Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原
dc.contributor.authorYi-Fan Suen
dc.contributor.author蘇怡帆zh_TW
dc.date.accessioned2021-05-20T21:07:57Z-
dc.date.available2016-07-06
dc.date.available2021-05-20T21:07:57Z-
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-06-04
dc.identifier.citationReference:
[1] M. De, P. S. Ghosh, V. M. Rotello, Adv. Mater. 2008, 20, 4225-4241.
[2] Y. Piao, A. Burns, J. Kim, U. Wiesner, T. Hyeon, Adv. Funct. Mater. 2008, 18, 3745-3758.
[3] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
[4] K. Osseo-Asare, F. J. Arriagada, Colloids Surf. 1990, 50, 321.
[5] J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J.-S. Kim, S. K. Kim, M.-H. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754.
[6] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538-544.
[7] A. K. Guptaa, M. Guptab, Biomaterials 2005, 26, 3995-4021.
[8] T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm. 2008, 5, 316-327 ; T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, V. Labhasewar, Mol. Pharm. 2005, 2, 194-205.
[9] M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293-346.
[10] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, W. J. Parak, Chem. Soc. Rev. 2008, 37, 1896-1908.
[11] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
[12] U. Ciesla, F. Schüth, Microporous and Mesoporous Material 1999, 131-149.
[13] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56-77.
[14] I. I. Slowing, B. G. Trewyn, S. Giri, Victor S.-Y. Lin, Adv. Func. Mater. 2007, 17, 1225-1236.
[15] S.-H. Wu, Y.-S. Lin, Y. Hung, Y.-H. Chou, Y.-H. Hsu, C. Chang, C.-Y. Mou, ChemBioChem 2008, 9, 53-57.
[16] A. B. Descalzo, D. Jimenez, M. D. Marcos, R. Martínez-Máñez, J. Soto, J. E. Haskouri, C. Guillém, D. Beltrán, P. Amorós, M. V. Borrachero, Adv. Mater. 2002, 14, 966-969.
[17] Y.-S. Lin, C.-P. Tsai, H.-Y. Huang, C.-T. Kuo, Y. Hung, D.-M. Huang, Y.-C. Chen, C.-Y. Mou, Chem. Mater. 2005, 17, 4570-4573.
[18] C.-H. Lee, L.-W. Lo, C.-Y. Mou, C.-S. Yang, Adv. Funct. Mater. 2008, 18, 3283-3292.
[19] J. L. Vivero-Escoto, I. I. Slowing, C.-W. Wu, Victor S.-Y. Lin, J. Am. Chem. Soc. 2009, 131, 3462-3463.
[20] T. F. Massoud, S. S. Gambhir, Genes Dev. 2003, 17, 545-580.
[21] H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. 2009, 21, 2133-2148.
[22] J. Cheon, J.-H. Lee, Acc. Chem. Res. 2008, 41, 1630–1640.
[23] J. Kim, Y. Piao, T. Hyeon, Chem. Soc. Rev. 2009, 38, 372-390.
[24] C.-H. Lee, S.-H. Cheng, Y.-J. Wang, Y.-C. Chen, N.-T. Chen, J. Souris, C.-T. Chen, C.-Y. Mou, C.-S. Yang, L.-W Lo, Adv. Func. Mat. 2009, 19, 215-222.
[25] D. Weishaupt, V. D. Köchli, B. Marincek, How does MRI work?, Springer, New York 2006.
[26] K. N. Raymond, V. C. Pierre, Bioconjugate Chem. 2005, 16, 3-8.
[27] P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352.
[28] P. Caravan, Chem. Soc. Rev. 2006, 35, 512-523.
[29] A. Datta, J. M. Hooker, M. Botta, M. B. Francis, S. Aime, K. N. Raymond, J. Am. Chem. Soc. 2008, 130, 2546-2552.
[30] D. E. Prasuhn, Jr., R. M. Yeh, A. Obenaus, M. Manchesterc, M. G. Finn, Chem. Commun. 2007, 1269-1271.
[31] Y. S. Lin, Master Thesis 2004.
[32] B. V. Enüstün, J. Turkevich, J. Am. Chem. Soc. 1963, 85, 3317-3328.
[33] J. Liu, Z. Sun, Y. Deng, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem. Int. Ed. 2009, 48, 5875-5879.
[34] C. T. Tseng, Master Thesis 2009.
[35] S.-J. Park, Y. J. Kim, S.-J. Park, Langmuir 2008, 24, 12134-12137.
[36] Y. S. Lin, Y. Hung, J. K. Su, R. Lee, C. Chang, M. L. Lin, C. Y. Mou, J. Phys. Chem. B 2004, 108, 15608-15611.
[37] C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, J. A. Peters Chem. Eur. J. 2002, 8, 5121-5131.
[38] P.A. Rinck, R.N. Muller, Eur. Radiol. 1999, 9, 998-1004.
[39] M. Takahashi, H. Uematsu, H. Hatabu, Eur J. of Radiology 2003, 46, 45-52.
[40] M. Gueron, J. Magn. Reson. 1975, 19, 58.
[41] J. F. Schenck, Med. Phys. 1996, 23, 815-850.
[42] H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6267-6273.
[43] J. W.M Bulte, T. Douglas, B. Witwer, S.-C. Zhang, B. K Lewis, P. van Gelderen, H. Zywicke, Ian D Duncan BVMS, PhD, FRCVS, FRCPath and Joseph A Frank Acad. Radiol. 2002, 9, S332–S335.
[44] K. Hoshino, H. Q. Ly, J. V. Frangioni, R. J. Hajjar, Prog Cardiovasc Dis. 2007, 49, 414-420.
[45] W.-C. Lo, C.-H. Hsu, A. T. H. Wu, L.-Y. Yang, W.-H. Chen, W.-T. Chiu, W.-F. Lai, C.-H. Wu, J. G. Gelovani, W.-P. Deng, J Nucl Med. 2008, 49, 1512-1519.
[46] C. P. Tsai, Y. Hung, Y. H. Chou, D. M. Huang, J. K. Hsiao, C. Chang, Y. C. Chen, C. Y. Mou, small 2008, 4, 186-191; C. P. Tsai, Docteral Dissertation 2008.
[47] D. M. Huang, Y. Hung, B. S. Ko, S. C. Hsu, W. H. Hsu, C. L. Chien, C. P. Tsai, C. T. Kuo, J. C. Kang, C. S. Yang, C. Y. Mou, Y. C. Chen, Faseb J. 2005, 19, 2014-2016.
[48] N. Takaya, H. Watanabe, F. Mitsumori, Proc. Intl. Soc. Mag. Reson. Med. 2004, 11.
[49] Y. Xu, X. Zhu, H. S. Hahm, W. Wei, E. Hao, A. Hayek, S. Ding. PNAS 2010, 107, 8129-8134.
[50] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161-2175.
[51] C. C Berry, A. S G Curtis, J. Phys. D: Apply. Phys. 2003, 36, R198-R206.
[52] D. E. Owens III, N. A. Peppas, Inter. J. of Pharmaceutics 2006, 307, 93-102.
[53] F. Alexis, E. Pridgen, L. K. Molnar, O.C. Farokhzad, Molecular Pharmaceutics 2008, 5, 505-515.
[54] S. M. Moghimi, H. M. Patel, Adv. Drug Delivery Rev. 1998, 32, 45-60.
[55] J. Xie, C. Xu, N. Kohler, Y. Hou, S. Sun, Adv. Mater. 2007, 19, 3163-3166.
[56] R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R.H. Müller, Colloids Surf. 2000, 18, 301-313.
[57] J. M. Chan, L. Zhang, K. P. Yuet, G. Liao, J.-W. Rhee, R. Langer, O. C. Farokhzad, Biomaterials 2009, 30, 1627-1634.
[58] Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang, W. Bu, L. Guo, Y. Chen, Biomaterials 2010, 31, 1085-1092.
[59] S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. W. Chan, Nano Lett. 2009, 9, 1909-1915.
[60] Y. S. Lin, C. L. Haynes, Chem. Mater. 2009, 21, 3979-3986.
[61] J. Kalia, R. T. Raines, Bioorg. Med. Chem. Lett. 2007, 17, 6286-6289.
[62] C. Fang, N. Bhattarai, C. Sun, M. Zhang, small 2009, 5, 1637-1641.
[63] C. Sun, J. S.H. Lee, M. Zhang, Adv. Drug Delivery Rev. 2008, 60, 1252–1265.
[64] K. Miyata, S. Fukushima, N. Nishiyama, Y. Yamasaki, K. Kataoka, J. Controlled Release 2007, 122, 252-260.
[65] B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett. 2006, 6, 662-668.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10181-
dc.description.abstract中孔洞氧化矽奈米材料具有高表面積、大孔體積、均勻孔徑大小、表面容易修飾以及生物相容性佳等優點;因此在本研究中,我們以中孔洞氧化矽奈米材料作為主軸,依其結構與生醫應用上不同分成兩個主題。
  第一部分我們成功利用共價修飾的方法,發展出具有螢光及釓金屬順磁性質的多功能氧化矽奈米複合材料(Gd(OH)3-FITC@MSN);此多功能中孔洞氧化矽材料具有高弛緩率(relaxivity)及穩定螢光等性質,並可藉細胞吞噬作用成功進入細胞內且對於細胞只存有極低的生物毒性。更重要的是Gd(OH)3-FITC@MSN材料相較臨床使用的核磁共振顯影劑有更好的影像對比效果,再加上螢光光學及中孔洞材料等特點,此材料在未來影像追蹤以及藥物釋放等應用上有很大的潛力。
  第二部份我們系統性地探討聚乙二醇分子(polyethylene glycol, PEG)的分子量及表面修飾密度對中孔洞氧化矽奈米材料的影響。我們找到最適合的聚乙二醇修飾條件,使中孔洞氧化矽奈米粒子在模擬生理條件的培養液中有最佳的粒子穩定性且可以成功降低小鼠巨噬細胞(RAW 264.7)的非專一性吞噬,並進而避開身體內的網狀內皮系統(reticuloendothelial system, RES),對於提升生物體內專一性標定及藥物輸送的效率有很大的幫助。
zh_TW
dc.description.abstractMesoporous silica nanoparticles (MSNs) are emerging as promising candidates in using these materials for biomedical applications because of the unique characteristics, including high surface area, uniform pore size, easy modification and great biocompatibility. In first part, we have successfully developed two kinds of materials base on mesoporous silica nanoparticles (MSN) for biomedical applications. The first part shows the synthesis and characterization of a multifunctional nanomaterial, Gd(OH)3-FITC@MSN, possessing magnetic, fluorescent and porous properties. Its utility for both magnetic resonance and optical imaging was clearly demonstrated in vitro. The result shows Gd(OH)3-FITC@MSN performed well for cellular magnetic resonance imaging (MRI) even at high magnetic field (7T), indicating it could be a promising T1 or T2 contrast agent.
The second part presents a systematic study of 50 nm MSN modified with PEG of different molecular weights and surface chain density. The results show that, as the surface of MSN mostly covered by PEG with molecular weight of 30 kDa, the PEGylated MSN could stably suspend in cell-culture medium and physiology environments without agglomeration and obvious size changes even incubated for two weeks. Besides, MSNs conjugated with PEG chains effectively reduce non-specific uptake of RAW 264.7 macrophage cells indicating these particles could escape from the innate immune system which is critical for efficient target-specific delivery.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:07:57Z (GMT). No. of bitstreams: 1
ntu-100-R97223202-1.pdf: 3800746 bytes, checksum: 7bdd8099fa3ea8061ee475b9b3e212eb (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
摘要……………………………………………………………………………………...I
Abstract………………………………………………………………………………...II
Table of Contents……………………………………………………………………..III
List of Figures………...………………………………………………………………...V
List of Schemes…………………………………………………………………………X
List of Tables….……………………………………………………………………….XI

Chapter One General Introduction……………………………………………...1
1.1 Emerging Nanomaterials…………………………………………………………1
1.2 Mesoporous Materials…………………………………………………………..10
1.3 Mesoporous Silica Nanoparticles (MSN) in Biomedical Applications…………14
Chapter Two Gadolinium-functionalized Mesoporous Silica Nanoparticles as
Magnetic Resonance Imaging Contrast Agents……………........21
2.1 Introduction...……………………………………………………………………..21
2.1.1 Biomedical Imaging Modalities...…………………………………………...21
2.1.2 Introduction of Magnetic Resonance Imaging (MRI)...……………………..24
2.2 Experiments………………………………………………………………...........30
2.2.1 Materials………………………………………………………………..........30
2.2.2 Synthesis of Gd(OH)3@MSN..........................................................................30
2.2.3 Synthesis of Gd(OH)3-FITC@MSN...............................................................32
2.2.4 Cell culture and Assays………………………………………………………34
2.2.5 Physical and Chemical Characterization...…………………………………..37
2.2.6 Magnetic Resonance Characterization...…………………………………….39
2.3 Results and Discussion...………………………………………………………...41
2.3.1 Properties of Gd(OH)3@MSNs through Two Synthetic Procedures…...……44
2.3.2 Characterization of Various Gadolinium-Loaded MSNs…………...…...…...53
2.3.3 Characterization of Gd(OH)3-FITC@MSN....................................................60
2.3.4 Biological Applications of Gd(OH)3-FITC@MSN.........................................65
2.4 Conclusion……………………………………………………………………..73
Chapter Three Controlled PEGylation of Mesoporous Silca Nanoparticles for Reduced Non-specific Uptake by Macrophage Cells………..74
3.1 Introduction……………………………………………………………………74
3.1.1 Brief Introduction of Reticuloendothelial system (RES)………………….74
3.1.2 Commonly Used Polymers for Escaping from RES………………………76
3.1.3 Polyethylene Glycol (PEG) for Surface Modification – PEGylation……...78
3.2 Experiments……………………………………………………………………..82
3.2.1 Materials…………………………………………………………………......82
3.2.2 Synthesis of Thiol Group Modified Mesoporous Silica Nanoparticles……...85
3.2.3 Procedure of Polyethylene Glycol Modification (SH-RITC@MSN-PEG).86
3.2.4 Cell Culture and Assays……………………………………………………...88
3.2.5 Characterization………………………………………...……………………89
3.3 Results and Discussion………………………………...………………………...91
3.3.1 Quantification of Thiol Group……………………...………………………..92
3.3.2 Systematic Study of PEGylation of Rhodamine B Dye Conjugated MSN (SH-RITC@MSN-PEG)...............................................................................94
3.4 Conclusion………………………………………………...……………………111
Reference…………………………………………………………………………...112
dc.language.isoen
dc.title中孔洞氧化矽奈米粒子的修飾及生物醫學上之應用zh_TW
dc.titleModification of Mesoporous Silica Nanoparticles for Biomedical Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭岑,吳嘉文
dc.subject.keyword中孔洞氧化矽奈米材料,多功能氧化矽奈米複合材料,核磁共振顯影,顯影劑,聚乙二醇修飾,巨噬細胞吞噬,zh_TW
dc.subject.keywordMesoporous silica nanoparticles,multifunctional nanoaprobes,MRI,contrast agents,PEGylation,phagocytosis,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-06-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved