Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱子豪
dc.contributor.authorChih-Yuan Chenen
dc.contributor.author陳致元zh_TW
dc.date.accessioned2021-05-20T21:18:54Z-
dc.date.available2011-02-09
dc.date.available2021-05-20T21:18:54Z-
dc.date.copyright2011-02-09
dc.date.issued2010
dc.date.submitted2011-01-04
dc.identifier.citation參考文獻
Abraham, T. & Roddick, J. (1997) Discovering meta-rules in mining temporal and spatio-temporal data. Data mining, data warehousing & client/server databases: proceedings of the 8th International Database Workshop. Hong Kong: Springer Verlag, 29-31.
Abraham, T. & Roddick, J. (1999) Survey of spatio-temporal databases. GeoInformatica, 3 (1), 61-99.
Aditya, T. & Kraak M. (2005) Reengineering the Geoportal: Applying HCI and Geovisualization Disciplines. Proceedings of 11th EC-GI & GIS Workshop, ESDI: Setting the Framework, Alghero.
Aggarwal, C. & Yu, P. (2001) Outlier detection for high dimensional data. ACM SIGMOD Record, 30 (2), 37-46.
Andrienko, G. & Andrienko, N. (2005) Visual exploration of the spatial distribution of temporal behaviors. Information Visualisation, 2005. Proceedings. Ninth International Conference on, 799-806.
Andrienko, G. & Andrienko, N. (1999) Interactive maps for visual data exploration. International Journal of Geographical Information Science, 13 (4), 355-374
Andrienko, N., Andrienko, G. & Gatalsky, P. (2003) Exploratory spatio-temporal visualization: An analytical review. Journal of Visual Languages & Computing, 14 (6), 503-541
Andrienko, N. & Andrienko, G. (2006) Exploratory analysis of spatial and temporal data: A systematic approach: Springer Verlag.
Ankerst, M., Berchtold, S. & Keim, D.A. (1998) Similarity clustering of dimensions for an enhanced visualization of multidimensional data. Information Visualization, 1998. Proceedings. IEEE Symposium on, 52-60, 153.
Armstrong, M. (1988) Temporality in spatial databases. Proceedings of GIS/LIS '88. Falls Church, VA: American Congress on Surveying and Mapping, 880-889.
Bacao, F., Lobo, V. & Painho, M. (2005) The self-organizing map, the geo-som, and relevant variants for geosciences. Computers & Geosciences, 31 (2), 155-163.
Bedard, Y., Merrett, T. & Han, J. (2009) 3 fundamentals of spatial data warehousing for geographic knowledge discovery. Geographic data mining and knowledge discovery, 45.
Brachman, R. & Anand, T. (1996) The process of knowledge discovery in databases: A human-centered approach. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. & Ulthurusamy, R. eds. Advances in knowledge discovery and data mining. Cambridge, MA: MIT Press, 37-57.
Brauen, G. (2006) Designing interactive sound maps using scalable vector graphics. Cartographica: The International Journal for Geographic Information and Geovisualization, 41 (1), 59-72.
Breiman, L. (1984) Classification and regression trees: Chapman & Hall/CRC.
Breunig, M., Kriegel, H., Ng, R. & Sander, J. (2000) Lof: Identifying density-based local outliers. ACM SIGMOD Record, 29 (2), 104.
Brimicombe, A. (2003) A variable resolution approach to cluster discovery in spatial data mining. Lecture Notes in Computer Science, 1-11.
Canas, A., Carff, R., Hill, G., Carvalho, M., Arguedas, M., Eskridge, T., Lott, J. & Carvajal, R. (2005) Concept maps: Integrating knowledge and information visualization. Lecture Notes in Computer Science, 3426, 205.
Cheeseman, P. & Stutz, J. (1996) Bayesian classification (autoclass): Theory and results. Advances in knowledge discovery and data mining, 180.
Chen, L., Chang, E., Garcia-Molina, H. & Wiederhold, G. (2002) Clustering for approximate similarity search in high-dimensional spaces. Knowledge and Data Engineering, IEEE Transactions on, 14 (4), 792-808.
Claramunt, C., Jiang, B. & Bargiela, A. (2000) A new framework for the integration, analysis and visualisation of urban traffic data within geographic information systems. Transportation Research Part C-Emerging Technologies, 8 (1-6), 167-184.
Clementini, E. & Di Felice, P. (2001) A spatial model for complex objects with a broad boundary supporting queries on uncertain data. Data & Knowledge Engineering, 37 (3), 285-305.
Clementini, E., Di Felice, P. & Koperski, K. (2000) Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering, 34 (3), 251-270
Cook, D., Symanzik, J., Majure, J.J. & Cressie, N. (1997) Dynamic graphics in a gis: More examples using linked software. Computers & Geosciences, 23 (4), 371-385
Demsar, U. (2007) Investigating visual exploration of geospatial data: An exploratory usability experiment for visual data mining. Computers, Environment and Urban Systems, 31 (5), 551-571.
Dykes, J.A. & Mountain, D.M. (2003) Seeking structure in records of spatio-temporal behaviour: Visualization issues, efforts and applications. Computational Statistics & Data Analysis, 43 (4), 581-603.
Dykes, J., Maceachren, A. & Kraak, M. (2005) Exploring geovisualization: Pergamon.
Edsall, R.M. (2001) Interacting with space and time: Designing dynamic geovisualization environments. Penn State University.
Edsall, R.M. (2003a) Design and usability of an enhanced geographic information system for exploration of multivariate health statistics Professional Geographer, 55 (2), 146-160.
Edsall, R.M. (2003b) The parallel coordinate plot in action: Design and use for geographic visualization Computational Statistics and Data Analysis, 43 (4), 605-619.
Edsall, R.M., Harrower, M. & Mennis, J.L. (2000) Tools for visualizing properties of spatial and temporal periodicity in geographic data. Computers & Geosciences, 26 (1), 109-118.
Ester, M., Kriegel, H. & Sander, J. (1997) Spatial data mining: A database approach. Lecture Notes in Computer Science, 1262, 47-68.
Evans, B.J. (1997) Dynamic display of spatial data-reliability: Does it benefit the map user? Computers & Geosciences, 23 (4), 409-422
Fabrikant, S. (2001) Building task ontologies for geovisualization. Proceedings of ICA Commission on Visualization and Virtual Environments Pre-Conference Workshop on Geovisualization on the Web, Beijing.
Famili, F., W. Shen, R. Weber & Simoudis E. (2010) Data Pre-processing and Intelligent Data Analysis. International Journal on Intelligent Data Analysis, 1.
Fayyad, U. (1997) Knowledge discovery in databases: An overview. Inductive logic programming. 1-16.
Ferreira De Oliveira, M.C. & Levkowitz, H. (2003) From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9 (3), 378-394.
Flexer, A. (2001) On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5 (5), 373-384.
Gahegan, M. (2009) Visual exploration and explanation in geography analysis with light. In Miller, H.J. & Han, J. eds. Geographic data mining and knowledge discovery. Second ed. London: Taylor & Francis, 291-324.
Gahegan, M. & B. Brodaric. (2002) Computational and visual support for geographical knowledge construction: filling in the gaps between exploration and explanation. Proceedings of the 10th International Symposium on Spatial Data Handling, 11. Springer Verlag.
Gahegan, M., Wachowicz, M., Harrower, M. & Rhyne, T.-M. (2001) The integration of geographic visualization with knowledge discovery in databases and geocomputation. Cartography and Geographic Information Science, 28, 29-44.
Goodchild, M. & Dubuc, O. (1987) A model of error for choropleth maps, with applications to geographic information systems. Eighth International Symposium on Computer Assisted Cartography: Proceedings. Baltimore, Maryland: American Society for Photogrammetry and Remote Sensing and American Congress on Surveying and Mapping, 165.
Guo, D. (2009) Multivariate spatial clustering and geovisualization
. In Miller, H.J. & Han, J. eds. Geographic data mining and knowledge discovery. Second ed. London: Taylor & Francis, 321-345.
Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann & Witten I. (2009) The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11, 10-18.
Han, J. & Kamber, M. (2006) Data mining: Concepts and techniques: Morgan Kaufmann.
Hardisty, F. (2005) The geoviz toolkit. Auto- Carto. Las Vegas, NV.
Harrower, M. (2007) The cognitive limits of animated maps. Cartographica, 42 (4), 349-357 Available from: 10.3138/carto.42.4.349
Harrower, M., Maceachren, A. & Griffin, A. (2000) Developing a geographic visualization tool to support earth science learning. Cartography and Geographic Information Science, 27 (4), 279-293.
He, Z., Deng, S. & Xu, X. (2005) An optimization model for outlier detection in categorical data. Advances in intelligent computing. 400-409.
Hinneburg, A., Keim, D.A. & Wawryniuk, M. (1999) Hd-eye: Visual mining of high-dimensional data. Computer Graphics and Applications, IEEE, 19 (5), 22-31.
Jarke, M., Lenzerini, M., Vassiliou, Y. & Vassiliadis, P. (2003) Fundamentals of data warehouses: Springer Verlag.
Jin, X. & Reynolds, R.G. (2000) Mining knowledge in large scale databases using cultural algorithms with constraint handling mechanisms. Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, 1498-1506.
Ichiki, H., Hagiwara, M. & Nakagawa, M. (1991) Self-organizing multilayer semantic maps. Proceedings of IJCNN IEEE International Joint Conference on Neural Networks,. Seattle.
Jing, Y., Daniel, H., Matthew, O.W., Elke, A.R. & William, R. (2007) Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. Visualization and Computer Graphics, IEEE Transactions on, 13 (3), 494-507.
Johnson, B. & Shneiderman, B. (1991) Tree-maps: A space-filling approach to the visualization of hierarchical information structures. IEEE Computer Society Press Los Alamitos, CA, USA, 284-291.
Johnson, H. & Nelson, E. (1998) Using flow maps to visualize time-series data: Comparing the effectiveness of a paper map series, a computer map series, and animation. Cartographic Perspectives, 30, 47-64.
Johnson-Laird, P.N. (1988) The computer and the mind: Harvard University Press.
Jones, C., Haklay, M., Griffiths, S. & Vaughan, L. (2009) A less-is-more approach to geovisualization-enhancing knowledge construction across multidisciplinary teams. International Journal of Geographical Information Science, 23 (8), 1077-1093.
Keim, D. (2000) Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics, 6 (1), 59-78.
Keim, D.A. & Kriegel, H.P. (1994) Visdb: Database exploration using multidimensional visualization. Computer Graphics and Applications, IEEE, 14 (5), 40-49.
Klippel, A., Hardisty, F. & Weaver, C. (2009) Star plots: How shape characteristics influence classification tasks. Cartography and Geographic Information Science, 36, 149-163.
Knorr, E. & Ng, R. (1996) Finding aggregate proximity relationships and commonalities in spatial data mining. IEEE transactions on knowledge and data engineering, 8 (6), 884-897.
Koperski, K., Adhikary, J. & Han, J. (1996) Spatial data mining: Progress and challenges. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Montreal, Canada.
Koperski, K. & Han, J. (1995) Discovery of spatial association rules in geographic information databases. Lecture Notes in Computer Science, 951, 47-66.
Koua, E. & Kraak, M. (2004) Evaluating self-organizing maps for geovisualization. Exploring Geovisualization.
Koua, E.L., Maceachren, A. & Kraak, M.J. (2006) Evaluating the usability of visualization methods in an exploratory geovisualization environment. International Journal of Geographical Information Science, 20 (4), 425-448.
Koussoulakou, A. & Kraak, M. (1992) Spatia-temporal maps and cartographic communication. Cartographic Journal, 29 (2), 101-108.
Kraak, M.-J. (2003) Geovisualization illustrated. ISPRS Journal of Photogrammetry and Remote Sensing, 57 (5-6), 390-399.
Kraak, M.-J. (2007) Geovisualization and visual analytics. Cartographica, 42 (2), 115-116.
Krycier, J. (1994) Sound and geographic visualization. Visualization in modern cartography, 149.
Ladner, R., Petry, F. & Cobb, M. (2003) Fuzzy set approaches to spatial data mining of association rules. Transactions in GIS, 7 (1), 123-138.
Langran, G. & Chrisman, N. (1988) A framework for temporal geographic information. Cartographica: The International Journal for Geographic Information and Geovisualization, 25 (3), 1-14.
Lee, H. & Ong, K. (1996) Visualization support for data mining. IEEE Expert, 11 (5), 69-75.
Maceachren, A., Boscoe, F., Haug, D. & Pickle, L. (1998) Geographic visualization: Designing manipulable maps for exploring temporally varying georeferenced statistics. Proceedings, Information Visualization, 98, 19-20.
Maceachren, A.M. & Kraak, M.-J. (1997) Exploratory cartographic visualization: Advancing the agenda. Computers & Geosciences, 23 (4), 335-343.
Maceachren, A., M., Wachowicz, M., Edsall, R., Haug, D. & Masters, R. (1999) Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods. International Journal of Geographical Information Science, 13 (4), 311-334.
Maceachren, A.M., Brewer, I., Cai, G. & Chen, J. (2003) Visually-enabled geocollaboration to support data exploration and decision-making. 21st International Cartographic Conference. Durban, South Africa.
Maceachren, A.M. & Kraak, M.-J. (2001) Research challenges in geovisualization. Cartography and Geographic Information Science, 28 (1), 1-11.
Maguire, D. (2007) The changing technology of space and time. In Drummond, J., Billen, R., JoaO, E. & Forrest, D. eds. Dynamic and mobile gis: Investigating changes in space and time. Boca Raton, FL: CRC Press.
Mannila, H. (1997) Methods and problems in data mining. Database Theory XICDT'97, 41-55.
Mark, D.M. (1993) Toward a theoretical framework for geographic entity types. COSIT '93 Proceedings: Spatial Information Theory, Italy: Springer-Verlag, 270-283.
Masters, R. & Edsall, R. (2000) Interaction tools to support knowledge discovery:a case study using data explorer and tcl/tk. Visualization Development Environments 2000 Proceedings.
Matheus, C.J., Chan, P.K. & Piatetsky-Shapiro, G. (1993) Systems for knowledge discovery in databases. Knowledge and Data Engineering, IEEE Transactions on, 5 (6), 903-913.
Miller, H. & Han, J. (2001) Geographic data mining and knowledge discovery: CRC Press.
Miller, H.J. & Han, J. (2009) Geographic data mining and knowledge discovery: An overview. In Miller, H.J. & Han, J. eds. Geographic data mining and knowledge discovery. Second ed. London: Taylor & Francis, 1-26.
Morrison, J., Tversky, B. & Betrancourt, M., (2000) Animation: Does it facilitate learning, 53-59.
Muller, W., Nocke, T. & Schumann, H. (2006) Enhancing the visualization process with principal component analysis to support the exploration of trends. Australian Computer Society, Inc., 130.
Nelson, E.S., Dow, D., Lukinbeal, C. & Farley, R. (1997) Visual search processes and the multivariate point symbol. Cartographica, 34 (4), 19.
Ng, R. & Han, J. (2002) Clarans: A method for clustering objects for spatial data mining. IEEE transactions on knowledge and data engineering, 1003-1016.
Patton, D. & Cammack, R. (1996) An examination of the effects of task type and map complexity on sequenced and static choropleth maps. Cartographic design: Theoretical and practical perspectives, 237-252.
Peirce, C. (1891) The architecture of theories. The Monist, 1 (2).
Penn, B.S. (2005) Using self-organizing maps to visualize high-dimensional data. Computers & Geosciences, 31 (5), 531-544
Pike, W. & Gahegan, M. (2007) Beyond ontologies: Toward situated representations of scientific knowledge. International Journal of Human-Computer Studies, 65 (7), 674-688.
Quinlan, J.R. (1993) C4.5 San Mateo, Calif. :: Morgan Kaufmann Publishers.
Reichenbach, H., Reichenbach, M., Freund, J. & Carnap, R. (1958) The philosophy of space & time: Dover Pubns.
Robinson, A.C. (2005a) Assessing geovisualization in epidemiology: A design framework for an exploratory toolkit. The Pennsylvania State University.
Robinson, A.C. (2005b) Geovisualization and epidemiology: A general design framework. Proceedings of the International Cartographic Association. La Coruna, Spain.
Robinson, A.C., Chen, J., Lengerich, E.J., Meyer, H.G. & Maceachren, A.M. (2005) Combining usability techniques to design geovisualization tools for epidemiology. Cartography and Geographic Information Science, 32, 243-255
Roddick, J., Hornsby, K. & Spiliopoulou, M. (2001) An updated bibliography of temporal, spatial, and spatio-temporal data mining research. Lecture Notes in Computer Science, 2007, 147-164.
Roddick, J. & Spiliopoulou, M. (1999) A bibliography of temporal, spatial and spatio-temporal data mining research. ACM SIGKDD Explorations Newsletter, 1 (1), 34-38.
Roddick, J.F. & Lees, B.G. (2009) Spatio-temporal data mining paradigms and methodologies. In Miller, H.J. & Han, J. eds. Geographic data mining and knowledge discovery. Second ed. London: Taylor & Francis, 27-44.
Roddick, J.F. & Spiliopoulou, M. (2002) A survey of temporal knowledge discovery paradigms and methods. Knowledge and Data Engineering, IEEE Transactions on, 14 (4), 750-767.
Schrodinger, E. (1985) Space-time structure: Cambridge University Print.
Sekhar, S., Chang-Tien, L., Pusheng, Z. & Rulin, L. (2002) Data mining for selective visualization of large spatial datasets, 41-48.
Shekhar, S., Lu, C., Chawla, S. & Zhang, P. (2000) Data mining and visualization of twin-cities traffic data. Dept. of Computer Science Technical Report TR 00-015, U. of Minnesota.
Shneiderman, B. (1992) Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on graphics (TOG), 11 (1), 92-99.
Slocum, T. & Egbert, S. (1993) Knowledge acquisition from choropleth maps. Cartography and Geographic Information Science, 20 (2), 83-95.
Slocum, T.A., Blok, C., Jiang, B., Koussoulakou, A., Montello, D.R., Fuhrmann, S. & Hedley, N.R. (2001) Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science, 28, 61-75.
Sowa, J. & Majumdar, A. (2003) Analogical reasoning. Lecture Notes in Computer Science, 16-36.
Stolte, C., Tang, D. & Hanrahan, P. (2003) Multiscale visualization using data cubes. IEEE Transactions on Visualization and Computer Graphics, 176-187.
Swayne, D., Lang, D., Buja, A. & Cook, D. (2003) Ggobi: Evolving from xgobi into an extensible framework for interactive data visualization. Computational Statistics and Data Analysis, 43 (4), 423-444.
Swienty, O., Reichenbacher, T., Reppermund, S. & Zihl, J. (2008) The role of relevance and cognition in attention-guiding geovisualisation. Cartographic Journal, 45, 227-238
Takatsuka, M. & Gahegan, M. (2002) Geovista studio: A codeless visual programming environment for geoscientific data analysis and visualization Computers and Geosciences, 28 (10), 1131-1144.
Tang, J., Chen, Z., Fu, A. & Cheung, D. (2002) Enhancing effectiveness of outlier detections for low density patterns. Advances in knowledge discovery and data mining. 535-548.
Tang, J., Chen, Z., Fu, A. & Cheung, D. (2007) Capabilities of outlier detection schemes in large datasets, framework and methodologies. Knowledge and Information Systems, 11 (1), 45-8.
Uhlenkuken, C., Schmidt, B. & Streit, U. (2000) Visual exploration of high-dimensional spatial data: Requirements and deficits. Computers & Geosciences, 26 (1), 77-85
Wachowicz, M. (2000) The role of geographic visualization and knowledge discovery in spatio-temporal modeling. Publications on Geodesy, 47, 27 - 35.
Wan, Y. & Bian, F. (2008) Cell-based outlier detection algorithm: A fast outlier detection algorithm for large datasets. Advances in knowledge discovery and data mining. 1042-1048.
Wang, L., Xie, K., Chen, T. & Ma, X. (2005) Efficient discovery of multilevel spatial association rules using partitions. Information and Software Technology, 47 (13), 829-840.
Worboys, M., (1992) A model for spatio-temporal information. In: Bresnahan, P., Corwin, E. & Cowen, D., ed. Proceedings of the 5th International Symposium on Spatial Data Handling, Charleston, SC: IGU Commission of GIS, 602-611.
Yang, H. & Srinivasan, P., (2006) Mining spatial and spatio-temporal patterns in scientific data. IEEE Conference on Data Engineering Workshops, Atalanta, 146.
Yuan, M. (1996) Temporal GIS and Spatiotemporal Modeling. Integrating GIS and Environmental Modeling edited by M. Goodchild (CD-ROM).
Yuan, M. (1997) Knowledge acquisition for building wildfire representation in geographic information systems. The International Journal of Geographic Information Systems, 11 (8), 723-745.
Yuan, M. (2009) Toward knowledge discovery about geographic dynamics in spatiotemporal databases. In Miller, H.J. & Han, J. eds. Geographic data mining and knowledge discovery. Second ed. London: Taylor & Francis, 347-365.
Yang, Q., Wu, X., Han, J., Heckerman, D., Keim, D., Liu, J., Madigan, D., Piatetsky-Shapiro, G., Raghavan, V. & Rastogi, R. (2006) 10 challenging problems in data mining research. International Journal of Information Technology and Decision Making, 5 (4), 597-604.
Yudong, C., Yi, Z., Jianming, H. & Danya, Y. (2006) Pattern discovering of regional traffic status with self-organizing maps. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 647-652.
Zhang, H.S., Zhang, Y., Li, Z.H. & Hu, D.C. (2004) Spatial-temporal traffic data analysis based on global data management using mas. Ieee Transactions on Intelligent Transportation Systems, 5 (4), 267-275.
Zhang, J., Gao, Q., Wang, H., Liu, Q. & Xu, K. (2009) Detecting projected outliers in high-dimensional data streams. Database and expert systems applications. 629-644.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10308-
dc.description.abstract地理視覺化探索分析是一種利用地理空間的互動展示來探索多維度時空資料的方法,自組織映射圖網路的視覺化技術是目前最有效的方法,但仍存在部分問題,如資料的分類方法以及類神經網路的大小需依賴研究者主觀判斷。本研究提出「先分解再重新聚類」的方法,整合自組織映射圖及空間自組織映射圖兩種類神經網路演算法以及群聚演算法,利用逐步合併神經元的群聚資料,達到動態調整分類數量的方式,再配合其他視覺化及空間地圖的展示,來探索資料隱含的關係與空間特徵。本研究使用兩個案例進行視覺化探索,第一案例使用台北市早晚尖峰時間車流量資料進行分析,發現無法找出資料關連的原始資料,再經由地理視覺化探索分析後,可在尖峰時間的東西向汽車車流量資料當中找到兩個主要的集合。此兩集合不但在相關係數及判定係數上均有顯著的改善,同時在空間上也可區分為兩個不同的分區。第二個案例使用機車車流量進行分析,在早晨尖峰時間的資料當中,經過地理視覺化探索分析後,可以發現六個主要的空間群聚以及線型的空間特徵。顯示地理視覺化探索分析對於發現地理資料的空間特性,以及辨識不同區域資料的差異性具有不錯的效果。研究結果顯示本研究提出的方法容易觀測到空間或是資料的關連特徵,未來可應用本研究的方法分析其他的時空資料。zh_TW
dc.description.abstractGeovisualization is a method of exploring spatial knowledge hidden in multidimensional geographic and temporal data via interaction with map and graph. The visualization of Self-Organizing Map (SOM) is one of the most effective methods but still has problems of what size the network should be. This research proposed a novel method called “Divide and Regroup”, to integrate clustering analysis and two SOM algorithms (SOM and Geo-SOM) interactively and dynamically for finding hidden data relations and spatial patterns. Two different rush-hour traffic flow data of Taipei City were selected and two cases were done to demonstrate the effectiveness of this novel method. In the first case, the correlation coefficient and coefficient of determination of the unclassified data were low. Two major groups of traffic flow data were recognized using the Geovisualization approach. The correlation coefficients and coefficients of determination of the classified data have improved significantly. In the second case, six major spatial clusters and liner feature groups were recognized. Furthermore, these groups showed different data patterns indicate that the Geovisualization approach is useful for identifying spatial and data characteristics hidden in geographic data. The results demonstrated the effectiveness of the novel method of Geovisualization.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:18:54Z (GMT). No. of bitstreams: 1
ntu-99-D90228001-1.pdf: 8336083 bytes, checksum: 1407a164ab36ade8bb997fda53b8f995 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
國立臺灣大學博士學位論文口試委員審定書 iii
中文摘要 iv
Abstract v
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 4
第二章 文獻回顧 6
第一節 空間資料庫知識探索與資料探勘所面臨的挑戰 6
一、資料庫知識探索與資料探勘基本架構 6
二、知識探索與資料探勘所面臨的問題 9
三、時空地理知識探索的新需求 11
第二節 地理視覺化方法的發展歷程及理論基礎 13
一、地理視覺化技術的興起 13
二、地理視覺化研究的理論基礎 16
三、地理視覺化工具的分類 23
第三節 地理視覺化與知識探索的整合研究 36
一、地理視覺化與知識探索的架構整合 36
二、利用地理視覺化探索的實用性原則以及工具整合 38
三、交通流量資料研究作為一整合案例的可行性評估 40
第四節 小結 42
一、傳統知識探索架構及資料探勘架構的問題 42
二、視覺化工具的研究具有其理論基礎以及成功的要素 42
三、整合性的地理視覺化知識探索架構需要被提出 43
四、利用空間角度來思考交通流量資料知識探索的可能性 43
第三章 研究方法 44
一、以交通流量為對象的案例探索 46
二、利用探索原則改善 SOM 以及相關演算法 49
三、視覺化工具的選用以及探索環境的整合 53
第四章 研究結果與討論 55
第一節 傳統 SOM 演算法與群聚演算法的結合 55
一、階層式群聚演算法的先期評估 55
二、原始車流量的相關分析與簡單回歸分析 57
三、 四組車流量的地理視覺化探索分析 57
四、集合一的相關分析與簡單迴歸分析 61
五、集合二的相關分析與簡單迴歸分析 63
六、不同年度的比較 65
七、小結 69
第二節 Geo-SOM 演算法與群聚演算法的結合 70
一、Geo-SOM 網路大小的選定 70
二、機車流量資料的 Geo-SOM 分類結果 70
三、階層式群聚演算法的資料再聚類 72
四、經過群聚演算及探索後的結果 76
五、小結 78
第五章 結論與建議 80
一、地理視覺化知識探索架構之操作型方法 80
二、本研究所達到的貢獻 82
三、未來可努力的研究方向 82
參考文獻 85
 
圖目錄
圖 1:知識探索過程 (Fayyad, 1997) 7
圖 2:資料探勘過程(Koperski et al., 1996) 8
圖 3:地理動態性與空間屬性架構 (Yuan, 2009) 12
圖 4:時空知識探索的內部及外部結構 (Yuan, 2009) 12
圖 5:視覺化分析的涵蓋範疇 (MacEachren and Kraak, 2001) 15
圖 6:推論鏈結概念架構 (Gahegan, 2009) 18
圖 7:視覺化技術在探索式科學架構中所扮演的角色 (Gahegan, 2009) 19
圖 8:雙變數面量圖( 擷取自GeoViz Toolkit 軟體 ) 26
圖 9:不同視覺化方法介面展示 ( 擷取自GeoViz Toolkit 軟體 ) 27
圖 10:雙變數面量圖與散步圖展示矩陣 ( 擷取自GeoViz Toolkit 軟體 ) 28
圖 11:SOM 六角形拓樸映射圖視覺化範例 ( 擷取自本研究開發軟體 ) 30
圖 12:SOMVIS自組織映射圖網路範例 30
圖 13:階層式自組織映射圖網路範例(Bacao et al., 2005) 31
圖 14:空間自組織映射圖網路範例 (Bacao et al., 2005) 32
圖 15:星狀圖展示介面圖 ( 擷取自GeoViz Toolkit 軟體 ) 33
圖 16:星狀圖面量地圖展示 ( 擷取自GeoViz Toolkit 軟體 ) 33
圖 17:Space-filling視覺展示(Gahegan, 2009) 34
圖 18:Map cube交通資料展示(Sekhar et al., 2002) 34
圖 19:Codex 系統畫面(Pike and Gahegan, 2007) 35
圖 20:地理視覺化技術與視覺化資料探索方式 (Maceachren et al., 1999) 37
圖 21:視覺化與知識探索之概念結合架構 (Gahegan, 2009) 37
圖 22:本研究之地理視覺化整合的研究架構 45
圖 23:研究方法流程 45
圖 24:路口調查點分佈示意圖 47
圖 25:路口轉向調查示意圖 47
圖 26:路口轉向車流原始資料 48
圖 27:四種不同的群聚演算法的分類結果 56
圖 28:89 年原始資料的簡單線性迴歸分析 58
圖 29 : 89 年原始資料資料展示及視覺化處理後之結果 59
圖 30:89 年經過地理視覺化重新聚類後之 SOM 視覺化及空間分布 60
圖 31 : 89 年資料經地理視覺化分析後的集合一簡單線性迴歸分析 62
圖 32:89 年資料經地理視覺化分析後的集合二簡單線性迴歸分析 64
圖 33:90 年資料經地理視覺化分析後的集合一簡單線性迴歸分析 66
圖 34:90 年資料經地理視覺化分析後的集合二簡單線性迴歸分析 67
圖 35:90 年資料經地理視覺化分析後的 SOM 視覺化及空間分布 68
圖 36:經過 Geo-SOM 演算後的資料空間分布 71
圖 37:經過 Geo-SOM 演算後的原始資料及平均值平行座標圖 72
圖 38: n=15 時,四種群聚演算法合併後視覺化地圖展示 73
圖 39: n=10 時,四種群聚演算法合併後視覺化地圖展示 74
圖 40: n=5 時,四種群聚演算法合併後視覺化地圖展示 75
圖 41: n=6 時, Ward’s 演算法合併後之 SOM 視覺化展示 77
圖 42: n=6 時, Ward’s 演算法合併後之資料空間分布 77
圖 43:合併後之原始資料平行座標圖及分組平均值平行座標圖 78
表目錄
表 1:地理視覺化工具的分類 ( 本研究整理 ) 25
表 2:89 年原始資料相關係數及判定係數 58
表 3:89 年資料分群後資料相關係數及判定係數 (集合一) 61
表 4:89 年資料分群後資料相關係數及判定係數 (集合二) 63
表 5:90 年原始資料相關係數及判定係數 65
表 6:90 年資料分群後資料相關係數及判定係數 (集合一) 65
表 7:90 年資料分群後資料相關係數及判定係數 (集合二) 66
dc.language.isozh-TW
dc.title地理視覺化輔助的空間知識探索-台北市交通流量的個案分析zh_TW
dc.titleApplying Geovisualization Techniques
in Enhancing Knowledge Discovery Framework
for Geographical Databases-The Case Study of Traffic Flow in Taipei City
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee孫志鴻,蔡博文,李瑞陽,周學政
dc.subject.keyword地理視覺化,自組織映射圖,空間自組織映射圖,交通流量,群聚分析,zh_TW
dc.subject.keywordGeovisualization,SOM,traffic flow,clustering analysis,en
dc.relation.page94
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-01-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf8.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved