Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorYueh-Hung Chengen
dc.contributor.author鄭岳弘zh_TW
dc.date.accessioned2021-05-20T21:20:29Z-
dc.date.available2010-11-15
dc.date.available2021-05-20T21:20:29Z-
dc.date.copyright2010-11-15
dc.date.issued2010
dc.date.submitted2010-11-11
dc.identifier.citation1 Wollstein, G., Garway-Heath, D. F. & Hitchings, R. A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105, 1557-1563 (1998).
2 Fong, D. S., Aiello, L. P., Ferris, F. L. & Klein, R. Diabetic retinopathy. Diabetes Care 27, 2540-2553 (2004).
3 Smith, R. T., Chan, J. K., Busuoic, M., Sivagnanavel, V., Bird, A. C. & Chong, N. V. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest. Ophth. Vis. Sci. 47, 5495-5504 (2006).
4 Hiroshiba, N., Ogura, Y., Sasai, K., Nishiwaki, H., Miyamoto, K., Hamada, M., Tsujikawa, A. & Honda, Y. Radiation-induced leukocyte entrapment in the rat retinal microcirculation. Invest. Ophth. Vis. Sci. 40, 1217-1222 (1999).
5 Katsumi, O., Timberlake, G. T., Hirose, T., Velde, F. J. & Sakaue, H. Recording pattern reversal visual evoked response with the scanning laser ophthalmoscope. Acta Ophathalmol. 67, 243-248 (1989).
6 Berendschot, T., DeLint, P. J. & van Norren, D. Fundus reflectance - historical and present ideas. Prog. Retin. Eye Res. 22, 171-200 (2003).
7 Schweitzer, D., Guenther, S., Scibor, M. & Hammer, M. Spectrometric investigations in ocular hypertension and early stages of primary open angle glaucoma and of low tension glaucoma — multisubstance analysis. Int. Ophthalmol. 16, 251-257 (1992).
8 Schweitzer, D., Schrödel, C., Jütte, A., Blaschke, F., Königsdörffer, E. & Vilser, W. Reflectance spectrophotometry in the human ocular fundus. Graef. Arch. Clin. Exp. 223, 207-210 (1985).
9 Berendschot, T., DeLint, P. & van Norren, D. Origin of tapetal-like reflexes in carriers of x-linked retinitis pigmentosa. Invest. Ophth. Vis. Sci. 37, 2716-2723 (1996).
10 Beach, J., Ning, J. & Khoobehi, B. Oxygen saturation in optic nerve head structures by hyperspectral image analysis. Curr. Eye Res. 32, 161-170 (2007).
11 Field, G. D., Greschner, M., Gauthier, J. L., Rangel, C., Shlens, J., Sher, A., Marshak, D. W., Litke, A. M. & Chichilnisky, E. J. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nat. Neurosci. 12, 1159-1164 (2009).
12 Luo, G., Vargas-Martin, F. & Peli, E. The role of peripheral vision in saccade planning: Learning from people with tunnel vision. J. Vision 8, - (2008).
13 Webb, R. H., Hughes, G. W. & Delori, F. C. Confocal scanning laser ophthalmoscope. Applied optics 26, 1492-1499 (1987).
14 Laurent, M., Johannin, G., Leguyader, H. & Fleury, A. Confocal scanning optical microscopy and 3-dimensional imaging. Biol. Cell 76, 113-124 (1992).
15 Webb, R. H. Confocal optical microscopy. Rep. Prog. Phys. 59, 427-471 (1996).
16 Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A. & Fujimoto, J. G. Optical coherence tomography. Science 254, 1178-1181 (1991).
17 Povazay, B., Bizheva, K., Unterhuber, A., Hermann, B., Sattmann, H., Fercher, A. F., Drexler, W., Apolonski, A., Wadsworth, W. J., Knight, J. C., Russell, P. S. J., Vetterlein, M. & Scherzer, E. Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800-1802 (2002).
18 Morgner, U., Drexler, W., Kartner, F. X., Li, X. D., Pitris, C., Ippen, E. P. & Fujimoto, J. G. Spectroscopic optical coherence tomography. Opt. Lett. 25, 111-113 (2000).
19 Leitgeb, R., Wojtkowski, M., Kowalczyk, A., Hitzenberger, C. K., Sticker, M. & Fercher, A. F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 25, 820-822 (2000).
20 Stumpf, M. C., Zeller, S. C., Schlatter, A., Okuno, T., Sudmeyer, T. & Keller, U. Compact er : Yb : Glass-laser-based supercontinuum source for high-resolution optical coherence tomography. Opt. Express 16, 10572-10579 (2008).
21 Donnelly Iii, W. J. & Roorda, A. Optimal pupil size in the human eye for axial resolution. J. Opt. Soc. Am. A 20, 2010-2015 (2003).
22 Sakata, L. M., DeLeon-Ortega, J., Sakata, V. & Girkin, C. A. Optical coherence tomography of the retina and optic nerve - a review. Clin. Exp. Ophthalmol. 37, 90-99 (2009).
23 Cense, B., Nassif, N. A., Chen, T., Pierce, M., Yun, S. H., Park, B. H., Bouma, B. E., Tearney, G. J. & de Boer, J. F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435-2447 (2004).
24 Pircher, M., Baumann, B., Götzinger, E. & Hitzenberger, C. K. Retinal cone mosaic imaged with transverse scanning optical coherence tomography. Opt. Lett. 31, 1821-1823 (2006).
25 Yi, J., Gong, J. & Li, X. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography. Opt. Express 17, 13157-13167 (2009).
26 Stumpf, M. C., Zeller, S. C., Schlatter, A., Okuno, T., Südmeyer, T. & Keller, U. Compact er:Yb:Glass-laser-based supercontinuum source for high-resolution optical coherence tomography. Opt. Express 16, 10572-10579 (2008).
27 Schmitt, J. M., Xiang, S. H. & Yung, K. M. Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95-105 (1999).
28 Reinholz, F., Ashman, R. A. & Eikelboom, R. H. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope. Cytometry 37, 165-170 (1999).
29 Gray, D. C., Merigan, W., Wolfing, J. I., Gee, B. P., Porter, J., Dubra, A., Twietmeyer, T. H., Ahamd, K., Tumbar, R., Reinholz, F. & Williams, D. R. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt. Express 14, 7144-7158 (2006).
30 Stone, J. M. & Knight, J. C. Visibly ?White? Light generation in uniformphotonic crystal fiber using a microchip laser. Opt. Express 16, 2670-2675 (2008).
31 Hanna, D. C. Astigmatic gaussian beams produced by axially asymmetric laser cavities. IEEE J. Quantum Elect. Qe 5, 483-& (1969).
32 Yu, J.-Y., Liao, C.-S., Zhuo, Z.-Y., Huang, C.-H., Chui, H.-C. & Chu, S.-W. A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy. Rev. Sci. Instrum. 80, 113704-113705 (2009).
33 Verma, Y., Rao, K. D., Suresh, M. K., Patel, H. S. & Gupta, P. K. Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography. Appl. Phys. B-Lasers Opt. 87, 607-610 (2007).
34 Greiling, T. M. S. & Clark, J. I. The transparent lens and cornea in the mouse and zebra fish eye. Semin. Cell Dev. Biol. 19, 94-99 (2008).
35 Cameron, D. A. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Visual Neurosci. 19, 365-372 (2002).
36 Takechi, M., Hamaoka, T. & Kawamura, S. Fluorescence visualization of ultraviolet-sensitive cone photoreceptor development in living zebrafish. Febs. Lett. 553, 90-94 (2003).
37 Jagger, W. S. The optics of the spherical fish lens. Vision Res. 32, 1271-1284 (1992).
38 Raymond, P. A. & Barthel, L. K. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int. J. Dev. Biol. 48, 935-945 (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10325-
dc.description.abstract視網膜是一個由掌管視覺影像的神經所組成之脆弱的層狀組織。現代科學家藉由非侵入式顯微術如共軛焦雷射掃描眼底鏡,即可得到視網膜的資訊,同時藉由此唯一的窗口進行不傷害身體的血管健康觀測。共軛焦雷射掃描眼底鏡能提供視網膜的三維結構,對於視網膜病變的診斷有很大的用處。由於疾病往往伴隨化學成分的改變,具光譜解析度的雷射掃描眼底鏡可以藉由樣品的光譜變化而早期發現疾病。此外因為視網膜上的神經細胞對於光線的波長極為敏感,具光譜解析度的眼底鏡能藉由不同波長的光激發視神經,讓神經科學有更大的想像空間。
過去曾經有人嘗試將光譜影像能力與雷射掃描眼底鏡結合以在活體中進行視覺的色彩研究。然而這些研究都受到了雷射光源以及系統的像差影響。我們提出一套結合超寬頻光源的雷射掃描眼底鏡。藉由光子晶體光纖內的非線性效應,我們可以將單一波長的紅外光雷射換成頻寬由可見光到紅外光的光源。此外我們也以面鏡架設了一套具有繞射極限性能的雷射掃描眼底鏡,以克服一般透鏡系統的色像差。這套系統讓我們能以非侵入式的方法取得活體視網膜的光譜影像,同時簡化以往同類型實驗的步驟。另外這樣的系統也讓我們可以自由選擇光的波長以用來激發視神經,並且觀察神經的訊號傳遞。
zh_TW
dc.description.abstractRetina is a fragile layered tissue composed of neurons responsible for color vision. It is not only part of central nervous system (CNS) which can be investigate noninvasively, but also the only window that microscopic inspection of circulation system can be taken without invasion. A confocal scanning laser ophthalmoscope (cSLO) provides three-dimensional structure of retina, which is important to retinopathy diagnosis. As diseases usually occur with biomedical change of tissue, a spectrally resolved cSLO can diagnose the illness in the early stages by analyzing absorption spectrum of the tissue. Furthermore, because the neurons on retina are sensitive to the wavelength of the light exposed to, a spectrally resolved cSLO facilitates the studies of the neuroscience about retina.
There have been several attempts of spectrally resolved cSLO, but the performances of those systems were all limited by the bandwidth of the lasers and the chromatic/geometric aberration of optics. Here a spectrally resolved cSLO with bandwidth from visible to infrared is demonstrated. The broadband light source is a supercontinuum laser, which is generated from the nonlinear effects in a photonic crystal fiber. We also construct a mirror-based scanning system with diffraction-limited performance, overcoming the aberration problems in previous multispectral systems. With this system, spectral images of living retina from visible to infrared are acquired in a noninvasive manner. Resolution is around 3µm in living zebrafish, which is adequate for cone cell recognition and researches about retina, vision and neuroscience.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:20:29Z (GMT). No. of bitstreams: 1
ntu-99-R97245012-1.pdf: 3929115 bytes, checksum: 9edde3cb04b59efad73e9a14b9341bcb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsThesis committee approval 1
Acknowledgement 2
Chinese abstract 3
English abstract 4
Chapter I Importance of retinal spectral imaging
I.1 Retinal imaging and applications 9
I.2 Potential of retinal spectral imaging 11
Chapter II Comparison between retinal imaging techniques
II.1 Fundus camera 14
II.2 Confocal scanning laser ophthalmoscopy (cSLO)18
II.3 Optical coherence tomography (OCT) 25
II.4 Discussion and conclusion 27
Chapter III Experimental setup
III.1 Overview 31
III.2 Light source 32
III.3 Scanning system 34
III.4 Signal detection and image acquisition 36
III.5 Specification of devices 37
Chapter IV Result and discussion
IV.1 Spectral images of artificial eye 40
IV.2 Retinal spectral images of zebrafish 43
IV.3 Conclusion 52
Figure index 53
Table index 54
Reference 55
1 Wollstein, G., Garway-Heath, D. F. & Hitchings, R. A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105, 1557-1563 (1998).
2 Fong, D. S., Aiello, L. P., Ferris, F. L. & Klein, R. Diabetic retinopathy. Diabetes Care 27, 2540-2553 (2004).
3 Smith, R. T., Chan, J. K., Busuoic, M., Sivagnanavel, V., Bird, A. C. & Chong, N. V. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest. Ophth. Vis. Sci. 47, 5495-5504 (2006).
4 Hiroshiba, N., Ogura, Y., Sasai, K., Nishiwaki, H., Miyamoto, K., Hamada, M., Tsujikawa, A. & Honda, Y. Radiation-induced leukocyte entrapment in the rat retinal microcirculation. Invest. Ophth. Vis. Sci. 40, 1217-1222 (1999).
5 Katsumi, O., Timberlake, G. T., Hirose, T., Velde, F. J. & Sakaue, H. Recording pattern reversal visual evoked response with the scanning laser ophthalmoscope. Acta Ophathalmol. 67, 243-248 (1989).
6 Berendschot, T., DeLint, P. J. & van Norren, D. Fundus reflectance - historical and present ideas. Prog. Retin. Eye Res. 22, 171-200 (2003).
7 Schweitzer, D., Guenther, S., Scibor, M. & Hammer, M. Spectrometric investigations in ocular hypertension and early stages of primary open angle glaucoma and of low tension glaucoma — multisubstance analysis. Int. Ophthalmol. 16, 251-257 (1992).
8 Schweitzer, D., Schrödel, C., Jütte, A., Blaschke, F., Königsdörffer, E. & Vilser, W. Reflectance spectrophotometry in the human ocular fundus. Graef. Arch. Clin. Exp. 223, 207-210 (1985).
9 Berendschot, T., DeLint, P. & van Norren, D. Origin of tapetal-like reflexes in carriers of x-linked retinitis pigmentosa. Invest. Ophth. Vis. Sci. 37, 2716-2723 (1996).
10 Beach, J., Ning, J. & Khoobehi, B. Oxygen saturation in optic nerve head structures by hyperspectral image analysis. Curr. Eye Res. 32, 161-170 (2007).
11 Field, G. D., Greschner, M., Gauthier, J. L., Rangel, C., Shlens, J., Sher, A., Marshak, D. W., Litke, A. M. & Chichilnisky, E. J. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nat. Neurosci. 12, 1159-1164 (2009).
12 Luo, G., Vargas-Martin, F. & Peli, E. The role of peripheral vision in saccade planning: Learning from people with tunnel vision. J. Vision 8, - (2008).
13 Webb, R. H., Hughes, G. W. & Delori, F. C. Confocal scanning laser ophthalmoscope. Applied optics 26, 1492-1499 (1987).
14 Laurent, M., Johannin, G., Leguyader, H. & Fleury, A. Confocal scanning optical microscopy and 3-dimensional imaging. Biol. Cell 76, 113-124 (1992).
15 Webb, R. H. Confocal optical microscopy. Rep. Prog. Phys. 59, 427-471 (1996).
16 Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A. & Fujimoto, J. G. Optical coherence tomography. Science 254, 1178-1181 (1991).
17 Povazay, B., Bizheva, K., Unterhuber, A., Hermann, B., Sattmann, H., Fercher, A. F., Drexler, W., Apolonski, A., Wadsworth, W. J., Knight, J. C., Russell, P. S. J., Vetterlein, M. & Scherzer, E. Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800-1802 (2002).
18 Morgner, U., Drexler, W., Kartner, F. X., Li, X. D., Pitris, C., Ippen, E. P. & Fujimoto, J. G. Spectroscopic optical coherence tomography. Opt. Lett. 25, 111-113 (2000).
19 Leitgeb, R., Wojtkowski, M., Kowalczyk, A., Hitzenberger, C. K., Sticker, M. & Fercher, A. F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 25, 820-822 (2000).
20 Stumpf, M. C., Zeller, S. C., Schlatter, A., Okuno, T., Sudmeyer, T. & Keller, U. Compact er : Yb : Glass-laser-based supercontinuum source for high-resolution optical coherence tomography. Opt. Express 16, 10572-10579 (2008).
21 Donnelly Iii, W. J. & Roorda, A. Optimal pupil size in the human eye for axial resolution. J. Opt. Soc. Am. A 20, 2010-2015 (2003).
22 Sakata, L. M., DeLeon-Ortega, J., Sakata, V. & Girkin, C. A. Optical coherence tomography of the retina and optic nerve - a review. Clin. Exp. Ophthalmol. 37, 90-99 (2009).
23 Cense, B., Nassif, N. A., Chen, T., Pierce, M., Yun, S. H., Park, B. H., Bouma, B. E., Tearney, G. J. & de Boer, J. F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435-2447 (2004).
24 Pircher, M., Baumann, B., Götzinger, E. & Hitzenberger, C. K. Retinal cone mosaic imaged with transverse scanning optical coherence tomography. Opt. Lett. 31, 1821-1823 (2006).
25 Yi, J., Gong, J. & Li, X. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography. Opt. Express 17, 13157-13167 (2009).
26 Stumpf, M. C., Zeller, S. C., Schlatter, A., Okuno, T., Südmeyer, T. & Keller, U. Compact er:Yb:Glass-laser-based supercontinuum source for high-resolution optical coherence tomography. Opt. Express 16, 10572-10579 (2008).
27 Schmitt, J. M., Xiang, S. H. & Yung, K. M. Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95-105 (1999).
28 Reinholz, F., Ashman, R. A. & Eikelboom, R. H. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope. Cytometry 37, 165-170 (1999).
29 Gray, D. C., Merigan, W., Wolfing, J. I., Gee, B. P., Porter, J., Dubra, A., Twietmeyer, T. H., Ahamd, K., Tumbar, R., Reinholz, F. & Williams, D. R. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt. Express 14, 7144-7158 (2006).
30 Stone, J. M. & Knight, J. C. Visibly ?White? Light generation in uniformphotonic crystal fiber using a microchip laser. Opt. Express 16, 2670-2675 (2008).
31 Hanna, D. C. Astigmatic gaussian beams produced by axially asymmetric laser cavities. IEEE J. Quantum Elect. Qe 5, 483-& (1969).
32 Yu, J.-Y., Liao, C.-S., Zhuo, Z.-Y., Huang, C.-H., Chui, H.-C. & Chu, S.-W. A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy. Rev. Sci. Instrum. 80, 113704-113705 (2009).
33 Verma, Y., Rao, K. D., Suresh, M. K., Patel, H. S. & Gupta, P. K. Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography. Appl. Phys. B-Lasers Opt. 87, 607-610 (2007).
34 Greiling, T. M. S. & Clark, J. I. The transparent lens and cornea in the mouse and zebra fish eye. Semin. Cell Dev. Biol. 19, 94-99 (2008).
35 Cameron, D. A. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Visual Neurosci. 19, 365-372 (2002).
36 Takechi, M., Hamaoka, T. & Kawamura, S. Fluorescence visualization of ultraviolet-sensitive cone photoreceptor development in living zebrafish. Febs. Lett. 553, 90-94 (2003).
37 Jagger, W. S. The optics of the spherical fish lens. Vision Res. 32, 1271-1284 (1992).
38 Raymond, P. A. & Barthel, L. K. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int. J. Dev. Biol. 48, 935-945 (2004).
dc.language.isozh-TW
dc.title結合超寬頻光源以提供光譜解析度的共軛焦雷射掃描眼底鏡zh_TW
dc.titleSpectral resolved confocal scanning laser ophthalmoscopy based on supercontinuumen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee孫啟光(Chi- Kuang Sun),王致恬(Chih-Tien Wang)
dc.subject.keyword斑馬魚,超寬頻光源,共軛焦雷射掃描眼底鏡,視網膜影像,光譜影像,zh_TW
dc.subject.keywordZebrafish,supercontinuum,confocal scanning laser ophthalmoscopy,retinal image,spectral images,en
dc.relation.page58
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-11-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved