Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁宗蘇(Tzung-Su Ding)
dc.contributor.authorKe-Yen Huangen
dc.contributor.author黃可言zh_TW
dc.date.accessioned2021-05-20T21:07:21Z-
dc.date.available2011-07-06
dc.date.available2021-05-20T21:07:21Z-
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-06-20
dc.identifier.citation丁宗蘇。1993。玉山地區成熟林之鳥類群聚生態。國立臺灣大學動物學研究所碩士論文。
林國銓。1989。葉面積與林木生長及其環境。127¬¬-135頁,夏禹九、趙榮台、金恆鑣編輯,生態原則下的森林經營研討會論文集。臺灣省林業試驗所,臺北,中華民國。
林國銓、洪富文、游漢明、馬復京。1994。福山試驗林闊葉林生態系生物量與葉面積指數的累積與分布。林業試驗所研究報告季刊。9(4): 299-315。
林登秋與江智民。2002。半球面影像在森林生態研究的應用。臺灣林業科學。17(3): 387-400。
林登秋、林則桐、江智民、夏禹九、金恆鑣。1999。颱風對臺灣東北部天然闊樹林林冠干擾之研究。中華林學季刊。32(1): 67-78。
洪富文、夏禹九、唐凱軍。1986。蓮華池次生溫暖帶山地雨林地上部生物量及葉面積之估算。林業試驗所試驗報告第465號。
陳青香、林登秋、黃正良。2007。臺灣中部蓮華池試驗林天然闊葉林與人工杉木林葉面積指數變動及其對初級生產力估算之影響。臺灣林業科學。22(4): 423-39。
許皓捷。1995。臺灣中海拔山區森林鳥類群聚結構與環境因子之關係。國立臺灣大學動物學研究所碩士論文。
許皓捷。2003。臺灣山區鳥類群聚的空間及季節變異。國立臺灣大學動物學研究所博士論文。
許富雄、姚正得、林瑞興、楊吉宗、賴肅如。2004。臺灣南部地區的鳥類組成與海拔分布。特有生物研究。6(2): 41-66。
彭炳勳與陳朝圳。2008。應用空載光達資料推測林木樹高與葉面積指數。航測及遙測學刊。13(2): 85-100。
鄭祈全、邱祈榮、陳燕章。1997。應用遙測方法估測臺灣杉林分之葉面積指數。臺灣林業科學。12(3): 309-317。
廖煥彰。2006。塔塔加地區不同植群演替階段之鳥類群聚研究。國立臺灣大學森林環境暨資源學研究所碩士論文。
劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威。2010。台灣鳥類誌。行政院農業委員會林務局。
簡睿涵。2010。臺灣木本植物多樣性影響因子之探討。國立臺灣大學森林環境暨資源學研究所碩士論文。
羅時凡、魏浚紘、李崇誠、陳朝圳。2009。遙測技術應用於溪頭地區柳杉人工林之森林健康調查。林業研究季刊。31(1): 37-54。
Adams, J. M., and F. I. Woodward. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339: 699-701.
Berbigier, P., and J. M. Bonnefond. 1995. Measurment and modeling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait). Annals of Forest Science 52: 23-42.
Breda, N. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany 54, 2403-2417.
Breuer, L., K. Eckhardt, and H. Frede. 2003. Plant parameter values for models in temperate climates. Ecological Modelling 169(2-3): 237-93.
Brown, J. H. 2001. Mammals on mountainside: elevational patterns of diversity. Global Ecology and Biogeography 10: 101-109.
Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman & Hall, London, United Kingdom.
Campbell, G.S. 1977. An Introduction to Environmental Biophysics. New York: Springer-Verlag. 159 pp.
Campbell, G.S., 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology 36: 317-321.
Castelletta, M., J. M. Thiollay and N. S. Sodhi. 2005. The effects of extreme forest fragmentation on the bird community of Singapore Island. Biological Conservation 121(1): 135-155.
Chason J, D. Baldocchi, and M. Hutson. 1991. A comparison of direct and indirect methods for estimating forest leaf area. Agricultural and Forest Meteorology 57, 107-128.
Cleary, D. F. R., T. J. B. Boyle, T. Setyawati, C. D. Anggraeni, E. E. Van Loon and S. B. J. Menken. 2007. Bird species and traits associated with logged and unlogged forest in Borneo. Ecological Applications 17(4): 1184-1197.
Colwell, R. K., and D. C. Lee. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15: 70-76.
Colwell, R. K., C. Rahbek, and N. J. Gotelli. 2004. The mid-domain effect and species richness patterns: what have we learned so far? American Naturalist 163: 1-23.
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137: 27-49.
Ding, T. S., H. W. Yuan, S Geng, Y. S. Lin, and P. F. Lee. 2005. Energy flux, body size and density in relation to bird species richness along an elevational gradient in Taiwan. Global Ecology and Biogeography 14: 299-306.
Dufrene, E., and N. Breda. 1995. Estimation of deciduous forest leaf-area index using direct and indirect methods. Oecologia 104: 156-162.
Dunning Jr., J. B. 2007. CRC handbook of avian body masses, 2nd Edition. CRC.
Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405: 220-227.
Gholz, H. L. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63(2): 469-481.
Goel, N.S., and D. E. Strebel. 1984. Simple beta distribution representation of leaf orientation in vegetation canopies. Agronomy Journal 76: 800-802.
Goodall, D.W. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Australian Journal of Scientific Research 5: 1-41.
Gower, S. T., and J. M. Norman. 1991. Rapid estimation of leaf area index in conifer and broad-lead plantations. Ecology 72: 1896-1900.
Groeneveld, D. P. 1997. Vertical point quadrat sampling and an extinction factor to calculate leaf area index. Journal of Arid Environment 36: 475-485.
Huston, M. A., and D. L. DeAngelis. 1994. Competition and coexistence: the effects of resource transport and supply rates. American Naturalist 144: 954-977.
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93: 145-159.
Jetz, W., and C. Rahbek. 2001. Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Science of the United States of America 98: 5661-5666.
Lang, A. R. G. 1987. Simplified estimate of leaf area index from transmittance of the sun’s beam. Agricultural and Forest Meteorology 41: 179-186.
Lee P. F., T. S. Ding, and H. J. Shiu. 1998. Body size relation of breeding bird species in Taiwan. Acta Zoologica Taiwanica 1998: 47-59.
Lee P. F., T. S. Ding, F. S. Hsu, and S Geng. 2004. Bird species richness in Taiwan: distribution on gradients of elevation, primary productivity, and urbanization. Journal of Biogeography 31: 307-314.
Levy, E. B., and E. A. Madden. 1933. The point method of pasture analysis. New Zealand Journal of Agronomy 46: 267-279.
Lewandowska, M. and P. G. Jarvis. 1977. Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce in response to shading and season. New Phytologist 79: 247-256.
LI-COR, 1992. LAI-2000 Plant Canopy Analyzer Operating Manual. LI-Cor, Lincoln, Nebraska. 90 pp.
Nagel, L. M., and K. L. O’Hara. 2001. The influence of stand structure on ecophysiological leaf characteristics of Pinus ponderosa in western Montana. Canadian Journal of Forest Research 31: 2173-2182.
Kiniry, J. R. 1998. Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar. Biomass and Bioenergy 15(6): 467-473.
Krebs, C. J. 1999. Ecological methodology. 2nd edition. Addison-Wesley, New York.
Kruskal, W. H., and W. A. Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47 (260): 583-621.
Kwok, H. K., and R. T. Corlett. 2000. The bird communities of a natural secondary forest and a Lophostemon confertus plantation in Hong Kong, South China. Forest Ecology and Management 130: 227-234.
MacArthur, R. H. 1965. Patterns of species richness. Biological Reviews 40: 510-533.
MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. Harper & Row, New York.
MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton.
Marini, L., E. Bona, W. E. Kunin, and K. J. Gaston. 2011. Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography 38: 78-88.
Mitchell-Olds, T. and R. G. Shaw. 1987. Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41: 1149-1161.
Mittelbach, G. G. 2010. Understanding species richness-productivity relationships: the importance of meta-analyses. Ecology 91(9): 2540-2544.
Monk, C. D., G. I. Child, and S. A. Nicholson. 1970. Biomass, litter and leaf surface area estimates of an oak-hickory forest. Oikos 21: 138-141.
Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs 57: 111-128.
Navarro, S. A. G. 1992. Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico. Condor 94: 29-39.
Nilson, T. 1971. A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology 8: 25-38.
Norman, J. M. and G. S. Campbell. 1989. Canopy Structure. In: Pearcy, R.W., Ehleringer, J. R., Mooney, H. A. & Rundel, P.W. (Eds), Plant Physiological Ecology Field Methods and Instrumentation, pp. 301-325. London: Chapman and Hall. 457 pp.
Ohsawa, M. 2004. Comparison of Elaterid biodiversity among larch plantations, secondary forests, and primary forests in the central mountainous region in Japan. Annals of the Entomological Society of America 97(4): 770-774.
Patterson, B. D., D. F. Stotz, S. Solari, J. W. Fitzpatrick, and V. Pacheco. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography 25: 593-607.
Podulka, S., R. W. Rohrbaugh and R. Bonney. 2004. Handbook of bird biology. 2nd edition. Princeton University Press. New York.
Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200-205.
Reynolds, R. T., J. M. Scott, and R. A. Nussbaum. 1980. A variable circular-plot method for estimating bird numbers. Condor 82: 309-313.
Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: predictions from climatological data. American Naturalist: 102: 67-74.
Rosenzweig, M. L., and Z. Abramsky. 1993. How are diversity and productivity related? Pages 52-65 in R. E. Ricklefs and D. Schluter, editors. Species diversity in ecological communities. University of Chicago Press, Chicago, Illinois, USA.
Rowe, R. J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32: 411-422.
Selmi, S., T. Boulinier and B. Faivre. 2003. Distribution and abundance patterns of a newly colonizing species in Tunisian oases: the Common Blackbird Turdus merula. Ibis 145(4): 681-688.
Shiu, H. J., T. S. Ding, J. E. Sheu, R. S. Lin, C. N. Koh, and P. F. Lee. 2005. Morphological characters of bird species in Taiwan. Taiwania 50(2): 80-92.
Shiu, H. J., and P. F. Lee. 2003. Seasonal variation in bird species richness along elevational gradients in Taiwan. Acta Zoologica Taiwanica 14: 1-21.
Smith, F. W., D. A. Sampson, and J. N. Long. 1991. Comparison of leaf-area index estimates from tree allometrics and measured light interception. Forest Science 37: 1682-1688.
Smith, N. J., J. M. Chen ,and T. A. Black. 1993. Effects of clumpimg on estimation of leaf area index using the LI-COR LAI-2000. Canadian Journal of Forest Research 23: 1940-1943.
Sophie, E. H. 2003. The effect of thinning intensity on the below-canopy light environment in Sitka spruce plantantion. Forest Ecology and Management 179: 341-349.
Stenberg, P. 1996. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifer. Agricultural and Forest Meteorology 79: 1-8.
Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rile to altitude. American Naturalist 140: 893-911.
Storch, D., R. G. Davies, S. Zajicek, C. D. L. Orme, V. Olson, G. H. Thomas, T. S. Ding, P. C. Rasmussen, R. S. Ridgely, P. M. Bennett, T. M. Blackburn, L. P. F. Owens, and K. J. Gaston. 2006. Energy, range dynamics and global species richness pattern: reconciling mid-domain effects and environmental determinants of avian diversity. Ecology Letters 9: 1308-1320.
Su, H. J. 1984a. Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry 17(3): 1-14.
Su, H. J. 1984b. Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17(4): 57-73.
Thomas, S. C., and W. E. Winner. 2000. Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Canadian Journal of Forest Research 30: 1922-1930.
Thornthwaite, C. W., and J. R. Mather. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology 10: 185-311.
Tilman, D., and S. Pacala. 1993. The maintaenance of species richness in plant communities. Pages 13-25 in R. E. Ricklefs and D. Schluter, editors. Species diversity in ecological communities. University of Chicago Press, Chicago, Illinois, USA.
Turner, J. R. G., C. M. Gatehouse, and C. A. Corney. 1987. Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48: 195-205.
Turner, J. R. G., J. J. Lennon, and J. A. Lawrenson. 1988. British bird species distributions and energy theory. Nature 335: 539-541.
Venier, L. A., D. W. McKenney, Y. Wang, and J. McKee. 1999. Models of large-scale breeding-bird distribution as a function of macro-climate in Ontario, Canada. Journal of Biogeography 26: 315-328.
Wang, Y. P., and P. G. Jarvis. 1988. Mean leaf angles for the ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology 43: 319-321.
Waring, R. H. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Pages 327-354 in A. MacFadyen, and E. D. Ford, editors. Advances in ecological research, Volume 13. Academic Press, New York, New York, USA.
Watson D.J., 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany 11, 41-76.
Whittaker, R. H. and W. A. Niering. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. biomass, production, and diversity along the elevation gradient. Ecology 56: 771-790.
Williams, S. E., L. P. Shoo, R. Henriod, and R. G. Pearson. 2010. Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion. Austral Ecology 35: 650-664.
Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496-506.
Wright, D. H., D. J. Currie, and B. A. Mauer. 1993. Energy supply and patterns of species richness on local and regional scales. Pages 66-74 in R. E. Ricklefs and D. Schluter, editors. Species diversity in ecological communities. University of Chicago Press, Chicago, Illinois, USA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10173-
dc.description.abstract全球環境現今變遷迅速且劇烈,為避免人為過度開發造成生物多樣性的下降,了解生物多樣性在不同空間尺度下的分布模式與影響因子便成為相當重要的課題。臺灣由於海拔跨幅大,因此相當適合進行生物多樣性在海拔梯度上變化模式的探討。過去在臺灣進行的相關研究尚缺乏對於低海拔鳥類物種豐富度的探討,因此本研究於臺灣中部地區,海拔梯度自平地延伸至合歡山的範圍內(183- 3110 m),於此海拔範圍選擇較少人為擾動的成熟林份,設立32個取樣站,調查鳥類群聚與植群組成。主要目的為了解在此海拔梯度內,初級生產力、鳥類族群密度、鳥類物種豐富度、木本植物物種豐富度與鳥類族群能量耗用的變化模式。此外,將更進一步探討鳥類物種豐富度與初級生產力之間的關係,以驗證其是否符合能量限制假說與其運作機制:(1)初級生產力與鳥類族群能量總耗用量的關係、(2)鳥類族群總耗用量與鳥類族群總密度的關係、(3)鳥類族群總密度與鳥類物種豐富度的關係。本研究更嘗試使用以綠葉覆蓋層次做為葉面積指數轉換的調查方式,並將此數據作為淨初級生產力的指標。野外調查於2009年至2010年間完成,結果發現鳥類物種豐富度與葉面積指數皆在中海拔地區最高,在海拔梯度上呈現駝峰狀分布。而木本植物物種豐富度則是在低海拔地區最高,並且隨著海拔梯度升高而遞減,本研究認為溫度是一重要的影響因素。鳥類物種豐富度與葉面積指數的分析結果支持能量限制假說,且在假說的運作機制部分皆完全符合,也就是鳥類物種豐富度與葉面積指數呈正相關,而各部機制部分也皆呈現正相關。因此,在海拔梯度的空間尺度下,能量的供給是影響鳥類物種豐富度的重要因子,同時,能量指標的選取以及分析方法的判定也都會是影響因素之一。在葉面積指數作為能量指標的部分,本研究亦針對數值轉換與調查法討論出建議的修正方法,以供後續選用此法的研究者參考。zh_TW
dc.description.abstractWith rapid global environment changes and growing human development, studying the distribution pattern of biodiversity at various spatial scales becomes a very important task to conserve biodiversity. Taiwan is an island with wide elevational range and is very suitable to study distribution of species richness along elevational gradient. Previous relevant studies in Taiwan seldom included bird species richness data below 1000 m. I conducted this study in old-growth forests from foothills to Mt. Ho-Haun (183- 3110 m a.s.l.) in central Taiwan in 2009 and 2010. I established 32 sampling stations to investigate community compositions of birds and trees along this elevational gradient. The objectives of this study were to (1) investigate the distribution patterns of primary productivity, bird density, bird species richness, tree species richness, and energy consumption of birds along elevational gradient, (2) examine the relationship between bird species richness and primary productivity, and (3) test three assumptions of energy limitation hypothesis. In this study, I estimated Leaf area index (LAI), an indicator of net primary productivity, by measuring leaf coverage. Results show that both bird species richness and LAI were hump-shaped along with the elevational gradient. However, tree species richness decreased with elevation. Results support energy limitation hypothesis and its three assumptions. I conclude that energy availability is a very important factor in determining bird species richness. In using LAI as index of primary productivity, I also discuss some corrections about the measurement of leaf coverage and the value transformation, which should be useful for future studies.en
dc.description.provenanceMade available in DSpace on 2021-05-20T21:07:21Z (GMT). No. of bitstreams: 1
ntu-100-R98625001-1.pdf: 1640226 bytes, checksum: e264ca2a3603c29d0623452c57629587 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要…………………………………………………………………………………I-II
英文摘要……………………………………………………………………… III-IV
目錄…………………………………………………………………………………A
圖目錄………………………………………………………………………………B
前言…………………………………………………………………………………1-6
研究區域……………………………………………………………………………7-9
研究方法…………………………………………………………………………10-15
資料分析…………………………………………………………………………15-16
結果………………………………………………………………………………17-20
討論………………………………………………………………………………21-30
參考文獻…………………………………………………………………………31-40
圖…………………………………………………………………………………41-51
表一、各海拔梯度之棲地因子平均值………………………………………………52
附錄一、鳥類物種名錄與特定基礎半徑………………………………………53-56
附錄二、木本植物物種名錄……………………………………………………57-61
附錄三、各取樣站棲地因子…………………………………………………………62
附錄四、各取樣站鳥種密度表…………………………………………………63-67
dc.language.isozh-TW
dc.title鳥類物種豐富度與初級生產力在中臺灣海拔梯度上的關係zh_TW
dc.titleBird Species Richness and Primary Productivity along an Elevational Gradient in Central Taiwanen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林登秋(Teng-Chiu Lin),許富雄(Fu-Hsiung Hsu),許皓捷(Hau-Jie Shiu)
dc.subject.keyword鳥類物種豐富度,海拔梯度,葉面積指數,初級生產力,能量限制假說,zh_TW
dc.subject.keywordbird species richness,elevational gradient,leaf area index,primary productivity,energy limitation hypothesis,en
dc.relation.page67
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-06-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf1.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved