請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10205
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施文彬(Wen-Pin Shih) | |
dc.contributor.author | Chih-Kuo Chang | en |
dc.contributor.author | 張致國 | zh_TW |
dc.date.accessioned | 2021-05-20T21:09:54Z | - |
dc.date.available | 2012-07-06 | |
dc.date.available | 2021-05-20T21:09:54Z | - |
dc.date.copyright | 2011-07-06 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-03-01 | |
dc.identifier.citation | [1] T. Furukawa and N. Seo, 'Electrostriction as the origin of piezoelectricity in ferroelectric polymers,' Japanese Journal of Applied Physics, vol. 29, pp. 675-680, 1990.
[2] H. Tobushi, S. Hayashi, and S. Kojima, 'Mechanical properties of shape memory polymer of polyurethane series. (Basic characteristics of stress-strain-temperature relationship),' JSME International Journal Series A: Mechanics and Material Engineering, vol. 35, pp. 296-302, 1992. [3] R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, 'High-field deformation of elastomeric dielectrics for actuators,' Materials Science and Engineering: C, vol. 11, pp. 89-100, 2000. [4] Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, SPIE press, 2004. [5] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, 'High-speed electrically actuated elastomers with strain greater than 100%,' Science, vol. 287, pp. 836-839, 2000. [6] R. Kornbluh, R. Pelrine, Q. Pei, S. Oh, and J. Joseph, 'Ultrahigh strain response of field-actuated elastomeric polymers,' In proceedings of SPIE Conference on Smart Structures and Materials, Newport Beach, CA, USA, pp. 51-64, 2000. [7] Y. Liu, X. Lan, L. HAI-BAO, and J. Leng, 'Recent Progresses in Polymeric Smart Materials,' International Journal of Modern Physics B: Condensed Matter Physics, Statistical Physics, Applied Physics, vol. 15, pp. 2351-2356, 2010. [8] P. Brochu and Q. Pei, 'Advances in dielectric elastomers for actuators and artificial muscles,' Macromolecular Rapid Communications, vol. 31, pp. 10-36, 2010. [9] Z. Gao, 'Modeling and simulation of the coupled mechanical-electrical response of dielectric elastomers,' Ph.D. dissertation, New Brunswick Rutgers, The State University of New Jersey, 2007. [10] F. Carpi, S. Bauer, and D. De Rossi, 'Stretching Dielectric Elastomer Performance,' Science, vol. 330, pp. 1759-1761, 2010. [11] R. Shankar, T. Ghosh, and R. Spontak, 'Dielectric elastomers as next-generation polymeric actuators,' Soft Materials, vol. 3, pp. 1116-1129, 2007. [12] G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, 'Actuation response of polyacrylate dielectric elastomers,' Journal of Intelligent Material Systems and Structures, vol. 14, pp. 787-793, 2003. [13] D. Hanson, G. Pioggia, Y. Bar-Cohen, and D. De Rossi, 'Androids: application of EAP as artificial muscles to entertainment industry,' In proceedings of SPIE Conference on Smart Structures and Materials, Newport Beach, CA, USA, 2001. [14] Y. Bar-Cohen, 'EAP as artificial muscles: progress and challenges,' In proceedings of SPIE Conference on Structures and Materials, pp. 10-16, 2004. [15] R. Jones, 'Artificial Muscles: Dielectric Electroactive Polymer-Based Actuation,' In proceedings of the International Conference on Computer and Electrical Engineering, Chengdu, China, pp. 209-216, 2010. [16] F. Carpi and D. De Rossi, Electroactive polymer artificial muscles: an overview, Wit Pr/Computational Mechanics, Southampton, 2010. [17] C. Chidsey and R. Murray, 'Electroactive polymers and macromolecular electronics,' Science, vol. 231, pp. 25-31, 1986. [18] S. Nemat-Nasser and J. Li, 'Electromechanical response of ionic polymer-metal composites,' Journal of Applied Physics, vol. 87, pp. 3321-3331, 2000. [19] S. Nemat-Nasser, 'Micromechanics of actuation of ionic polymer-metal composites,' Journal of Applied Physics, vol. 92, pp. 2899-2915, 2002. [20] R. Pelrine, R. Kornbluh, and J. Joseph, 'Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,' Sensors and Actuators A: Physical, vol. 64, pp. 77-85, 1998. [21] R. Pelrine, P. Sommer-Larsen, R. Kornbluh, R. Heydt, G. Kofod, Q. Pei, and P. Gravesen, 'Applications of dielectric elastomer actuators,' In proceedings of SPIE Conference on Smart Structures and Materials, Newport Beach, CA, USA, pp. 335-349, 2001. [22] X. Zhang, C. LOWE, M. Wissler, B. Jahne, and G. KOVACS, 'Dielectric elastomers in actuator technology,' Advanced Engineering Materials, vol. 7, pp. 361-367, 2005. [23] M. Wissler and E. Mazza, 'Modeling of a pre-strained circular actuator made of dielectric elastomers,' Sensors and Actuators A: Physical, vol. 120, pp. 184-192, 2005. [24] X. Zhao and Z. Suo, 'Electrostriction in elastic dielectrics undergoing large deformation,' Journal of Applied Physics, vol. 104, pp. 123530, 2009. [25] X. Zhao and Z. Suo, 'Method to analyze electromechanical stability of dielectric elastomers,' Applied Physics Letters, vol. 91, pp. 061921, 2007. [26] Y. Liu, L. Liu, K. Yu, S. Sun, and J. Leng, 'An investigation on electromechanical stability of dielectric elastomers undergoing large deformation,' Smart Materials and Structures, vol. 18, pp. 095040, 2009. [27] M. Nazari, P. Perrier, M. Chabanas, and Y. Payan, 'Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation,' Computer Methods in Biomechanics and Biomedical Engineering, vol. 13, pp. 469-482, 2010. [28] Y. Liu, L. Liu, S. Sun, and J. Leng, 'Electromechanical stability of a Mooney-Rivlin type dielectric elastomer with nonlinear variable permittivity,' Polymer International, vol. 59, pp. 371-377, 2010. [29] C. Hoang-Ngoc and E. Paroissien, 'Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive,' International Journal of Adhesion and Adhesives, vol. 30, pp. 117-129, 2010. [30] L. Lampani and P. Gaudenzi, '3D Finite Element Analyses of Multilayer Dielectric Elastomer Actuators with Metallic Compliant Electrodes for Space Applications,' Journal of Intelligent Material Systems and Structures, vol. 21, pp. 621-632, 2010. [31] P. Wang, B. Lassen, R. Jones, and B. Thomsen, 'Multiscale modelling of a composite electroactive polymer structure,' Smart Materials and Structures, vol. 19, pp. 124008, 2010. [32] J. Woosang and T. Yutaka, 'Computational Modeling of Electromechanical Behaviors of Dielectric Elastomer Actuators,' In proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, 2010. [33] G. Kofod, 'Dielectric elastomer actuators,' Ph.D. dissertation, The Technical University of Denmark, 2001. [34] J. Cheng, J. Zhe, and X. Wu, 'Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators,' Journal of Micromechanics and Microengineering, vol. 14, pp. 57-68, 2004. [35] S. Pamidighantam, R. Puers, K. Baert, and H. Tilmans, 'Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,' Journal of Micromechanics and Microengineering, vol. 12, pp. 458-464, 2002. [36] Y. Nemirovsky and O. Bochobza-Degani, 'A methodology and model for the pull-in parameters of electrostatic actuators,' Journal of Microelectromechanical Systems, vol. 10, pp. 601-615, 2002. [37] J. O'dwyer, 'Theory of dielectric breakdown in solids,' Journal of The Electrochemical Society, vol. 116, pp. 239-242, 1969. [38] J. Plante and S. Dubowsky, 'Large-scale failure modes of dielectric elastomer actuators,' International Journal of Solids and Structures, vol. 43, pp. 7727-7751, 2006. [39] C. Zener, 'A theory of the electrical breakdown of solid dielectrics,' Proceedings of the Royal Society of London. Series A, vol. 145, pp. 523-529, 1934. [40] M. Ieda, 'Dielectric breakdown process of polymers,' IEEE Transactions on Electrical Insulation, pp. 206-224, 2007. [41] C. Jean-Mistral, A. Sylvestre, S. Basrour, and J. Chaillout, 'Dielectric properties of polyacrylate thick films used in sensors and actuators,' Smart Materials and Structures, vol. 19, pp. 075019, 2010. [42] M. Wissler and E. Mazza, 'Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators,' Sensors and Actuators A: Physical, vol. 134, pp. 494-504, 2007. [43] M. Coelho and J. Zigelbaum, 'Shape-changing interfaces,' Personal and Ubiquitous Computing, pp. 1-13, 2010. [44] S. Crandall, N. Dahl, and T. Lardner, An introduction to the mechanics of solids, McGraw-Hill, New York, 1978. [45] R. Diaz Calleja and P. Llovera Segovia, 'Energy diagrams and stability restrictions for electroelastic generators,' Journal of Polymer Science Part B: Polymer Physics, vol. 48, pp. 2023-2028, 2010. [46] A. Ali, M. Hosseini, and B. Sahari, 'A review and comparison on some rubber elasticity models,' Journal of Scientific and Industrial Research, vol. 69, pp. 495-500, 2010. [47] L. R. G. Treloar, H. G. Hopkins, R. S. Rivlin, and J. M. Ball, 'The Theory of Rubber Elasticity [and Discussion],' Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 351, pp. 301-330, 1976. [48] J. Wegner, J. Haddow, and L. Jiang, 'Electrostriction of Polymer Dielectrics With Compliant Electrodes,' In proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA, USA, pp. 77-85, 2004. [49] C. Bolzmacher, J. Biggs, and M. Srinivasan, 'Flexible dielectric elastomer actuators for wearable human-machine interfaces,' In proceedings of SPIE Conference on Smart Structures and Materials, San Diego, CA, USA, pp. 616804, 2006. [50] D. Cheng, Field and wave electromagnetics, Pearson/Prentice Hall, New Jersey, 2003. [51] S. Ha, W. Yuan, Q. Pei, R. Pelrine, and S. Stanford, 'Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles,' Advanced Materials, vol. 18, pp. 887-891, 2006. [52] J. Fox and N. Goulbourne, 'On the dynamic electromechanical loading of dielectric elastomer membranes,' Journal of the Mechanics and Physics of Solids, vol. 56, pp. 2669-2686, 2008. [53] N. Goulbourne, E. Mockensturm, and M. Frecker, 'A nonlinear model for dielectric elastomer membranes,' Journal of Applied Mechanics, vol. 72, pp. 899-906, 2005. [54] D. Halliday, R. Resnick, and J. Walker, Fundamentals of physics, John Wiley & Sons, Inc., Hoboken, NJ 2010. [55] C. Liu, Foundations of MEMS, Pearson/Prentice Hall, New Jersey, 2006. [56] M. Wissler and E. Mazza, 'Electromechanical coupling in dielectric elastomer actuators,' Sensors and Actuators A: Physical, vol. 138, pp. 384-393, 2007. [57] G. Kofod, 'The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?,' Journal of Physics D: Applied Physics, vol. 41, pp. 215405, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10205 | - |
dc.description.abstract | 近年來,由於介電致動高分子材料(dielectric electroactive polymers, DEAPs)具有良好的力學性質、高介電係數及低成本的特性,讓其在做為致動器的範疇中受到相當的注目。然而,介電致動高分子材料的驅動特性會受驅動電壓大小及其幾何尺寸上限制的影響;隨著電壓的上升,因所受靜電力增加而使上下電極逐漸靠近,若發生吸附效應則兩電極最終會貼合。若介電致動高分子材料厚度較薄,則可以降低驅動電壓,並提升材料的可靠度;材料可靠度的研究是近來重要的課題。本論文針對材料崩潰現象、吸附現象及其可逆性進行探討。實驗中給予一直流電壓,觀察電流及變形量隨時間與不同驅動電壓的變化情形。實驗結果顯示當電壓加至2000V時,會有大電流出現,象徵此時即為崩潰現象發生的時刻;並由已推知的條件判斷式可以得到崩潰現象會發生在吸附效應之前。本實驗同時經由逐漸增加電壓至1600V,再降回0V,觀察其材料的可逆與重複性,並對其遲滯效應做一些探討。另一方面,本論文也透過靜電及超彈性材料的力分析提出力電耦合的材料模型。 | zh_TW |
dc.description.abstract | Recently, there has been growing interest in actuators by using dielectric electroactive polymers, DEAPs due to their attractive properties of mechanism, low cost and high dielectric constant. However, operating characteristics of DEAPs are affected by applied voltage and the size of DEAPs. With increases applied voltage, because of increasing electric force, compliant electrodes of actuator are gradually close to each other. If the thickness of DEAPs decreases, applied voltage can be lower and reliability can be improved. The researches of reliability are important issues today. In our experiments, we focus on and discuss breakdown phenomenon, pull-in effect and reversibility of DEAPs material. In the experiment, we apply a DC voltage to DEA actuator and observe the alterations of displacement and current with time and the increase of applied voltage. In our results, it was found that the largest current is observed by computer when applied voltage is 2000V. This result signifies that breakdown phenomenon occurs at this time. According to discriminant of condition, breakdown phenomenon occurs before pull-in effect occurs. Meanwhile, with the increase of applied voltage from 0V to 1600V and then, decreases to 0V, we observe the reversibility of DEA material and also discuss its hysteresis. In addition, the mechanical-electrical coupling model for DEAPs is also successfully investigated by electrostatic analysis and hyper-elastic stress analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:09:54Z (GMT). No. of bitstreams: 1 ntu-100-R97522501-1.pdf: 3090202 bytes, checksum: ee3235ebf366f29f6a70ce64d0607788 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v List of figures vii List of tables xiii List of symbols xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Overview of Dielectric Electroactive Polymers 3 1.2.1 Brief history 3 1.2.2 Working principle 6 1.3 Motivation and Purpose of research 8 Chapter 2 Analytical model 9 2.1 Theory of elasticity 9 2.1.1 Introduction 9 2.1.2 Hyper-elastic theory: Mooney-Rivlin model 11 2.2 Electromechanical analysis 17 2.2.1 Maxwell stress 17 2.2.2 Dielectric constant 20 2.3 Construction of electromechanical model 21 2.3.1 Pull-in effect 21 2.3.2 Elasticity and Maxwell stress combined 28 2.4 Measurements of dielectric constant and material constant of Mooney-Rivlin material: VHB tape 31 2.4.1 Capacitance measurement 31 2.4.2 Mooney-Rivlin constant extraction 32 2.4.3 Pull-in effect of Mooney-Rivlin material: VHB tape 36 2.5 Breakdown phenomenon 39 2.5.1 General form of breakdown 39 2.5.2 Discussion of VHB sample at breakdown 45 Chapter 3 Experiment 46 3.1 Actuated fabrication 46 3.1.1 Pre-strain setup 46 3.1.2 Fabrication of compliant electrodes: gold film 51 3.1.3 VHB 4905 actuator manufacture 53 3.2 Experimental setup and technique of measurement 56 Chapter 4 Results and discussion 59 4.1 Introduction 59 4.2 Breakdown voltage 60 4.3 Reversibility and hysteresis 70 Chapter 5 Conclusion and future work 75 5.1 Conclusion 75 5.2 Future work 77 Reference 78 | |
dc.language.iso | en | |
dc.title | 介電致動高分子在崩潰電壓下與其材料可逆性的討論與研究 | zh_TW |
dc.title | Dielectric Electroactive Polymers at Breakdown Voltage State and Reversibility | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡毓忠(Yuh-Chung Hu),戴慶良(Ching-Liang Dai),施博仁 | |
dc.subject.keyword | 介電致動高分子材料,吸附效應,超彈性,崩潰現象,可逆性,理論模型, | zh_TW |
dc.subject.keyword | dielectric electroactive polymers,DEAPs,pull-in effect,hyper-elastic,breakdown phenomenon,reversibility,modeling, | en |
dc.relation.page | 84 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-03-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 3.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。