nanoparticles ........................................................................ - 20 -
1.1.2.1. Dispersion Techniques for Carbon Nanoparticles.....................................................................- 20 -
1.1.2.2. Preparation and Dispersion Techniques for Silver Nanoparticles ............................................- 24 -
1.1.2.3. Preparation and Dispersion Techniques for Iron-Oxide Nanoparticles ...................................- 29 -
1.1.3. Dispersion Techniques for Hydrophobic Conjugated Polymers...................................... - 31 -
1.1.4. Dispersion Techniques for Organic Pigments.................................................................. - 34 -
1.2. NEW DISPERSION TECHNIQUES OF GEOMETRIC-SHAPE INHOMOGENEITY FACTOR ..............- 37 -
CHAPTER 2. EXPERIMENTAL SECTION.................................................................................... - 39 -
2.1. MATERIALS................................................................................................................................- 39 -
2.1.1. Platelet-Like Clays ............................................................................................................ - 39 -
2.1.2. Tubular Nanomaterials..................................................................................................... - 40 -
2.1.3. Nanoparticles .................................................................................................................... - 40 -
2.1.4. Hydrophobic Conjugated Polymers.................................................................................. - 41 -
2.1.5. Poly(N-Isopropyl Acrylamide)-Tethered NSP .................................................................. - 43 -
2.1.6. Organic Pigments.............................................................................................................. - 44 -
2.2. PREPARATION OF NANOMATERIALS-CLAY HYBRIDS................................................................- 45 -
2.3. AMPHIPHILIC DISPERSION IN ORGANIC SOLVENTS OR WATER ...............................................- 45 -
2.4. CHARACTERIZATIONS...............................................................................................................- 46 -
2.4.1. Dispersion......................................................................................................................... - 46 -
2.4.2. Thermoresponsive Behavior ............................................................................................. - 46 -
2.4.3. Luminescence Property..................................................................................................... - 47 -
2.4.4. Conductivity Property........................................................................................................ - 47 -
2.4.5. Thermal Degradation, Particle Size and Zeta Potential Properties................................. - 47 -
CHAPTER 3. RESULTS AND DISCUSSION.................................................................................. - 49 -
3.1. DISPERSION OF TUBULAR-LIKE NANOMATERIALS BY USING PLATELET-LIKE CLAYS ...........- 49 -
3.1.1. Dispersion of Carbon Nanotubes in the Presence of Clays ............................................. - 50 -
3.1.2. Amphiphilic Property for Dispersion................................................................................ - 55 -
3.1.3. Explanation for the Formation of Mica-CNT Microstructures....................................... - 59 -
3.1.4. Conclusion........................................................................................................................ - 60 -
3.2.1. Dispersion of Carbon Nanocapsules in the Presence of Clays........................................ - 62 -
3.2.2. Dispersion of Carbon Black in the Presence of Clays ..................................................... - 70 -
3.2.3. Preparation and Dispersion of Silver Nanoparticles in the Presence of Clays............... - 72 -
3.2.4. Preparation and Dispersion of Iron-Oxide Nanoparticles in the Presence of Clays ...... - 73 -
3.3. DISPERSION OF HYDROPHOBIC CONJUGATED POLYMERS BY USING PLATELET-LIKE CLAYS
AND THEIR THERMORESPONSIVE PROPERTY...................................................................................- 75 -
3.3.1. Dispersion of CP/Clay in the Presence of Clays .............................................................. - 76 -
3.3.2. Optical Performance of CP/Mica Hybrids ....................................................................... - 83 -
3.3.3. Explanation for the Dispersion Behavior of CP/Clay...................................................... - 87 -
3.3.4. Thermoresponsive behavior of conjugated polymer induced by NSP-PNiPAAm........... - 89 -
3.3.5. Photoluminescence behavior of dispersion solution and solid film ................................ - 95 -
3.3.6. Conclusion........................................................................................................................ - 98 -
3.4. DISPERSION OF ORGANIC PIGMENTS BY USING PLATELET-LIKE CLAYS...............................- 100 -
3.4.1. Dispersion of Organic Pigments in the Presence of Clays ............................................ - 101 -
3.4.2. Conclusion...................................................................................................................... - 114 -
CHAPTER 4. SUMMARY ............................................................................................................... - 115 -
REFERENCES................................................................................................................................. - 117 -
dc.language.isoen
dc.subject分散zh_TW
dc.subject米碳管zh_TW
dc.subject碳黑zh_TW
dc.subject米碳球zh_TW
dc.subject共軛高分子zh_TW
dc.subject顏&#63934zh_TW
dc.title幾何形態影響分散因子之通則性zh_TW
dc.titleGeneralization of Geometric-Shape Inhomogeneity Factor
for Dispersion
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee謝國煌(Kuo-Huang Hsieh),邱文英(Wen-Yen Chiu),蔣見超(Raymond Chien-Chao Tsiang),李榮和(Rong-Ho Lee)
dc.subject.keyword分散,奈,米碳管,碳黑,奈,米碳球,共軛高分子,顏&#63934,zh_TW
dc.subject.keyworddispersion,carbon nanotube,carbon black,conjugated polymer,pigment,en
dc.relation.page133
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-11-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf30.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved