Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉(Yuan-Huei Chan)
dc.contributor.authorChun-Yu Luen
dc.contributor.author呂駿佑zh_TW
dc.date.accessioned2021-05-20T21:16:56Z-
dc.date.available2011-02-20
dc.date.available2021-05-20T21:16:56Z-
dc.date.copyright2011-02-20
dc.date.issued2010
dc.date.submitted2011-01-24
dc.identifier.citationReference of chapter 1
[1] R. W. Wood, Philos. Mag. 4, 396 (1902).
[2] U. Fano, J. Opt. Soc. Am. 31, 213 (1941).
[3] W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).
[4] M. Malmqvist, Nature 261, 186 (1993).
[5] C. M. Braguglia, Chem. Biochem. Eng. Q. 12, 183 (1998).
[6] F. C. Chien and S. J. Chen, Biosensors. Bioelectron. 20, 633 (2004).
[7] P. Andrew, S. C. Kitson, and W. L. Barnes, J. Mod. Opt. 44, 395 (1997).
[8] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, Sol. Energy Mat. Sol. Cells. 61, 97 (2000).
[9] R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).
[10] T. W. Ebbesen, H. J. Lezec , H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[11] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 (2004).
[12] S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005).
[13] B. G. Janesko and G. E. Scuseria, J. Chem. Phys. 125, 124704 (2006).
[14] Z. E. Goude, P. T. Leung, Solid State. Comm. 143, 416 (2007).
[15] M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[16] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 76, 2444 (1996).
[17] S. Nie and S.R. Emory, Science 275, 1102 (1997).
[18] H. Xu, E.J. Bjerneld, M. KaÈll, and L. BoÈrjesson, Phys. Rev.Lett. 83, 4357 (1999).
[19] H. Wang, D.W. Brandl, F. Le, P. Nordlander, and N.J. Halas, Nano Lett. 6, 827
(2006).
[20] J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, and F.J. Garcia de
Abajp, Phys. Rev. Lett. 90, 057401 (2004).
[21] S.J. Oldenburg, J.B. Jackson, S.L. Wescott, and N. J. Halas, Appl. Phys. Lett. 75, 2997 (1999).
[22] E. Prodan, C. Radloff, N.J. Halas, and P. Norlander, Science. 302, 419 (2003).
[23] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, and N.J. Halas, Chem. Phys. Lett.
288, 243 (1998).
[24] C. Graf, A.V. Blaaderen, Langmuir 18, 524 (2002).
[25] Y. Sun and Y. Xia, Anal. Chem. 74, 5297 (2002).
[26] J. B. Jackson, S. L. Westcott, L.R. Hirsch, J.L. West, and N.J. Halas, Appl. Phys. Lett. 82, 257 (2003).
[27] J.B. Jackson and N.J. Halas, Proc. Natl. Acad. Sci. 101, 17930 (2004).
[28] Z. E. Goude and P.T. Leung, Solid State Commun. 143, 416 (2007).
[29] M. Osawa, Top. Appl. Phys. 81, 163 (2001).
[30] T. R. Jensen and R. P. van Duyne, Appl. Spectrosc. 54, 371 (2000).
[31] N. Goutev and M. Futamata, Appl. Spectrosc. 57, 506 (2003).
[32] E. A. Carrasco, F. M. C. Vallette, P. Leyton, G. Diaz, R. E. Clavijo, J. V. Garcia Ramos, N. Inostroza, C. Domingo, S. Sanchez Cortez, and R. Koch, J. Phys. Chem. A 107, 9611 (2003).
[33] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua , and P. Nordlander, ACS Nano 2, 707 (2008).
[34] J. Kundu, F. Le, P. Nordlander, and N. J. Halas, Chem. Phys. Lett. 452, 115 (2008).
Reference of chapter 2
[1] R. H. Ritchie, Phys Rev. 106, 874 (1957).
[2] F. Z. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. B 44, 5855 (1991).
[3] H. Raether, Surface Plasmons, (Springer, 1988).
[4] E. Kretschmann and H. Raether. Radiative. Z. Naturforsch. 23A, 2135 (1968).
[5] A. Otto, Z. Phys. 216, 398 (1968).
[6] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968).
[7] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996).
[8] K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[9] M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
[10] T. R. Jensen, M. L. Duval, L. Kelly, A. Lazarides, GC. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 103, 9846 (1999).
[11] B.T. Draine and P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).
[12] M. Futamata, Y. Maruyama, and M. Ishikawa, J. Phys. Chem. B 10, 7607 (2003).
[13] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, Nano Lett. 4, 899 (2004).
[14] P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[15] E. Prodan and P. Nordlander, J. Chem. Phys. 120, 5444 (2004).
[16] E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003).
[17] C. Radloff, N.J. Halas, Nano Lett. 4, 1323 (2004).
[18] B. Nikoobakht and M.A. El-Sayed, Chem Mater. 15, 1957 (2003).
[19] E. Prodan and P. Nordlander, J. Chem. Phys. 120, 5444 (2004).
[20] G. Mie, Ann. Phys. 25, 377 (1908).
Reference of chapter 3
[1] K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
[2] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, London, 2000).
[3] J. P. Berenger, J. Comp. Physiol. 127, 363 (1996).
[4] J. P. Berenger, IEEE Trans. Antennas Propagat. 47, 1497 (1999).
[5] J. Roden and S. Gedney, Microwave Opt. Technol. Lett 27, 334 (2000).
[6] T. Kashiwa and I. Fukai, Microwave Opt. Technol. Lett. 3, 203 (1990).
[7] R. J. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, IEEE Trans. Electromagn. Compat. 32, 222 (1990).
[8] D. M. Sullivan, IEEE Trans. Antennas Propag. 40, 1223 (1992).
[9] S. K. Gray and T. Kupka, Phys. Rev. B 68, 045415 (2003).
[10] G.Mie, Ann. Phys. 25, 377 (1908).
[11] CUDA Programming Guide Version 1.0. 2007.
[12] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, in IEEE MTT-S International Microwave Symposium Digest 2, 1033 (2004).
[13]M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, and B. N. Baker, in IEEE Trans. Antennas Propag., 5255 (2007).
Reference of chapter 4
[1] F. Hao and P. Nordlander, Chem. Phys. Lett. 446, 115 (2007).
[2] A. Vial and T. Laroche, Appl. Phys. B 93, 139 (2008).
[3] P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[4] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed, (Artech House, Boston, 2005).
[5] A. Vial, J. Opt. A: Pure Appl. Opt. 9, 745 (2007).
[6] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons Inc., New York, 1998)
[7] E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science 302, 419 (2003).
Reference of chapter 5
[1] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Nryant, and F. J. Garcis de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[2] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Nano Lett. 8, 1212 (2008).
[3] H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Norlander, and N. Halas, Acc. Chem. Res. 40, 10856 (2006).
[4] H. Wang, D. W. Brandl, F. Le, P. Norlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[5] E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science 302, 419 (2003).
[6] D. W. Brandl, C. Oubre, and P. Norlander, J. Phys. Chem. B 123, 204701 (2005).
[7] C. Oubre, and P. Norlander, J. Phys. Chem. B 108, 17740 (2004).
[8] J. W. Liaw, J. H. Chen, C. S. Chen, and M. K. Kuo, Opt. Express 17, 13534 (2009).
[9] A. O. Pinchuk and G. C. Schatz, Appl. Phys. B 93, 31 (2008).
[10] H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 33, 4013 (1994).
[11] J. Y. Lu and Y. H. Chang, Superlatt. Microstruct. 47, 60 (2010).
[12] P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[13] J. J. Penninkhof, A. Moroz, A. V. Blaaderen, and A. Polman, J. Phys. Chem. C 112, 4146 (2008).
[14] N.K. Grady, N.J. Halas, and P. Nordlander, Chem. Phys. Lett. 399, 167 (2004).
[15] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, Acs Nano 2, 707 (2008).
Reference of chapter 6
[1] H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Norlander, and N. J. Halas, Proc. Natl. Acad. Sci. USA 103, 10856 (2006) .
[2] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007).
[3] J. P. Kottmann and O. J. F. Martin, Opt. Lett. 26, 1096 (2001).
[4] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed, Artech House, 2005.
[5] H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012 (1994).
[6] J. Y. Lu and Y. H. Chang, Superlattices Microstruct. 47, 60 (2010).
[7] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[8] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajp, Phys. Rev. Lett. 90, 057401 (2004).
Reference of chapter 7
[1] J. F. Nye and M. V. Berry, Proc. R. Soc. London. Ser. A 336, 165 (1974).
[2] J. F. Nye, Natural Focusing and the Fine Stuctures of Light (Institute of Physics, Bristol, 1999).
[3] M. V. Bashevoy, V. A. Fedotov and N. I. Zheludev, Opt. Express 13, 8372 (2006),
[4] M. I. Tribelsky and B. S. Luk’yanchuk, Phys. Rev. Lett. 97, 263902 (2006).
[5] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, Nature (London) 391, 667 (1998).
[6] H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, Opt. Express 11, 371 (2003).
[7] H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, J. Opt. A: Pure Appl. Opt. 6, 277 (2004).
[8] Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331, 118 (2000).
[9] G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, Phys. Rev. A 77, 043825 (2008).
[10] A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[11] K.T. Gahagan and G.A. Swartzlander, J. Opt. Soc. Am. B 16, 533 (1999).
[12] H. Wang, D. W. Brandl, F. Le, P. Norlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[13] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Nryant, and F. J. Garcis de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[14] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Nano Lett. 8, 1212 (2008).
[15] M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[16] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
[17] J. Y. Lu and Y. H. Chang, Superlatt. Microstruct. 47, 60 (2010).
[18] P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[19] H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012 (1994).
[20] E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science 302, 419 (2003).
[21] N.K. Grady, N.J. Halas, and P. Nordlander, Chem. Phys. Lett. 399, 167 (2004)
[22] J. J. Penninkhof, A. Moroz, A. V. Blaaderen, and A. Polman, J. Phys. Chem. C 112, 4146 (2008).
Reference of chapter 8
[1] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajp, Phys. Rev. Lett. 90, 057401 (2004).
[2] E. Prodan, C. Radloff, N. J. Halas, and P. Norlander, Science 302, 419 (2003) .
[3] S. Ushioda and Y. Sasaki, Phys. Rev. B 27, 1401 (1983).
[4] P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
[5] J. Kundu, F. Le, P. Nordlander, and N. J. Halas, Chem. Phys. Lett. 452, 115 (2008).
[6] J.B. Lassiter, J. Aizpurua, L.I. Hernandez, D.W. Brandl, I. Romero, S. Lal, J.H. Hafner, P. Nordlander, and N.J. Halas, Nano Lett. 8, 1212 (2008).
[7] M. Y. Ng and W. C. Liu, Opt. Express 14, 9422 (2003).
[8] H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012 (1994).
[9] J. Y. Lu and Y. H. Chang, Superlattices Microstruct. 47, 60 (2010).
[10] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[11] C. Radloff and N. J. Halas, Nano Lett. 4 , 1323 (2004).
[12] J. Y. Lu, Y. H. Chang, Physica E, doi:10.1016/j.physe.2009.12.010.
[13] H. Y. She, L. W. Li, S. J. Chua, W. B. Ewe, O. J. F. Martin, and J. R. Mosig, J. Appl. Phys. 104, 064310 (2008).
[14] J. Y. Lu and Y. H. Chang, Opt. Commun. 283, 2627 (2010).
[15] H. Wang, F.Tam, N. K. Grady, and N. J. Halas, J. Phys. Chem. B 109, 18218 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10284-
dc.description.abstract由於其侷域性表面電漿模態會與光有強烈交互作用,貴重金屬奈米顆粒之光學性質已成為一重要研究領域。 製程技術的進步使得我們能夠設計擁有多種形狀跟功能的核殼結構,像是奈米米、奈米環和奈米核殼,這些核殼結構由他們在光電、生物和電子設備上的應用吸引到很多注意。這份論文研究光與電介質核金屬殼奈米結構的交互作用,在論文內所使用的模擬的工具是圖形處理器單位化的有限時域差分法,圖形處理器可以加速我們模擬的效率並且減少模擬時間。 此外,一個新且有效率的介電函數模型被併入在我們有限時域差分法中,此模擬結果可以準確地描述金跟銀的色散在波長180奈米到2000奈米之間,於是我們使用此有限時域差分法研究電介質/金屬核殼圓柱對的侷域性表面電漿模態。
首先,我們先著重一對電介質/金屬核殼奈米圓柱的侷域性電漿模態。 模擬的結果發現避雷針作用跟混成電漿模態是兩個造成強烈電場分佈的重要因素,同時我們也利用相位延遲效應來激發無偶極矩的電漿模態。 除了模擬電場分佈跟消散光譜外,我們也研究能量流與電漿模態偶合的關係,結果發現與電漿模態有關的光學奇異點可以被發現在一對核殼奈米圓柱中的,光旋渦與鞍點可以在光與這圓柱對作用的同相對稱偶極矩模之能量流中發現,其中光漩渦的轉動方向可以藉由變化兩圓柱間的寬度以及介質核的光學常數來控制。 最後,我們延伸對於電介質/金屬核殼圓柱對的討論從一對到三對,研究結果顯示電介質/金屬核殼圓柱對可以同時作為表面增強拉曼散射和表面增強紅外吸收光譜的選擇。
zh_TW
dc.description.abstractNoble metal nanoparticles (NPs) are well-known to exhibit a strong interaction with light due to the excitation of localized surface plasmons. Recent advances in nanofabrication have enabled us to design the nanostructures with different shapes and functionalities, such as nanorices, nanorings, and nanoshells. These core-shell nanostructures have attracted much attention due to their applications in opto-electric, biological, and electronic devices. This dissertation reports the studies of the interactions between the light and dielectric-core metallic-shell nanostructures. The simulation tool used in this dissertation is Graphic-Process-Unit-Based (GPU-Based) finite-difference time-domain (FDTD) method. The GPU is graphic processor unit that can greatly speed up our simulation efficiency and reduce simulation time. In addition, a new and efficient dielectric function model was developed and incorporated into our FDTD, and the simulation result can describe accurately the dispersion of gold and silver in the wavelength range between 180nm and 2000nm. This FDTD tool was then used to study the localized plasmon modes in dielectric-core gold-shell nanocylinders.
First, we focus on the plasmon modes of a core-shell nanocylinder pair. The simulations results show the lightning-rod effect and hybridized plasmons are two important factors in enhancing the electric field. We also studied the excitation of non-dipolar plasmon modes by using the phase retardation effect. In addition to simulating the extinction spectra and electric field distributions, the relation of energy flows and localized plasmon modes is also studied. Optical singularities associated with plasmon modes are found to exist in a core-shell nanocylinder pair. The optical vortices as well as saddle points can be observed in the energy flow pattern of light interacting with the core-shell nanocylinder pair in its in-phase symmetric dipolar plasmon mode. The rotating direction of the optical vortices can be tuned by varying the width of the gap between the nanocylinder pair and the value of the permittivity of the dielectric core. Finally, we extend our studies on core-shell nanocylinder pairs from one pair to three pairs. The results show the core-shell nanostructures have a property that makes it an ideal candidate for both surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption spectroscopes (SEIRA).
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:16:56Z (GMT). No. of bitstreams: 1
ntu-99-F95222042-1.pdf: 16502918 bytes, checksum: 8ae1ca0a980284b5fa37eb531918b349 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Surface plasmon oscillations of Metals 1
1.2 Localized surface plasmon oscillations of metal nanoparticles and their applications 2
1.3 Organization of the dissertation 6
Reference of chapter 1 10
Chapter 2 Theory
2.1 Fundamental properties: dispersion relation, propagation length, and excitation of surface plasmons 12
2.2 Introduction to localized surface plasmon resonance 16
2.3 Plasmon hybridization method 19
2.3.1 Plasmons of a cavity and a solid sphere 19
2.3.2 Hybridization of nanoshells 23
Reference of chapter 2 25
Chapter 3 Finite-difference time-domain method
3.1 Fundamental Maxwell’s equations 27
3.2 Courant-Friedrichs-Levy (CFL) condition for the FDTD method 29
3.3 Absorbing boundary conditions 30
3.4 Simulation domain 33
3.5 Dispersion models 35
3.6 Cross sections 38
3.7 FDTD computations using a graphics accelerator 41
3.7.1 CUDA programming model 43
3.7.2 Host and Device 45
Reference of chapter 3 47
Chapter 4 Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures
4.1 The advantage of the FDTD method: getting full spectrum in a single simulation 48
4.2 Dispersion models 49
4.2.1 The L4 model 49
4.2.2 The CP3 model 49
4.2.3 Comparison of the models 50
4.3 Results and discussions 54
4.4 Summary 56
Reference of chapter 4 57
Chapter 5 The lightning-rod mode in a core-shell nanocylinder dimer
5. 1 Introduction: a new plasmon mode associated with the core-shell nanocylinder pair 58
5.2 Calculation methods 59
5.3 Results and Discussions 59
5.4 Conclusion: two important factors that give rise to intense electric field can be applied in the surface enhanced spectrospies: one is hybridization plasmons and the other is the lightning-rod effect 66
Reference of chapter 5 69
Chapter 6 Retardation-effect-induced plasmon modes in a silica- core gold-shell nanocylinder pair
6.1 Introduction to phase retardation effect 70
6.2 Calculation methods 70
6.3 Results and Discussion 71
6.4 Conclusion 78
Reference of chapter 6 80
Chapter 7 Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders
7.1 Introduction to optical singularities 81
7.2 The phase of the Poynting vector 82
7.3 Numerical method 83
7.4 Phase singularities inside a core-shell nanocylinder pair 85
7.5 The dependence of the circulating direction of the optical vortex on the inter-nanocylinder separation 87
7.6 The dependence of the optical vortices on the permittivity of the dielectric core 90
7.7 Summary 93
Reference of chapter 7 94
Chapter 8 Multiple Metallic-shell nanocylinders for surface enhanced spectroscopes
8.1 Introduction 96
8.2 Calculation methods 98
8.3 Results and Discussion 98
8.4 Conclusion 107
Reference of chapter 8 110
Chapter 9 Conclusions 111
Appendix A 114
dc.language.isoen
dc.title以有限時域差分法與高效率化介電函數研究核殼奈米結構的侷域性表面電漿模態zh_TW
dc.titleStudy of Localized Plasmon Modes in Core-shell Nanostructures by using FDTD Method with an Efficient Dielectric Functionen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),梁啟德(Chi-Te Liang),郭光宇(Guang-Yu Guo),賴?杰(Yin-Chieh Lai),魏培坤(Pei-Kuen Wei)
dc.subject.keyword有限差分,奈米光電,表面電漿,zh_TW
dc.subject.keywordFDTD,nanooptics,plasmonics,en
dc.relation.page116
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-01-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf16.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved