Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新(Wei-Hsing Tuan)
dc.contributor.authorYuan-Liang Chinen
dc.contributor.author靳元良zh_TW
dc.date.accessioned2021-05-20T21:09:34Z-
dc.date.available2013-04-01
dc.date.available2021-05-20T21:09:34Z-
dc.date.copyright2011-06-01
dc.date.issued2011
dc.date.submitted2011-03-29
dc.identifier.citation1. G. Mayer, “Rigid Biological Systems as Models for Synthetic Composites,” Science, 310 [5751] 1144-47 (2005).
2. C. Ortiz, M. C. Boyce, “Bioinspired Structural Materials,” Science, 319 [5866] 1053-54 (2008).
3. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R. O. Ritchie, “Tough, Bio-inspired Hybrid Materials,” Science, 322 [5907] 1516-20 (2008).
4. L. J. Bonderer, A. R. Studart, L. J. Gauckler, “Bioinspired Design and Assembly of Platelet Reinforced Polymer Films Materials,” Science, 319 [5866] 1069-73 (2008).
5. M. E. Launey, R. O. Ritchie, “On the Fracture Toughness of Advanced Materials,” Adv. Mater. 21 [20] 2103-10 (2009).
6. H. Gao, B. Ji, I. Jaeger, E. Arzt, P. Frazl, “Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature,” Proc. Natl. Acad. Sci. 100 [10] 5597-5600 (2003).
7. J. D. Hartgerink, E. Beniash,S. I. Stupp, “Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers,” Science 294 [5547] 1684-88 (2001).
8. J. Aizenberg, “Crystallization in Patterns: A Bio-Inspired Approach,” Adv. Mater. 16 [15] 1295-1302 (2004).
9. Z. Y. Tang, N. A. Kotov, S. Magonov, B. Ozturk, “Nanostructured Artificial Nacre,” Nat. Mater. 2, 413-18 (2003).
10. A. Sellinger, P. M. Weiss, A. Nguyen, Y. F. Lu, R. A. Assink, W. L. Gong, C. J. Brinker, “Continuous Self-Assembly of Organic–Inorganic Nanocomposite Coatings that Mimic Nacre,” Nature 394, 256-60 (1998).
11. P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, et al., “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science 318 [5847] 80-83 (2007).
12. M. E. Launey, E. Munch, D. H. Alsem, H. B. Barth, E. Saiz, A. P. Tomsia, R. O. Ritchie, “Designing Highly Toughened Hybrid Composites through Nature-Inspired Hierarchical Complexity,” Acta Mater. 57 [10] 2919-32 (2009).
13. S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, “Freezing as a Path to Build Complex Composites,” Science 311 [5760] 515-18 (2006).
14. M. E. Launey, E. Munch, D. H. Alsem, E. Saiz, A. P. Tomsia, R. O. Ritchie, “A Novel Biomimetic Approach to the Design of High-Performance Ceramic–Metal Composites,” J. R. Soc. Interface 7 [46] 741-53 (2010).
15. A. G. Evans, “Perspective on the Development of High-Toughness Ceramics,” J. Am. Ceram. Soc. 73 [2] 187-206 (1990).
16. D. B. Marshall, “Strength Characteristics of Transformation-Toughened Zirconia,” J. Am. Ceram. Soc. 69 [3] 173-80 (1986).
17. D. Shetty, J. Wang, “Crack Stability and Strength Distribution of Ceramics That Exhibit Rising Crack –Growth-Resistance [R-Curve] Behavior,” J. Am. Ceram. Soc. 72 [7] 1158-62 (1989).
18. R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites,” Ceram. Eng. Sci. Proc. 11 [7-8] 667-94 (1990).
19. G. Wei, P. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate,” J. Am. Ceram. Soc. 67 [8] 571-91 (1984).
20. R. J. Damani, R. Gstrein, R. Danzer, “Critical Notch-Root Radius Effect in SENB-S Fracture Toughness Testing,” J. Eur. Ceram. Soc. 16 [7] 695-96 (1996).
21. J. Kubler, “Bestimmung der Bruchzahigkeit keramischer Werkstoffe mit der SEVNB Methode: Resultate eines VAMAS/ESIS Ringversuches,” in Proceedings of the Werkstoff-woche, EMPA, Dubendorf, Switzerland (1998).
22. J. Kubler, “Fracture Toughness of Ceramics Using the SEVNB Method: From a Preliminary Study to a Standard Test Method,” in Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409, J. A. Salem, M. G. Jenkins, and G. D. Quinn, eds., American Society for Testing and Materials, West Conshohocken, PA (2001).
23. D. Munz, T. Fett, “Mechanisches Verhalten keramischer Werkstoffe: Versagens-ablauf, Werkstoffauswahl, Dimensionierung,” Springer-Verlag, Berlin (1989).
24. A. G. Evans, T. R. Wilshaw, “Quasi-Static Solid Particle Damage in Brittle Materials,” Acta Metall. 24 [10] 939-56 (1976).
25. B. R. Lawn, “Fracture Mechanics of Ceramics,” edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) Vol. 5 p.1.
26. C. B. Ponton, R. D. Rawlings, “Vickers Indentation Fracture Toughness Test Part 1 Review of Literature and Formulation of Standardized Indentation Toughness Equations,” Mater. Sci. Tech. 5, 865 (1989).
27. R. F. Cook, G. M. Pharr, “Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics,” J. Am. Ceram. Soc. 73, 787 (1990).
28. M. Saikai, R. C. Bradt, “Fracture Toughness Testing of Brittle Materials,” Inter. Mater. Rev. 38, 53 (1993).
29. A. G. Evans, E. A. Charles, “Fracture Toughness Determination by Indentation,” J. Am. Ceram. Soc. 59 [7-8] 371-72 (1976).
30. I. C. Noyan, J. B. Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, NY (1987).
31. M. G. Jenkins, A. S. Kobayashi, K. W. White, R. C. Bradt, “Crack Initiation and Arrest in a SiC Whisker/A12O3 Matrix Composite,” J. Am. Ceram. Soc. 70 [6] 393-95 (1987).
32. Y. S. Chou, D. J. Green, “Silicon Carbide Platelet/Alumina composites: I, Effect of Forming Technique on Platelet Orientation,” J. Am. Ceram. Soc. 75 [12] 3346-52 (1992).
33. Y. S. Chou, D. J. Green, “Silicon Carbide Platelet/Alumina composites: II, Mechanical Properties,” J. Am. Ceram. Soc. 76 [6] 1452-58 (1993).
34. Y. S. Chou, D. J. Green, “Silicon Carbide Platelet/Alumina composites: III, Toughening Mechanisms,” J. Am. Ceram. Soc. 76 [8] 1985-92 (1993).
35. H. Cai, Z. Gui, L. Li, “Low-sintering Composite Multilayer Ceramic Capacitors with X7R Specification,” Mater. Sci. Eng. B 83 [1-3] 137-41 (2001).
36. H. Kishi, Y. Mizuno, H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1-15 (2003).
37. J. D. Achenbach, “Wave Propagation in Elastic Solids,” American Elsevier Pub. Co. 1973.
38. T. Burgess, M. Ferry, “Nanoindentation of Metallic Glasses,” Materials Today 12 [1-2] 24-32 (2009).
39. S. C. Wang, Y. L. Chin, J. L. Huang, “Microstructure and Mechanical Properties of Hot-pressing Chromium Carbide/Alumina Nanocomposite Prepared by MOCVD in Fluidized Bed,” J. Eur. Ceram. Soc. 28 [9] 1909-16 (2008).
40. A. C. Dent, C. R. Bowen, R. Stevens, M. G. Cain, M. Stewart, “Effective Elastic Properties for Unpoled Barium Titanate,” J. Eur. Ceram. Soc. 27 [13-15] 3739-43 (2007).
41. W. H. Tuan, M J. Lai, M. C. Lin, C. C. Chan, S. C. Chiu, “The Mechanical Performance of Alumina as a Function of Grain Size,” Mater. Chem. and Phys. 36 [3-4] 246-51 (1994).
42. Y. He, “Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate-based Ceramics,” Thermochimica Acta 419 [1-2] 135-41 (2004).
43. T. Fett, D. Munz, “Subcritical Crack Growth of Macrocracks in Alumina with R-Curve Behavior,” J. Am. Ceram. Soc. 75 [4] 958-63 (1992).
44. F. Rossignol, P. Goursat, J. L. Besson, P. Lespade, “Microstructure and Mechanical Behaviour of Self-Reinforced Si3N4 and Si3N4-SiC Whisker Composites,” J. Eur. Ceram. Soc. 13 [4] 299-312 (1994).
45. A. G. Evans, K. T. Faber, “Crack-Growth Resistance of Microcracking Brittle Materials,” J. Am. Ceram. Soc. 67 [4] 255-60 (1984).
46. B. R. Lawn, A. G. Evans, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System,” J. Am. Ceram. Soc. 63 [9-10] 574-81 (1980).
47. P. Chantikul, S. J. Bennison, B. R. Lawn, “Role of Grain Size in the Strength and R-Curve Properties of Alumina,” J. Am. Ceram. Soc. 73 [8] 2419-27 (1990).
48. N. P. Padture, B. R. Lawn, “Toughness Properties of a Silicon Carbide with an In Situ Induced Heterogeneous Grain Structure,” J. Am. Ceram. Soc. 77 [10] 2518-22 (1994).
49. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai, B. J. Hockey, “Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I, Experimental Study on Alumina,” J. Am. Ceram. Soc. 70 [4] 279-89 (1984).
50. H. Jantunen, A. Unsimaki, S. Leppavuori, R. Rautioaho, “Effect of Processing Route on Thermomechanical Properties of Low Temperature Firing Ceramic for Electronic Packaging,” Brit. Ceram. Trans. 101, 22-24 (2002).
51. J. E. Gordon, The New Science of Strong Materials; 2nd Ed., Penguin Book, New York, 1976.
52. J. M. Molina-Aldareguia, J. Emmerlich, J-P. Palmquist, U. Jansson and L. Hultman, “Kink Formation around Indents in Laminated Ti3SiC2 Thin Films Studied in the Nanoscale,” Scripta Mater. 49, 155-160 (2003).
53. Q. F. Zan, C. A. Wang, Y. Huang, S. K. Zhao, C. W. Li, “The Interface-Layer and Interface in the Al2O3/Ti3SiC2 Multilayer Composites Prepared by in situ Synthesis,” Mater. Lett. 57, 3826-3832 (2003).
54. K. B. Alexander, P. F. Becher, X. L. Wang and C. H. Hsueh, “Internal Stresses and the Martensite Start Temperature in Alumina-Zirconia Composites: Effects of Composition and Microstructure,” J. Am. Ceram. Soc. 78 [2] 291-296 (1995).
55. Y. M. Luo, S. Q. Li, J. Chen, R. G. Wang, J. Q. Li, and W. Pan, “Effect of Composition on Properties of Alumina/Titanium Silicon Carbide Composites,” J. Am. Ceram. Soc. 85 [12] 3099 - 3101 (2002).
56. Y. M. Luo, W. Pan, S. Q. Li, R. G. Wang, and J. Q. Li, “Fabrication of Al2O3-Ti3SiC2 Composites and Mechanical Properties Evaluation,” Mater. Lett. 57 [16-17] 2509-2514 (2003).
57. Y. M. Luo, S. Q. Li, J. Chen, R. G. Wang, J. Q. Li, W. Pan, “Preparation and Characterization of Al2O3-Ti3SiC2 Composites and Its Functionally Graded Materials,” Mater. Res. Bull. 38 [1] 69-78 (2003).
58. D. Sarkar, B. Basu, M. C. Chu, S, J. Cho, “R-curve Behavior of Ti3SiC2,” Ceram. Int. 33 [5] 789-93 (2007).
59. C. Racault, F. Langlais, and R. Naslain, “Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2,” J. Mater. Sci. 29 [13] 3384-92 (1994).
60. J. Lis, Y. Miyamoto, R. Pampuch, and K. Tanihata, “Ti3SiC2-Based Materials Prepared by HIP-SHS Techniques,” Mater. Lett. 22 [3-4] 163-68 (1995).
61. T. Okano, T. Yano, and T. Iseki, “Synthesis and Mechanical Properties of Ti3SiC2 Ceramic,” Trans. Met. Soc. Jpn., 14A, 597 (1993).
62. JCPDS, PDF number: 035-0804.
63. M. F. Ashby, F. J. Blunt, M. Bannister, “Flow Characteristics of Highly Constrained Metal Wires,” Acta Metall. 37 [7] 1847-57 (1989).
64. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res. 7 [6] 1564-1583 (1992).
65. J. Kubler, Fracture Toughness of Ceramics Using the SEVNB Method: From a Preliminary Study to a Standard Test method. In: J. A. Salem, M. G. Jenkins, G. D. Quinn Editors. Fracture Resistance Testing of Monolithic and Composite Brittle Materials. West, Conshohocken, PA: American Society for Testing and Materials; 2002, p. 93-106 [ASTM STP 1409].
66. T. Fett, D. Munz, Stress Intensity Factors and Weight Functions. Southampton: Computational Mechanics Publications; 1997, p. 107-108.
67. H. Jelitto, F. Felten, M. V. Swain, H. Balke, G. A. Schneider, “Measurement of the Total Energy Release Rate for Cracks in PZT Under Combined Mechanical and Electrical Loading,” J. Appl. Mech. 74, 1197-1211 (2007).
68. T. Fett , S. Funfschilling, M. J. Hoffmann, R. Oberacker, H. Jelitto, G. A. Schneider, “R-Curve Determination for the Initial Stage of Crack Extension in Si3N4,” J. Am. Ceram. Soc. 91 [11] 3638-42 (2008).
69. H. Ozcoban, H. Jelitto, G. A. Schneider, “Influence of Finite Notch Root Radius and Optically Determined Crack Length on the Measured Fracture Toughness of Brittle Materials,” J. Eur. Ceram. Soc. 30 [7] 1579-83 (2010).
70. T. Fett, “Influence of a Finite Notch Root Radius on Fracture Toughness,” J. Eur. Ceram. Soc. 25 [5] 543-7 (2005).
71. T. Fett, D. Munz, G. Thun, “Evaluation of Bridging Parameters in Aluminas From R-Curve by Use of the Fracture Mechanical Weight Function,” J. Am. Ceram. Soc. 78 [4] 949-51 (1995).
72. J. Seidel, J. Roedel, “Measurement of Crack-Tip Toughness in Alumina as a Function of Grain Size,” J. Am. Ceram. Soc. 80 [2] 433-8 (1997).
73. K. Niihara, “New Design Concept of Structural Ceramics-Ceramic Nanocomposite,” J. Ceram. Soc. Jpn. 99 [10] 974-982 (1991).
74. S. Jiao, M. L. Jenkins and R. W. Davidge, “Interfacial Fracture Energy-Mechanical Behaviour Relationship in Al2O3/SiC and Al2O3/TiN Nanocomposites,” Acta Mater. 45 [1] 149-156 (1997).
75. R. S. Lima and C. P. Bergmann, Structural Changes on Post-sintered Flame Sprayed Alumina and Alumina-Titania, in: C. C. Berndt, S. Sampath (Eds.), Proc. 8th Nat. Thermal Spray conference, September 11-15, Advances in Thermal Spray Science and Technology, ASM, 1995.
76. M. W. Barsoum, T. Zhen, S. R. Kalidindi, M. Radovic, and A. Murugaiah, “Fully Reversible, Dislocation-Based Compressive Deformation of Ti3SiC2 to 1 GPa,” Nat. Mater. 2, 107-111 (2003).
77. S. Rattanachan, Y. Miyashita and Y. Mutoh, “Microstructure and Fracture Toughness of a Spark Plasma Sintered Al2O3-Based Composite with BaTiO3 Particulates,” J. Eur. Ceram. Soc. 23, 1269-76 (2003).
78. G. Wotting, B. Kanka, G. Ziegler, Non-oxide Technical and Engineering Ceramics, ed. by S. Hampshire, Elsevier Applied Sci., London, 1986, pp. 83.
79. K. T. Faber, A. G. Evans, “Crack Deflection Processes--I. Theory,” Acta Metall. 31 [4] 565-76 (1983).
80. K. T. Faber, A. G. Evans, “Crack Deflection Processes--II. Experiment,” Acta Metall. 31 [4] 577-84 (1983).
81. B. J. Kooi, R. J. Poppen, N. J. M. Carvalho,J. Th. M. De Hosson, M. W. Barsoum, “Ti3SiC2: A Damage Tolerant Ceramic Studied with Nanoindentations and Transmission Electron Microscopy,” Acta Mater. 51, 2859-72 (2003).
82. I. M. Low, “Vickers Contact Damage of Micro-layered Ti3SiC2,” J. Eur. Ceram. Soc. 18 [6] 709 - 713 (1998).
83. A. Murugaiah, M. W. Barsoum, S. R. Kalidindi, T. Zhen, “Spherical Nanoindentations and Kink Bands in Ti3SiC2,” J. Mater. Res. 19 [4] 1139-48 (2004).
84. J. L. Loubet, J. M. Georges, O. Marchesini, G. Meille, “Vickers Indentation Curves of Magnesium Oxide (MgO),” J. Tribol. 106 [1] 43-48 (1984).
85. N. F. Gao, Y. Miyamoto, D. Zhang, “Dense Ti3SiC2 prepared by reactive HIP,” J. Mater. Sci. 34 [18] 4385-92 (1999).
86. P. F. Becher, “Microstructural Design of Toughened Ceramics,” J. Am. Ceram. Soc. 74 [2] 255-269 (1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10201-
dc.description.abstract為了改善陶瓷材料先天的脆性,在過往二、三十年陶瓷基複合材料研究當中,起初添加金屬強化相作為研究,但因金屬材料的熔點較低而限制了其應用面。在陶瓷韌化材方面,一般添加強度、硬度較高的顆粒、鬚晶及板晶等,但韌性的提升效果有限。本研究主要為提供一個新的陶瓷韌化概念,以強度相較於基地相較低,但含有弱介面之層狀陶瓷韌化材作為第二相,利用其層間弱介面的特性,使得脆性的陶瓷材料在破壞時破壞能量由此韌化材的層間弱介面吸收而產生韌化。
本研究使用三種材料系統,分別以氧化鋁與硼矽酸鹽玻璃基低溫共燒陶瓷(LTCC)作為基材,添加積層陶瓷電容(MLCC)以及碳化鈦矽(Ti3SiC2)層狀陶瓷作為韌化相進行無壓或熱壓燒結成試樣,進行強度與韌性的量測,確立強韌化機制,並輔以理論計算。此外,也以X光與奈米壓痕技術分析試樣內部的應力對於強度韌性之影響。有別於一般陶瓷基複合材料在基地相與第二相間的裂縫轉折或架橋,此一特殊的韌化機制的設計使得裂縫在含有弱介面的第二相內部產生轉折而吸收破壞能,可更進一步的改善陶瓷材料的韌性。
zh_TW
dc.description.abstractSince ceramic materials have various advantages to demonstrate their functions, they can be applied in many areas. However, ceramics are brittle and show catastrophic failure. The objective of many researches on structural ceramics is the development of materials with high reliability. Low-cost ceramic composite materials that exhibit excellent mechanical properties have attracted considerable interest for advanced engineering applications. For such materials, toughening remains one of the most important issues in enhancing the reliability.
In the present study, three different kinds of ceramic-matrix composites are used as model systems to demonstrate the feasibility of using toughening agents with weak interfaces as a new approach. The reinforcements, such as BaTiO3 platelet containing weak interfaces and Ti3SiC2 compound can be incorporated to toughen the composite. The material selection is based on the higher thermal expansion coefficient and the lower elastic modulus of the reinforcement than those of the matrix. The toughening mechanism and the energy dissipation during crack propagation are investigated via different skills, such as residual stress analysis and nano-indentation. The role of the shape of the reinforcement and the effect of pullout during toughening is also discussed with theoretical calculation.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:09:34Z (GMT). No. of bitstreams: 1
ntu-100-D94527004-1.pdf: 3752225 bytes, checksum: 724dc5895e5018c34742300fa98ac44a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
List of Tables VI
List of Figures VII
Chapter 1: Objective and Outline 1
Chapter 2: General Theory 4
2.1 Biomimetic concept 4
2.2 Toughening mechanisms of ceramic-matrix composites 7
2.3 Fracture toughness measurement 11
2.3.1 Single edge notched beam (SENB) method 13
2.3.2 Single edge V-notched beam (SEVNB) method 15
2.3.3 Indentation method 19
2.4 X-ray residual stress analysis [30] 19
2.4.1 Introduction of residual stress 19
2.4.2 Principles of X-ray stress measurement 21
Chapter 3: Feasibility Study of Using Multilayer Platelet as Toughening Agent 27
3.1 Introduction 27
3.2 Experimental Procedures 28
3.2.1 Raw material 29
3.2.2 Al2O3/BaTiO3-platelet composite 29
3.3 Results 32
3.4 Discussion 39
3.5 Conclusions 44
Chapter 4: Crack Extension Resistance Behaviour in Lamellae Inclusions Toughened Ceramic-Matrix Composite 46
4.1 Introduction 46
4.2 Experimental Procedures 47
4.2.1 Raw material 47
4.2.2 LTCC/BaTiO3-platelet composite 47
4.3 Results 48
4.4 Discussion 50
4.5 Conclusions 59
Chapter 5: Toughening Alumina with Layered Ti3SiC2 Inclusions 61
5.1 Introduction 61
5.2 Experimental Procedures 65
5.2.1 Samples preparation 65
5.2.2 Phase and structure analysis 65
5.2.3 Bulk mechanical properties 66
5.2.4 Nanoindentation tests 67
5.2.5 Crack-extension-resistance behaviour(R-curve) tests 69
5.3 Results 70
5.3.1 Phase analysis and physical properties 70
5.3.2 Mechanical properties 72
5.3.3 Residual stress analysis 78
5.3.4 Nanoindentation results 82
5.3.5 R-curve measurements 90
5.4 Discussion 93
5.4.1 Strengthening mechanism 93
5.4.2 Toughening mechanism 94
5.4.3 Contribution of plastic deformation of Ti3SiC2 to the crack deflection in the Al2O3/Ti3SiC2 composites 98
5.4.4 Contribution of crack-deflection-induced pullouts to the toughening effect in Al2O3/Ti3SiC2 composite 105
5.5 Conclusions 115
Chapter 6: Conclusions 119
Chapter 7: Future Work 122
References 124
Curriculum Vitae 136
dc.language.isoen
dc.title以含有弱介面之韌化相韌化脆性陶瓷之研究zh_TW
dc.titleStudy on Toughening Brittle Ceramic by Using Reinforcements with Weak Interfacesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃肇瑞(Jow-Lay Huang),謝宗霖(Tzong-Lin Shieh),郭錦龍(Chin-Lung Kuo),林博文(Bor-Wen Lin)
dc.subject.keyword陶瓷基複合材料,弱介面,韌化機制,破壞能,zh_TW
dc.subject.keywordWeak interface,BaTiO3 platelet,Ti3SiC2,Residual stress,Nano-indentation,Pullout,en
dc.relation.page137
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-03-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved