請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹幸之(Shing-Jy Tsao) | |
| dc.contributor.author | Wan-Jyun Shin | en |
| dc.contributor.author | 施婉君 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:14:35Z | - |
| dc.date.available | 2014-08-22 | |
| dc.date.available | 2021-05-20T21:14:35Z | - |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-20 | |
| dc.identifier.citation | 王仕賢. 2008. 全球暖化趨勢對臺灣蔬菜生產之影響. 作物、環境與生物資訊
5:76-82. 王強、石偉勇. 2003. 海藻肥對番茄生長的影響及其機理研究. 浙江農業科學 2: 67-69. 王昭月、曾夢蛟. 2010. 利用葉綠素螢光與有效受粉評估測甜椒耐熱性. 台灣農業 研究 59:237-248. 朱德民. 1995. 植物與環境逆境. 國立編譯館. 台北 行政院農業委員會. 2005. 臺灣農家要覽-農作篇(二).豐年社.臺北市. 吳昌祐、朱德民. 1994. 植物在缺氧逆境下之適應調節. 科學農業 42(506): 40-146. 吳昌祐、朱德民. 2003. 淹水逆境對甘藷植株生理反應之探討(3)-供源葉片光合作 用及光合產物代謝之變化. 中華農藝 13:39-58. 宋志榮. 2001. 水分脅迫對辣椒脂質過氧化作用和保護酶活性及相關生理指標的 影響研究. 湖南農業大學碩士論文. 宋豐斌、戴俊英、李海燕. 1995. 外源多胺與玉米耐旱性. 玉米科學3 :44-46. 李志洪、王淑華、高強、李翠蘭、張福鎖. 2004. Zn及ABT對玉米根系生長及根 際磷酸酶活性和pH的影響。植物營養與肥料學報 10:156-160. 李阿嬌. 2008. 北部地區常見蔬菜栽培曆及病蟲害防治曆. 桃園區農業專訊65: 13-25. 汪中和. 2008. 氣候變化對台灣地下水文環境的衝擊:回顧與前瞻. 經濟部中央地 質調查所特刊 18:239-255. 汪洪、金繼運. 2009. 植物對鋅吸收運輸及積累的生理與分子機制. 植物營養與肥 料學報 15: 225-235. 李才生、馬惠麗、黃鵬飛. 2008. 鹽脅迫下不同濃度鋅對水稻幼苗生長及細胞膜 的影響. 安徽農業科學 36:9380- 9381, 9427. 李萌、陸欣春、田霄鴻、買文選、楊習文、南雄雄. 2009. 乾旱條件下鋅對玉米 根系生長及葉片保護酶活性的影響. 西北農林科技大學學報 37:109-114. 林秀霙. 2009. 莫拉克颱風農業災情損失概況. 農政與農情 207:15-18. 林楨祐、邱春樹、陳甘澍. 2010. 芥藍耐熱選育之評鑑方向. 農業試驗所技術服務 81:10-12. 林學詩. 2007. 蔬菜農業氣象災害與因應策略. 作物、環境與生物資訊 4:23-34 姚銘輝、陳守泓、漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 台灣 農業研究 56:224-236. 柯勇. 2002. 植物生理學. 藝軒圖書出版社. 臺北. 徐仰倉、王靜、劉華、王根軒. 2001. 外源精胺對小麥幼苗抗氧化酶活性的促進 作用. 植物生理學報 27:349- 352. 徐曉燕、楊肖娥、楊玉愛. 1999. 鋅在植物中的形態及生理作用機理研究進展. 廣 東微量元素科學11:1- 6. 翁仁憲、張蓉茜. 2004. 根部缺氧對嫁接番茄水分生理之影響. 作物、環境與生物 資訊1:31-38. 高立波. 2006. 芥藍栽培技術措施. 廣西園藝 4:49-50. 高景輝. 1988. 淹水與植物發育. 科學農業叢書第十三號. 科學農業社 .台北 高景輝. 1998. 植物荷爾蒙生理. 華香園出版社. 臺北. 張文東. 2000. 浸水逆境下玉米幼苗植株過氧化作用與抗氧化系統的反應. 國立 中興大學農藝學系研究所博士論文. 張平真. 2009. 關於芥藍起源的研究. 中國蔬菜 14:62-65. 張木清、陳如凱、余松烈. 1996. 多胺對滲透脅迫下甘蔗癒傷組織的誘導和分化 作用. 植物生理學通訊 32:175-178. 張玉瓊、張鶴英。1999。鋅營養對淹水玉米抗性的影響。安徽農學通報 5: 19-21. 張芝蓉. 2008. 芥藍對高溫淹水之耐受性. 國立臺灣大學園藝學研究所碩士論文. 張喜寧、楊秀恵. 2003。新種類肥料可保全淹水逆境下的葉菜生長. 農業世界 236:56-57. 張靜、張魯剛、張玉. 2009. 芥藍種質資源營養成分及商品性評價. 中國蔬菜 16: 41- 44. 張樂奇、張學偉、李愛芳、戴文進、田光輝. 2010. 鋅素營養及其在煙草中的應 用研究. 湖南農業科學 19:58-60. 曹幸之、羅筱鳳. 2002. 蔬菜(Ⅱ). 復文書局. 臺南. 梁婷雅. 2007. 利用RAPD與ISSR標誌分析芥藍的遺傳歧異度. 國立臺灣大學園 藝學研究所碩士論文. 陳甘澍、洪爭坊. 2009. 天然災害後蔬菜病害的發生與管理. 天然災害作物復育之 病害管理研討會專刊. 行政院農業委員會農業試驗所及中華民國植物病理學會 編印 p.95-116. 陳士寬. 2008. 穴盤型式、單格株數、海藻萃取液與叢枝菌根菌對北蔥種苗生長 之影響. 國立中興大學園藝學系研究所碩士論文. 陳詩文. 2009. 葉片型態、植物營養劑及土壤改良劑對小白菜淹水之影響. 國立中 興大學園藝學系研究所碩士論文. 楊純明、張芳銘、陳榮坤、李裕娟、沈百奎. 2002. 淹水對莧菜生長及植體水分 含量之影響. 中華農業氣象9:49-54. 楊暹、楊運英. 2002. 溫度對芥藍生長發育與菜薹形成的影響. 中國蔬菜 4:33-34. 殷憲強、王國棟、孫慧敏、韓新寧. 2004. 乾旱條件下鋅、錳肥對玉米葉綠素含 量的影響. 土壤肥料科學20:196-198, 226. 劉俊、周一峰、章文華、劉友良. 2006. 外源多胺對鹽脅迫下玉米葉綠體結合態 多胺水平和光合作用的影響. 西北植物學報 26:254 -258. 劉達修、王文哲、陳啟吉. 1993. 數種非農藥物質在葉螨防治上之應用. 臺中區農 業改良場研究彙報 39:61-71. 劉厚誠、黃琴、陳日遠、劉晴. 2003. 高溫條件下芥藍菜色澤的形成. 中國蔬菜 6: 12-14. 潘瑞熾、王淑美. 2006. 植物生理學. 藝軒圖書出版社. 台北. 蔣永正. 2003. 認識植物營養劑. 植物保護通訊 6:1-3. 蔣永正. 2005. 市售植物營養劑活性之檢測. 中華民國雜草學會會刊 26 :3-65. 謝慶芳. 1998. 柑桔類有機栽培法. 農作物有機栽培技術專刊 p. 91-96. 韓錦峰、朱大恒、林學. 1992. 多胺對煙草抗漬性的生理效應.植物生理學通訊 28:271-272. 羅志平. 2006. 小白菜經植物生長物質前處理對淹水逆境之反應. 國立臺灣大學 藝學研究所碩士論文 關佩聰、李孟仿. 1989. 芥藍菜薹發育與品種、花芽分化和生長的關係. 園藝學報 16:39-44. 顧洋. 2008. 全球暖化的因應. 科學發展421:6-11. Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123. Aloni, B. and G.. Rosenshtein. 1982. Effect of flooding on tomato cultivars: the relationship between proline accumulation and other morphological and physiological changes. Physiol. Plant. 56:513-517. Anton, J. M., C. H. Marjolein, J. B. Joris, A. M. Robert, B. Jordi, and A.C. Laurentius. 2002. Submergence research using Rumex palustris as a model: Looking back and going forward. J. Exp. Bot. 53: 391-398. Ashraf, M. and M. Arfan. 2005. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol. plant. 49: 459-462. Aziz, A., J. M. Tanguy, and F. Larher. 1998. Stress‐induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol. Plant. 104: 95-202. Bartosz, G. 2003. Generation of reactive oxygen species in biological systems. Comments Toxicol. 9: 5-21. Basra, A. S. 2000. Plant growth regulators in agriculture and horticulture-their role and commercial use. p. 1-25. In: M. V. Jorge and E. F. Hector (eds.) Control of root formation by plant growth regulators. The Haworth Press, NY. Bates, L. S., R. D. Walderen and I. D. Taere. 1973. Rapid determination of free proline for water stress studies. Plant soil 39:205-207. Beauchemin, R., J. Harnois, R. Rouillon, H.A. Tajmir-Riahi, and R. Carpentier. 2007. Interaction of polyamines with proteins of photosystem II: Cation binding and photosynthetic oxygen evolution. J. Mol. Struct. 833:169-174. Beckett, R. P. and J. Staden. 1989. The effect of seaweed concentrate on the growth and yield of potassium stressed wheat. Plant Soil 116:29-36. Beckman, T. G., R. L. Perry and J. A. Flore. 1992. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. Hort. Sci. 27: 1297-1301. Blunden, G., T. Jenkins, and Y. W. Liu. 1996. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol. 8: 535-543. Borrell, A., L. Carbonell, R. Farrs, P. Puig-Parellad and A. F. Tiburcio. 1997. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol. Plant. 99:385- 390. Broadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. New Phytol. 173:677-702. Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185-205. Cakmak, I. and H. Marshner. 1988. Enhanced superoxide radical production in roots of zinc deficient plants. J. Exp. Bot. 39:1449- 1460. Cakmak, I., A. Yilmaz, M. Kalayci, H. Ekiz, B. Torun, B. Erenoglu and H. J. Braun. 1996. Zinc deficiency as a critical problem in wheat product ion in central Anatolia. Plant Soil. 180:165-172. Capell, T., L. Bassie, and P. Christou. 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Aca. Sci. 101:9909–9914. Carvalho, L. C. and S. Amancio. 2002. Antioxidant defence system in plantlets transferred from in vitro to ex vitro: effects of increasing light intensity and CO2 concentration. Plant Sci. 162: 33-40. Casanova, M. T. and A. Margaret. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol. 147: 237-250. Castonguay, P. P. and R. R. Simard. 1993. Effects of flooding carbohydrate and ABA levels in roots and shoots of alfalfa. Plant Cell Env. 16: 695-702. Champolivier, L. and A. Merrien. 1996. Effects of water stress applied at different growth stages to Brassica napus L.var. oleifera on yield, yield components and seed quality. Euro. J. Agron. 5: 153-160. Chatterjee, C. and N. Khurana. 2007. Zinc stress induced changes in biochemical parameters and oil content of mustard. Commun. Soil Sci. Plant Anal 38: 751-761. Close, D. C. and N. J. Davidson. 2003. Long-term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens Saplings. Russian J. Plant Physiol. 50: 843-847. Chouliaras, V., D. Gerascapoulos and S. Lionakis. 1997. Effect of seaweed extract on fruit growth, weight and maturation of ‘Hayward’ kiwifruit. Acta Hort. 2:485-489. Crouch, I.J., R.P. Beckett and J.V. Staden. 1990. Effect of seaweed concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. J. Appl. Phycol. 2: 269-272. Daugherty, C.J., S. W. Matthews and M. E. Musgrave. 1994. Structural change in rapid-cycling Brassica rapa selected for differential waterlogging tolerance. Can. J. Bot. 72:1322-1328. Demetriou, G., C. Neonaki, E. Navakoudis, and K. Kotzabasis. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus— The protective role of polyamines. Biochim. Biophys. Acta, Bioenerg. 1767: 272-280. Drew, M. C. 1983. Plant injury and adaptation to oxygen deficiency in the root environment: a review. Plant Soil 75:179-199. Drew, M. C. 1992. Soil aeration and plant root metabolism. Soil Sci. 154 : 259-268. Drew, M. C. and E. J. Sisworo. 1979. The development of waterlogging damage in young barley plants in relation to plant nutrient status and changes in soil properties. New Phytol. 82: 301-314. Duan, H. G., S. Yuan, W. J. Liu, D.H. Xi, D.H. Qing, H. G. Liang, and H. H. Lin. 2006. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J. Integr. Plant Biol. 48: 920-927. Duan, J., J. Li, S. Guo, and Y. Kang. 2008. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165: 1620-1635. Fausey, N. R., T. T. Van Toai and M. B. McDonald, Jr. 1985. Response of ten corn cultivars to flooding. Trans. ASAE. 28:1794-1797. Fox, T. C., and M. L. Guerinot. 1998. Molecular biology of cation transport in plant. Ann. Rev. Plant physiol. Plant Mol. Biol. 49:699-696. Galston, A. W. and R. K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406-410. Grewal, H. S., L. Zhonggu, and R. D. Graham. 1997. Influence of subsoil zinc on dry matter production, seed yield and distribution of zinc in oil seed rape genotypes differing in zinc efficiency. Plant Soil 192: 181-189. Gutierrez Boem, F. H., R.S. Lavado, and C.A. Porcelli. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res. 47: 175-179. Hao, L. M., H. L. Wang, and H. G. Liang. 1999. Effects of rewatering on lightharvesting chlorophyll a/b protein complex of photosystem II in Zea mays. Acta Bot. Sin. 41: 613-616. Hare, P.D., W.A. Cress, and J. V. Staden. 1997. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23: 79-103. Heath, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplants I. Kinetics and stoichiometry of fatty acids peroxidation. Arch. Biophys. 125: 189-198. Horchani, F., P. Gallusci, P. Baldet, C. Cabasson, M. Maucourt, D. Rolin, S. A. Smiti, and P. Raymond. 2008. Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. J. Plant Physiol. 165:1352-1359. Hsu, F. H., J. B. Lin and S. R. Chang. 2000. Effect of waterlogging on seed germination, electric conductivity of seed leakage and developments of hypocotyls and radicle in sudangrass. Bot. Bull. Acad. Sin. 41: 267-273. Huang, B., J. W. Johnson, S. Nesmith, and D. C. Bridges. 1994. Growth, physiologi- cal and anatomical responses of two wheat genotype to waterlogging and nutrient supply. J. Exp. Bot. 45: 192-202. Issarakraisila, M., Q. Ma and David W. Turner. 2007. Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Sci. Hort. 111:107-113. Ivanova, A. P., K. L. Stefanov, and I. T. Yordanov. 1998. Effect of cytokinin 4PU-30 on the lipid composition of water stressed bean plant. Bio. Planta. 41:155-159. Jackson, M. B. and M. C. Drew. 1984. Effect of flooding on growth and metabolism of herbaceous plants. P. 47-128. In: Kozolowski, T. T. (ed.), Flooding and plant growth. Academic Press, London. Jayaraj, J., A. Wan, M. Rahman and Z.K. Punja. 2008. Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 27:1360– 1366. Kappus, H. 1985. Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevence. p 273-310. In Sies, H. (ed.), Oxidative Stress. Academic Press, New York. Kato-Noguchi, H. and H. Saito. 2000. Induction of alcohol dehydrogenase in lettuce seedling by flooding stress. Biol. Plant. 43:217-220. Khan, W., U.P. Rayirath, S. Subramanian, M.N. Jithesh, P. Rayorath, D.M. Hodges, A.T. Critchley, J.S. Craigie, J. Norrie and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Reg. 28:386-399. Kusano, T., B. C. Tateda, and Y. Takahashi. 2008. Polyamines: essential factors for growth and survival. Planta 228: 367-381. Lee, M.M., S. H. Lee, and K.Y. Park. 1997. Effects of spermine on ethylene biosyn- thesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J. Plant Physiol. 151:68-73. Leshem, Y. Y., J. Wurzburger, and S. Grossman. 1981. Cytokinin interaction with free radical metabolism and senescence. Physiol. Plant. 53: 9-12. Levitt, J. 1980. Responses of Plants to Environmental Stresses, Vol. 1: Academic Press. New York. Liao, C. T. and C. H. Lin. 1996. Photosynthesis response of grafted bitter melon seeding to flooding stress. Env. Exp. Bot. 36: 167-172. Liao, Chung-Ta and Chin-Ho Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. 25: 148-157. Lin, K. H., C. C. Weng, H. F. Loa and J. T. Chen. 2004. Study of the root antioxida- tive system of tomato and eggplants under waterlogging condition. Plant Sci. 167:355-365. Liu, j. H., H. Kitashiba, J. Wang, Y. Ban, and T. Moriguchi. 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 24:117-126. Martineau, J. R., J. E. Specht, J. H. Williams and C. Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78. Moldau, H. 1973. Effects of various water regimes on stomatal and mesophyll conductances of bean leaves. Photosynthetica 7:1-7. Mosaleeyanon, K., Zobayed, S. M. A., Afreen, F. and Kozai, T. 2005. Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s Wort. Plant Sci. 169:523-531. Mukherjee, S. P. and M. A. Choudhuri 1983. Implication of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58:166-170. Nan, Q. X. 1996. Foliar spray of boron, zinc and magnesium and their effect on fruit production and quality of jianchen orange (Citrus sinensis). J. South-West Agricul. Univ. 18:40-45. Ohki, K.1976 . Effect of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. Physiol. Plant. 38: 300-304. Radovich, T., T. Goo and H. Valenzuela. 1999. Effect of seaweed extract on root yield of organically produced Yam Bean (Pachyrhizus erosus). Veg. Crops Update. 9:9-10. Ramonell, K. M., A. Kuang, D. M. Porterfield, M. L. Crispi, Y. Xiao, G. McClure, and M. E. Musgrave. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Env. 24: 419-428. Rengel, Z. 1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. J. Plant Physiol. 147: 251-256. Roberts, D. R., E. B. Dumbroff and J. E. Thompson. 1986. Exogenous polyamines alter membrane fluidity in bean leaves-a basis for potential misinterpretation of their true physiological role. Planta 167: 395-401. Shi, K., Y. Y. Huang, X. J. Xia, Y. L. Zhang, Y. H. Zhou, and J. Q. Yu1. 2008. Protective role of putrescine against salt stress is partially related to the improvement of water relation and nutritional imbalance in cucumber. J. Plant Nut. 31:1820-1831. Shiono, K., H. Takahashi, T. D. Colmer and M. Nakazono. 2008. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 175:52-58. Singh, B. B. 1988. Tolerance of soybean varieties to waterlogging. Indian J. Plant Physiol. 31:410-412. Sivasankari, S., V. Venkatesalu, M. Anantharaj, and M. Chandrasekaran. 2006. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioreso. Tech. 97: 1745-1751. Skoog, F. 1940. Relational between zine and auxin in the growth of highter plant. Amer. J. Bot. 27:939-951. Tadolini, B. 1988. Polyamine inhibition of lipoperoxidation: the in fluence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem. J. 249:33-36. Taiz, L. and E. Zeiger. 2006. Plant physioilgy. Sinauer Associates Inc., Massachusetts. Thirumaran, G., M. Arumugam, R. Arumugam and P. Anantharaman. 2009. Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (l) medikus. American- Eurasian J. Agron. 2:57-66. Tiburcio, A. F., J. L. Campos, X. Figueras and R. T. Besford. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 12: 331- 340. Todorova1, D., I. Sergiev, V. Alexieva1, E. Karanov1, A. Smith, and M. Hall. 2007. Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regul. 51: 185-191. VanToai, T. T. and C. S. Bolles. 1991. Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiol. 97: 588-592. Voesenek, L.A.C.J and C.W.P.M. Blom. 1999. Stimulated shoot elongation: a mechanism of semiaquatic plants to avoid submergence stress. In: H.R. Lerner (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York, pp 431-448. Vuylsteker, C., E. Dewaele, and S. Rambour. 1998. Auxin induced lateral root formation in chicory. Ann. Bot. 81:449-454. Wahid A., S. Gelania, M. Ashraf and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61:199-223 Wample, R. L. and D. M. Reid. 1979. The role of endogenous auxin and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower (Helianthus annuus). Physiol. Plant. 45:219-226. Wang, T., S.Wang, S.Guo, and Y.Sun. 2008. Effects of exogenous spermidine on the photosynthesis of Cucumis sativus L. seedlings under rhizosphere hypoxia stress. Front. Agr. China. 2:55–60. White, J.G. and R. H. Zasoki, 1999. Maping soil micronutrients. Field Crops Res. 60: 11-26. Wood, J.G. and P. M. Sibly. 1951. Carbonic anhydrase activity in plants in relation to zinc content. Aust. J. Biol. Sci. 5:244- 255. Yan, B., Q. Dai, S. Huang and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leave. Plant Soil 179: 261-268. Yarnell, S. H. 1956. Cytogeneries of the vegetable crops (Ⅱ) :Crucifers. Bot. Rev. 22(2):81-166. Yilmaz, A., H. Ekiz, B. Torun, I. Gultekin, S. Karanlik, S. A. Bagei, and I. Cakmak. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc deficient calcareous. Soils. J. Plant Nutri. 20:461-471. Yiu, J.C., L.D. Juang, D. Y.T. Fang, C.W. Liu, and S.J. Wua. 2008. Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci. Hort. 120:306-314. Yordanor, I., T. Tsonev, V. Goltsev, N. M. Merakchiiska, and K. Georgieva. 1997. Gas exchange and chlorophyll fluorescence during water and high temperature stresses and recovery. Photosynthetica 33: 423-431. Zhou, W. J. and X.Q. Lin. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field crops Res. 44:103-110. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10256 | - |
| dc.description.abstract | 臺灣夏季高溫多濕且常遭受颱風豪雨的侵襲,蔬菜因淹水逆境造成傷害,無法恢復生長或死亡。近年有多種生長調節物質應用於增強植物對非生物性逆境的抗性。本研究針對夏季芥藍(Brassica oleracea L. var. alboglabra)生產面對淹水傷害之風險,探討施用植物生長調節物質對芥藍在苗期和成株期淹水後之生理影響,以及植物生長調節物質對減輕芥藍淹水傷害的應用效果。芥藍苗期淹水及施用植物生長調節物質的試驗在臺灣大學人工氣候室進行,以‘翠寶’、‘西螺芥藍’、‘白花芥藍’和‘翠津’四個包括一般葉用、苔用的品種供試。各品種先於常溫(25/20℃)下生長四週,在淹水前三天以不同植物生長調節物質處理,再分別於兩種溫度(25/20℃和35/30℃)下淹水三天、排水三天為恢復期。所用植物生長調節物質有海藻萃取物(綠寶)、生長素(根毛王)、細胞分裂素(速喜)、硫酸鋅及腐胺。結果在兩個溫度下受到淹水的逆境影響以在25/20℃比在35/30℃小,而各品種對高溫或淹水之耐受性以‘西螺芥藍’最差,‘翠寶’較佳。在常溫下淹水處理前施用生長調節物質,以施用海藻萃取物(綠寶)對於芥藍各品種淹水生理反應之緩和效果最好,增加葉片相對含水量及葉片相對葉綠素含量、減少電解質滲漏率及丙二醛含量、葉綠素螢光反應Fv/Fm的差值減少以及脯胺酸含量增加。但在排水恢復期這些生理指標的恢復效果比其它調節物質硫酸鋅、腐胺、生長素(根毛王)小。在高溫下芥藍淹水前,生長調節物質處理對減輕芥藍生理指標變化幅度的效果顯示,施用海藻萃取物減輕淹水後的葉片生理指標變化、施用硫酸鋅減輕淹水後及恢復期的生理指標變化。芥藍成株夏季淹水試驗增加供試品種數到8個,在農業試驗所試驗田(台中霧峰) 分兩批(八月及九月)進行。兩批皆先以穴盤育苗,待植株長至3-4片本葉,定植於試驗田,移植前所有植株施用生長素(根毛王) 0.5 mg/L。定植後約5週、即採收前進行淹水處理。在淹水處理前三天先給予不同的植物生長調節劑,有生長素(根毛王,0.5 mg/L)、海藻萃取液(綠寶,稀釋800倍;天下補,稀釋800倍)、細胞分裂素(速喜,稀釋600倍)、硫酸鋅 (稀釋2000倍)及腐胺 (2 mM)共六種。試驗處理分為不淹水(對照組)、不淹水但施用植物生長調節劑、淹水前施用不同植物生長調節劑以及淹水而未施植物生長調節劑四種。田間進行淹水三天、再排水五天,芥藍植株大量萎凋或死亡,處理生長調節劑之植株黃化萎凋情形較緩和。各品種對淹水逆境之反應表現差異,各項生理指標變化由大至小的品種在八月試驗依序為翠津、黃花芥藍、芥藍花、翠寶,而在九月依序為西螺芥藍、白格林、格林花、蕙津、翠寶。綜合八、九月田間施用各植物生長調節物質的效果,以綠寶、天下補(皆為海藻萃取物)和速喜(細胞分裂素)對於減輕芥藍淹水後、排水恢復期生理反應的效果較好。植株因淹水逆境造成的鮮、乾重損失以‘白格林’最嚴重,而受淹水影響仍可採收者為‘翠寶’。各植物生長調節物質前處理對各品種皆有不同程度的減緩失重。整體上,海藻萃取物—天下補、綠寶和細胞分裂素(速喜)可減少芥藍因淹水逆境所造成的失重。藉由非破壞性且快速的葉片葉綠素螢光反應(Fv/Fm)分析,可觀察各芥藍品種在淹水前、後的光合作用能力變化。淹水前各品種的Fv/Fm值介於0.8~0.6,經過淹水三天後,各品種之Fv/Fm值下降,但程度不同。到排水恢復期F1品種如 ‘翠寶’Fv/Fm值稍有回復,而較不耐淹水的品種如‘黃花芥藍’和‘白花芥藍’的Fv/Fm值則持續下降,可作為芥藍在淹水逆境下的生理指標。根據研究結果,夏季栽培芥藍,在品種的選擇上可選用葉用F1品種如‘翠寶’,遇夏季豪雨造成的影響傷害較小。而苔用品種會因溫度不適,生長勢不佳,加上淹水逆境的影響,傷害更大。芥藍在不同生長時期所經歷淹水逆境的表現不同,在苗期較成株對於淹水忍受度較大。在栽培期適時施用植物生長調節物質能減緩其淹水傷害,若如其他研究增加施用植物生長調節物質的次數,可能效果更好。 | zh_TW |
| dc.description.abstract | The summer in Taiwan is high in temperature and humid, and it is common that vegetable crops succumb to heavy rain and typhoons. Plants are not able to restore their growth and crop loss results. Recently there are several plant growth regulators (PGRs) in market for use to diminish the crop loss from abiotic stresses. The study is undertaken to investigate the physiology responses of Chinese kale (Brassica oleracea L. var. alboglabra) upon flooding in summer, both at seedling and ready-to-harvest stages and to evaluate the efficacy of various plant growth regulators to sustain plants from the stress. The seedlings of four Chinese kales varieties ( cv. ‘Tsuei-Bao’(F1), ‘Si-lo’, ‘White-flowered’ and ‘Tsuei-jin’ (F1)) were grown under 25/20℃(day/night) for four weeks before 3 days of flooding at room temperature (25/20℃) or at high temperature (35/30℃). Three days prior to flooding plants were given different PGRs and flooding was lasted for three days, then followed by 3 days of drainage for plant recovery. The study was carried out at the phytotron of National Taiwan University, Taipei and the PGRs including auixn (Lysine#3), seaweed extract (Algreen), cytokinin (Biogrow), ZnSO4 and putricene were tested. The flooding impact under 25/20℃was milder than 35/30℃ and there are varietal differences in their response to flooding and/or high temperature with ‘Tsuei-Bao’ (F1) being most tolerant and ‘Si-lo’ the least. Pretreatment of seaweed extract (Algreen) gives better ameliorative effect to Chinese kale plant flooded under 25/20℃(D/N) in terms of keeping higher relative water content (RWC) and relative chlorophyll content (SPAD value), less electrolyte leakage rate and malon- dialdehyde (MDA) content, less drop in chlorophyll fluorescence (Fv/Fm) and higher content of proline. However, the mitigating effect from seaweed extract application to the plants during recovery period was less than from Lysine#3, zinc sulfate and putrescine. The pretreatment of seaweed extract to Chinese kale plants before being flooded under 35/30℃ resulted in less change of various plant physiological indices in response to flooding and the pretreatment of ZnSO4 gave the plants less physiological response during both flooding and recovery time. Field experiments with eight varieties in total including both leaf type and fleshy flower stalk type were conducted in August and September at experimental farm of Taiwan Agricultural Research Institute in Wu-Feng, Taichung. Plug seedlings of three to four leaf stage were treated with 0.5 mg/L Lysine#3 (auixn) before field transplanting. About 5 weeks after transplanting, plants at ready to harvest stage were waterlogged. Three days prior to flooding, the plants were given one of six PGRs including auxins (Lysine#3, 0.5 mg/L), seaweed extracts (Algreen, dilution factor(DF) 800;Keltak, DF 800), cytokinin (Biogrow, DF 600), ZnSO4 (DF 600) and putrescine (2 mM). Field treatments included no waterlogging (control), PGRs pretreatment without waterlogging, PGRs pretreatment with waterlogging, and waterlogging only, three replicates for each treatment. Flooding lasted for three days, followed by draining the field for five days for plant recovery. The plants without PGR pretreatment wilted or died after waterlogging, and treated plants had less yellowing or wilting. The intensity of the varietal response to field flooding is determined from the change of various physiological indices. The response intensity from 4 varieties to August flooding in descending order follows ‘Tsuei-Jin’ (F1), ‘Yellow-flowered’, ‘Kai-lan Flower’, and ‘Tsuei- Bao’ (F1). The response intensity from 5 varieties in September in descending order gives ‘Si-lo’, ‘White-gelin’, ‘Ge-lin Flower’, ‘Huei-Jin’ (F1) and ‘Tsuei-Bao’ (F1). The comprehensive results from both August and September study showed that both seaweed extracts (Algreen and Keltak) and cytokinins (Biogrow) had better alleviating effects than other PGRs tested to plants in flooding and in recovery. The plant dry weight and fresh weight loss from waterlogging stress was most severe in ‘White-gelin’ while ‘Tsuei-Bao’ (F1) remained most for harvest. Overall seaweed extract (Keltak) pretreatment could most reduce the plant weight loss from waterlogging and followed by seaweed extract (Algreen) and cytokinins (Biogrow). The chlorophyll fluorescence (Fv/Fm) being a fast and non destructive index indicates the photosynthetic rate of plants upon flooding. The Fv/Fm value decreased from regular 0.8-0.6 upon flooding at high temperature, the value continued to decrease during the recovery period with susceptible plants like ‘White-flowered’ and ‘Yellow-flowered’. While the value would somewhat recover after drainage in resistant plants like ‘Tsuei-Bao’ (F1). The results suggest that ‘Tsuei-Bao’ (F1) is a good choice for summer planting for its less damage from flooding and the fleshy flower stalk type is not suitable for early fall-winter season when temperature still remains high. Chinese kale at seedling stage has better tolerance to flooding than plants of ready-to-harvest stage. The application of PGR is helpful to reduce the crop loss of Chinese kale from flooding. More times of PGR application as suggested in other study may also enhance the protective effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:14:35Z (GMT). No. of bitstreams: 1 ntu-100-R97628123-1.pdf: 6143581 bytes, checksum: 756ad0c16b92af8f11afce123eea64d2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………….….......i
誌謝………………………………………………………………………………….......ii 中文摘要…………………………………………………………………………… .....iii 英文摘要……………………………………………………………… ..…………. ......v 目錄………………………………………………………………..…….…………......vii 表圖目錄…………………………………………………………………...…….........viii 壹、前言………………………………………………………………….........................1 貳、前人研究…………………………………………………………………................3 一、芥藍之起源及生長習性……………………………………………………....3 二、植物對淹水逆境之生理反應…………………………………………………6 三、添加植物生長調節物質影響植物對淹水之反應……………………...……11 參、材料與方法…………………………………………....…………………...............17 一、 苗期淹水及植物生長調節物質處理………………………………….........17 二、 成株淹水及植物生長調節物質處理…………………........….....………....18 三、 調查分析………………………………………………………….....……....19 肆、結果…………………………………………....…………............………...............22 一、 芥藍苗期淹水前施用植物生長調節物質之影響………….……...….........22 二、植物生長調節物質處理對芥藍成株淹水後之生長影響……………….......30 伍、討論…………………………………………....…………............………...............87 一、淹水逆境對芥藍之生理影響………………………………………………...87 二、施用植物生長調節物質對芥藍在淹水逆境之生理影響………………......91 陸、結論……………………………………………………………………….……......99 柒、參考文獻………………………………………………………………..…...……100 | |
| dc.language.iso | zh-TW | |
| dc.title | 植物生長調節物質處理對芥藍淹水反應之影響 | zh_TW |
| dc.title | The Effect of Plant Growth Regulators on Chinese kale (Brassica oleracea L. var. alboglabra) to Waterlogging stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 羅筱鳳(Hsiao-Feng Lo) | |
| dc.contributor.oralexamcommittee | 宋妤(Yu Sung) | |
| dc.subject.keyword | 芥藍,淹水逆境,植物生長調節物質,海藻萃取物,葉綠素螢光反應,逆境耐受性, | zh_TW |
| dc.subject.keyword | Chinese kale,hypoxia stress,plant growth regulators,seaweed extracts,chlorophyll fluorescence (Fv/Fm),stress tolerance, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
