Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維zh_TW
dc.contributor.advisorShi-Wei Chuen
dc.contributor.author蘇奕蓁zh_TW
dc.contributor.authorYi-Jhen Suen
dc.date.accessioned2026-02-11T16:44:44Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-01-28-
dc.identifier.citationE. R. Elliott, and R. L. Cooper, The effect of calcium ions on resting membrane potential, Biology, 2024. 13(9),750.
D. G. Nicholls, Bioenergetics, Academic Press, 2013.
A. Laporta, and D. Kleinfeld, Interferometric detection of action potentials, Cold Spring Harbor Protocols, 2012(3),307-11.
Br J Pharmacol, Ion channels, British Journal of Pharmacology, 2011.164 (Suppl 1), S137–S174.
S. H. Wright, Generation of resting membrane potential, Advances in Physiology Education, 2004. 28(1-4), 139–142.
J. R. Lazzari-Dean, A. M. M. Gest, and E. W. Miller, Measuring absolute membrane potential across space and time, Annual Review of Biophysics, 2021. 50. 447–468
K. Chen, Q. Yu, Y. Liu, and P. Yin, Bacterial hyperpolarization modulated by polyoxometalates for solutions of antibiotic resistance, Journal of Inorganic Biochemistry, 2021. 220, 111463.
P. M. Hughes, The cellular zeta potential: cell electrophysiology beyond the membrane, Integrative Biology, 2024. 16.
K. R. Ward, E. J. F. Dickinson, and R. G. Compton, Dynamic theory of membrane potentials, The Journal of Physical Chemistry B, 2010. 114(33), 10763–10773.
P. M. Hughes, P. S. K. Clarke, R. Hoque, V. O. Griffiths, J. E. Kruchek, P. M. Johnson, H. M. Tariq, N. Kohli, R. Lewis, and H. F. Labeed, Label-free, non-contact determination of resting membrane potential using dielectrophoresis, Scientific Reports, 2024. 14(1), 18477.
L. Martini, G. Amprimo, D. S. Carlo, G. Olmo, C. Ferraris, A. Savino, and R. Bardini, Neuronal Spike Shapes (NSS): A straightforward approach to investigate heterogeneity in neuronal excitability states, Computers in Biology and Medicine, 2024. 168, 107783.
Gerhard, D.M. Neuroscience. 5th Edition. The Yale Journal of Biology and Medicine, 2013. 86, 113 - 114.
S. Oh, C. Fang-Yen, W. Choi, Z. Yaqoob, D. Fu, Y. Park, R. R. Dassari, and M. S. Feld, Label-Free imaging of membrane potential using membrane electromotility, Biophysical Journal, 2012. 103(1), 11–18.
M. J. Benarroch, and M. Asally, The microbiologist’s guide to membrane potential dynamics, Trends in Microbiology, 2020. 28(4), 304–314.
H. J. Lee, Y. Jiang, and J. X. Cheng, Label-free optical imaging of membrane potential, Current Opinion in Biomedical Engineering, 2019. 12, 118–125.
A. T. Jameson, L. K. Spera, D. L. Nguyen, E. M. Paul, and M. Tabuchi, Membrane-coated glass electrodes for stable, low-noise electrophysiology recordings in Drosophila central neurons, Journal of Neuroscience Methods, 2024. 404, 110079.
Z. Jahed, Y. Yang, C.-T. Tsai, P. E. Foster, F. A. Mcguire, H. Yang, A. Liu, C. Forro, Z. Yan, X. Jiang, M.-T. Zhao, W. Zhang, X. Li, T. Li, A. Pawlosky, C. J. Wu, and B. Cui, Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes, Nature Communications, 2022. 13, 2253.
T. H. Newton, M. W. Reimann, M. Abdellah, G. Chevtchenko, E. B. Muller, and H. Markram, In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations, Nature Communications, 2021. 12, 3630.
I. Mollinedo-Gajate, C. Song, and T. Knöpfel, Genetically encoded voltage indicators. Advances in Experimental Medicine and Biology, 2021. 1293, 209–224.
Y. Yang, X.-W. Liu, H. Wang, H. Yu, Y. Guan, S. Wang, and N. Tao, Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion, ACS Nano, 2018. 12(5), 4186-4193.
T. Ling, K. C. Boyle, V. Zuckerman, T. Flores, C. Ramakrishnan, K. Deisseroth, and D. Palanker, High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential, Proceedings of the National Academy of Sciences, 2020, 117(19), 10278-10285.
C. K. Kasuba, P. A. Buccino, J. Bartram, M. B. Gaub, J. F. Fauser, S. Ronchi, S. S. Kumar, S. Geissler, M. M. Nava, A. Hierlemann, and J. D. Müller, Mechanical stimulation and electrophysiological monitoring at subcellular resolution reveals differential mechanosensation of neurons within networks, Nature Nanotechnology, 2024. 19, 825–833.
T. Ling, K. C. Boyle, G. Goetz, P. Zhou, Y. Quan, F. S. Alfonso, T. W. Huang, and D. Palanker, Full-field interferometric imaging of propagating action potentials, Light: Science & Applications, 2018. 7, 107.
J. H. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, Label-free vibrational spectroscopic imaging of neuronal membrane potential, The Journal of Physical Chemistry Letters, 2017. 8(9), 1932-1936.
Q.-Y. Li, P.-T. Lyu, B. Kang, H.-Y. Chen, and J.-J. Xu, Electrochemically modulated interferometric scattering microscopy for imaging ion channel activity in live cells, Nature Photonics, 2025. 19, 871–878.
J. Lee, I. Kolb, R. C. Forest, and J. C. Rozell, Cell membrane tracking in living brain tissue using differential interference contrast microscopy, IEEE Transactions on Image Processing, 2018, 27(4), 1847–1861.
H. Tanaka, K. Masui, R. Tero, H. Ishitobi, S. Refki, Z. Sekkat, and Y. Inouye, Potassium ion dynamics imaging through supported lipid bilayers with surface plasmon resonance microscopy, ACS Photonics, 2022. 9(10), 3412-3420.
R. M. Raphael, A. S. Popel, and W. E. Brownell, A membrane bending model of outer hair cell electromotility, Biophysical Journal, 2000. 78(6), 2844–2862.
D. M. Rector, X. Yao, R. M. Harper, and J. S. George, In vivo observations of rapid scattered light changes associated with neurophysiological activity, In Vivo Optical Imaging of Brain Function. (2nd ed.), 2009.
A. H. Badreddine, T. Jordan, and I. J. Bigio, Real-time imaging of action potentials in nerves using changes in birefringence, Biomedical Optics Express, 2016. 7(5), 1966–1973.
B. W. Graf, T. S. Ralston, H. J. Ko, and S. A. Boppart, Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging, Optics Express, 2000. 17(16), 13447–13457.
V. Sandoghdar, Imaging single ion channels via their Rayleigh scattering, Nature Photonics, 2025. 19, 779–780.
S. Ong, X. Zhao, and K. B. Eisenthal, Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface, Chemical Physics Letters, 1992. 191(3-4), 327-335.
P. Theer, W. Denk, M. Sheves, A. Lewis, and P. B. Detwiler, Second-harmonic generation imaging of membrane potential with retinal analogues, Biophysical Journal, 2011. 100(1), 232–242.
G. Turrell, and J. Corset, Raman microscopy: developments and applications, Measurement Science and Technology, 1996.7, 024.
H. J. Lee, K.-C. Huang, G. Mei, C. Zong, N. Mamaeva, W. J. DeGrip, K. J. Rothschild, and J.-X. Cheng, Electronic preresonance stimulated raman scattering imaging of red-shifted proteorhodopsins: Toward quantitation of the membrane potential, The Journal of Physical Chemistry Letters, 2019. 10(15), 4374–4381.
B. Liu, H. J. Lee, D. Zhang, C. S. Liao, N. Ji, Y. Xia, and J. X. Cheng, Label-free spectroscopic detection of membrane potential using stimulated Raman scattering, Applied Physics Letters, 2015. 106(17), 173704.
A. Ram, and A. W. Lo, Is smaller better? A proposal to use bacteria for neuroscientific modeling, Frontiers in Computational Neuroscience, 2018. 12, 7.
J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, Escherichia coli as a model active colloid: A practical introduction, Colloids and Surfaces B: Biointerfaces, 2016. 137, 2–16.
A. E. Cohen, and V. Venkatachalam, Bringing bioelectricity to light, Annual Review of Biophysics, 2014. 43(1), 211-32.
J. M. Jones, and J. W. Larkin, Toward bacterial bioelectric signal transduction, Bioelectricity, 2021. 3(2), 116-119.
J. P. Stratford, C. L. A. Edwards, M. J. Ghanshyam, D. Malyshev, M. A. Delise, Y. Hayashi, and M. Asally, Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity, Proceedings of the National Academy of Sciences, 2019. 3(2), 116–119.
A. J. Buttress, M. Halte, T. D. J. Winkel, M. Erhardt, F. P. Popp, and H. Strahl, A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes, Microbiology, 2022. 168(9), 10.1099.
S. Salinas-Almaguer, M. Mell, V. G. Almendro-Vedia, M. Calero, K. C. M. Robledo-Sánchez, C. Ruiz-Suarez, T. Alarcón, R. A. Barrio, A. Hernández-Machado, and F. Monroy, Membrane rigidity regulates E. coli proliferation rates, Scientific Reports, 2022. 12(1), 933.
E. Bickerstaff-Westbrook, A. Tukova, N. Lyu, C. Shen, A. Rodger, and Y. Wang, Advancing SERS label-free detection of bacteria: Sensing in liquid vs drop-cast, Materials Today Sustainability, 2022. 94(26), 9327-9335.
E. B. Aleksei, K. N. Dvoretski, and A. D. Valeri, Refractive index of Escherichia coli cells, Proceedings of SPIE - The International Society for Optical Engineering, 2002. 4707, 253-260.
L. Priest, J. S. Peters, and P. Kukura, Scattering-based light microscopy: From metal nanoparticles to single proteins, Chemical Reviews, 2021. 121(19), 11937-11970.
L. Wang, I. L. Rasskazov, and P. S. Carney, Clausius–Mossotti relation revisited: Media with electric and magnetic response, Optics Communications, 2023. 549, 129844.
I. S. Nefedov, and J. M. Rubi, Casimir forces exerted by epsilon-near-zero hyperbolic materials, Scientific Reports, 2020. 10(1), 16831.
J. Ortega-Arroyo, and P. Kukura, Interferometric scattering microscopy (iSCAT): New frontiers in ultrafast and ultrasensitive optical microscopy, Physical Chemistry Chemical Physics, 2012. 14(45), 15625.
B.-K. Wu, S.-F. Tsai, and C.-L. Hsieh, Simplified interferometric scattering microscopy using low-coherence light for enhanced nanoparticle and cellular imaging, The Journal of Physical Chemistry C, 2025. 129(10), 5075-5085.
D. Köster, N. Hundt, G. Young, A. Fineberg, P. Kukura, and S. Mayor, Revealing intricate acto-myosin dynamics at a membrane surface using interferometric scattering microscopy, bioRxiv, 2017. 199778.
J. Ortega Arroyo, D. Cole, and P. Kukura, Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging, Nature Protocols., 2016. 11, 617-633.
H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, Phase-sensitive interferometry of decorrelated speckle patterns, Scientific Reports, 2019. 9, 11748.
L. Wei, Z. Ye, Y. Xu, B. Chen, E. S. Yeung, and L. Xiao, Single particle tracking of peptides-modified nanocargo on lipid membrane revealing bulk-mediated diffusion, Analytical Chemistry, 2016. 88(24), 11973-11977.
Y.-T. Hsiao, T.-Y. Wu, B.-K. Wu, S.-W. Chu, and C.-L. Hsieh, Spinning disk interferometric scattering confocal microscopy captures millisecond timescale dynamics of living cells, Optics Express, 2022. 30(25), 45233-45245.
J. Dong, D. Maestre, C. Conrad-Billroth, and T. Juffmann, Fundamental bounds on the precision of iSCAT, COBRI, and dark-field microscopy for 3D localization and mass photometry, Journal of Physics D: Applied Physics, 2021. 54(39), 394002.
Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells, ACS Nano, 2017. 11(3), 2575.
C. Y. Cheng, Y. H. Liao, and C. L. Hsieh, High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy, Nanoscale, 2019. 11, 568.
D. R. Lee, and J. Bewersdorf, Pupil function design for multifocal confocal, STED, and isoSTED microscopy, Applied Optics, 2021. 60(18), 5354–5359.
H. Zong, C. Yurdakul, Y. Bai, M. Zhang, M. S. Ünlü, and J.-X. Cheng, Background-suppressed high-throughput mid-infrared photothermal microscopy via pupil engineering, ACS Photonics, 2021. 8(11), 3323-3336.
A. Lahiri, Chapter 6 - Fourier Optics, Basic Optics, 2016, 539-603.
W. J. Meredith, and J. B. Massey, Chapter XVI – The properties of the X-ray film, Fundamental Physics of Radiology (Third Edition), 1977, 175-190.
Y.-T. Hsiao, C.-N. Tsai, T.-H. Chen, and C.-L. Hsieh, Label-free dynamic imaging of chromatin in live cell nuclei by high-speed scattering-based interference microscopy, ACS Nano, 2022. 16(2), 2774-2788.
P. Y. Borden, A. D. Ortiz, C. Waiblinger, A. J. Sederberg, A. E. Morrissette, C. R. Forest, D. Jaeger, and G. B. Stanley, Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. Neurophotonics, 2017. 4(3), 031212.
L. Jin, Z. Han, J. Platisa, J. R. Wooltorton, L. B. Cohen, and V. A. Pieribone, Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron, 2012. 75(5), 779–785.
X. Jin, X. Zhang, X. Ding, T. Tian, C.-K. Tseng, X. Luo, X. Chen, C.-J. Lo, M. C. Leake, and F. Bai, Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance, Proceedings of the National Academy of Sciences, 2023. 120(3), e2208348120.
Jeremy S Treger, Michael F Priest, and Francisco Bezanilla, Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator. eLife, 2015. 4:e10482.
R. Eaglesfield, and K. Tokatlidis, Targeting and insertion of membrane proteins in mitochondria, Frontiers in Cell and Developmental Biology, 2021. 9, 803205.
R. Schleif, Regulation of the L-arabinose operon of Escherichia coli, Trends in Genetics, 2000. 16(12), 559-565.
L. Zhang, X.-C. Zheng, Y.-Y. Huang, Y.-P. Ge, M. Sun, W.-L. Chen, W.-B. Liu, and X.-F. Li, Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021. 244, 109003.
P. Sedgwick, Pearson’s correlation coefficient, British Medical Journal, 2012. 345, e4483.
R. J. Bence, Analysis of short time series: correcting for autocorrelation, Ecology, 1995. 76(2), 628-639.
J. Kohler, K. H. Hur, and J. D. Mueller, Autocorrelation function of finite-length data in fluorescence correlation spectroscopy, Biophysical Journal, 2023. 122(1), 241-253.
J. W. Krieger, A. P. Singh, N. Bag, C. S. Garbe, T. E. Saunders, J. Langowski, and T. Wohland, Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms, Nature Protocols, 2015. 10(12), 1948-1974.
K. Mizuseki, and G. Buzsáki, Preconfigured, Skewed distribution of firing rates in the hippocampus and entorhinal cortex, Cell Reports, 2013. 4(5), 1010-1021.
R. Kula, M. Bébarová, P. Matejovič, J. Šimurda, and M. Pásek, Distribution of data in cellular electrophysiology: Is it always normal?, Progress in Biophysics and Molecular Biology, 2020. 157, 11-17. T.
Nose, and B. Chu, 2.10 - Light Scattering, Polymer Science: A Comprehensive Reference, 2012, 301-329.
M. Porus, C. Labbez, P. Maroni, and M. Borkovec, Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations, The Journal of Chemical Physics, 2011. 135(6), 064701.
Chan-Yuan Tan and Yao-Xiong Huang, Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution, Journal of Chemical & Engineering Data, 2015. 60(10), 2827-2833
P. F. Knowles, Biophysical chemistry: Part II-Techniques for the study of biological structure and function. Biochemical Education, 1980. 9(4), 157-157.
S.G. Schultz, N.L. Wilson, and W. Epetein. Cation transport in Escherichia coli. II. Intracellular chloride concentration. Journal of General Physiology, 1962. 46(1), 159-66.
H. Felle, J. S. Porter, C. L. Slayman, and H. R. Kaback, Quantitative measurements of membrane potential in Escherichia coli, Biochemistry, 1980. 19(15), 3585-3590.
Y. A. Eremin, SCATTERING: Scattering theory, Encyclopedia of Modern Optics, 2005, 326-330.
I. Kolokolnikov, E. Nepomnyashchaya, and E. Velichko, Static light scattering for determination of physical parameters of macro- and nanoparticles, Journal of Physics: Conference Series, 2019. 1410(1), 012168.
R. Piazza, and V. Degiorgio, Scattering, Rayleigh, Encyclopedia of Condensed Matter Physics, 2005, 234-242.
A. D. Kashkanova, M. Blessing, A. Gemeinhardt, D. Soulat, and V. Sandoghdar, Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions, Nature Methods, 2022.19(5), 586.
S. Roy, J. Hussain, S. S. Khanam, S. Noorani, and A. B. Bhattacherjee, Influence of refractive index in light scattering measurements of biological particles, arXiv, 2022.
A. K. Harapanahalli, J. A. Younes, E. Allan, H. C. van der Mei, and H. J. Busscher, Chemical signals and mechanosensing in bacterial responses to their environment, PLOS Pathogens, 2015. 11(8), e1005057.
C. Bae, and P. J. Butler, Finite element analysis of microelectrotension of cell membranes, Biomechanics and Modeling in Mechanobiology, 2008. 7(5), 379-386.
P.-C. Zhang, A. M. Keleshian, and F. Sachs, Voltage-induced membrane movement, Nature, 2001. 413(6854), 428-432.
W. E. Lau, Leads and electrodes for cardiac implantable electronic devices, Defibrillation and Resynchronization Therapy, 2017, 313-351.
H. Liu, and G. Cao, Effectiveness of the Young-Laplace equation at nanoscale, Scientific Reports, 2016. 6(1), 23936.
W. Draper, and J. Liphardt, Origins of chemoreceptor curvature sorting in Escherichia coli, Nature Communications, 2017. 8(1), 14838.
M. J. Beilby, and H. Coster, The Double-fixed-charge membrane: Electromechanical stress and the effects of temperature on punchthrough, Functional Plant Biology, 1980. 7, 595-608.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101609-
dc.description.abstract在可興奮性細胞中,包括神經元、肌肉細胞以及某些內分泌細胞,動作電位是由電壓閘控離子通道的開啟與關閉所產生,這些通道允許在電化學梯度驅動下的離子通過,導致膜電位變化並傳遞電信號。目前常用的膜電位量測技術包括全細胞貼片鉗與外源性電壓敏感螢光探針。然而,膜片鉗技術可能造成細胞損傷,而電壓敏感螢光探針容易受到光毒性與光漂白的影響,限制了訊號獲取的時間與穩定性。近年來,基於散射的干涉顯微術有了重大進展,能以高靈敏度與高速度進行無標記的奈米尺度結構檢測,為觀測快速電生理事件(例如細菌的電生理現象)開啟了新的契機。部分研究已經利用基於干涉的光學方法來成像神經科學中離子通道的活性,顯示此技術具有偵測膜電位的潛力。然而,有關細菌膜電位的研究仍相對有限,目前仍缺乏能有效探測此類快速過程的無標記方法。
在本研究中,我們利用基於散射的干涉顯微術來量測細菌的動作電位。我們以大腸桿菌作為模型系統,在其細胞中基因表現電壓感測螢光指示蛋白 ViBac1,以作為動作電位(Vm)的訊號。同時,我們使用干涉散射顯微術(iSCAT),這是一種基於散射干涉的顯微技術,用以量測與動作電位相關的散射訊號。我們同時記錄了 1 分鐘長度的螢光與 iSCAT 影像,以捕捉發生在數秒時間尺度上的自發膜電位動態。對螢光與 iSCAT 影像資料分別進行空間與時間濾波後,我們探討了兩種信號之間的相關性。結果顯示螢光膜電位訊號與 iSCAT 訊號之間存在約 0.3 的負相關,且不同細胞之間有顯著差異。此外,我們設計了兩種控制實驗條件:其一為在無 L-阿拉伯糖培養的細胞(缺乏螢光反應),其二為經 CCCP 處理的細胞(喪失膜電位)。這些對照實驗確認了所觀測到的散射訊號確實與膜電位變化相關。我們的結果顯示,細菌自發的膜電位動態會產生可由 iSCAT 顯微術量測的訊號。然而,膜電位變化同時伴隨非特異性散射背景,可能來自細胞分子層級的波動。
本研究證實了以 iSCAT 顯微術進行無標記、直接觀察單一細菌膜電位動態的可行性,為以非侵入且長時間量測方式研究膜電位在細胞代謝與能量調控中的角色奠定了基礎。
zh_TW
dc.description.abstractIn excitable cells, including neurons, muscle cells, and certain endocrine cells, membrane potentials are generated through the opening and closing of voltage-gated ion channels, allowing ion fluxes driven by electrochemical gradients, resulting in changes in membrane potential that propagate electrical signals. Current techniques, such as whole cell patch clamp and exogenous voltage-sensitive fluorescent probes, are commonly used to measure membrane potential. However, the patch clamp technique may damage cells, and voltage-sensitive fluorescent probes are susceptible to phototoxicity and photobleaching, thereby limiting signal acquisition. Recent advancements in scattering based interference microscopy have enabled label-free detection of nanoscale structures with high sensitivity and speed, opening new opportunities for monitoring rapid electrical events such as bacterial electrophysiology. Some studies have already employed interference-based optical methods to image ion channel activity in neuroscience, demonstrating their applicability for membrane potential detection. However, research on bacterial membrane potential remains limited, and effective label-free methods for probing these fast processes are still lacking.
In this study, we demonstrate the measurement of bacterial membrane potentials using scattering-based interference microscopy. We used E. coli as our model system, in which fluorescence voltage indicator ViBac1 was genetically encoded, providing a membrane potential (Vm) readout. Meanwhile, we employed interferometric scattering microscopy (iSCAT), a scattering-based interference microscopy technique, to measure the scattering signal associated with membrane potentials. Simultaneous fluorescence and iSCAT videos were recorded for 1 minute to capture spontaneous membrane potential dynamics in the imescales of a few seconds. Spatial and temporal filtering were applied to both the fluorescence and iSCAT image data, aiming to explore correlations between the two signals. A modest anticorrelation of -0.3 was observed between the time-varying fluorescence Vm signal and the iSCAT signals, with a considerable cell-to-cell heterogeneity. Control experiments were performed under two conditions: cells grown without L-arabinose (lacking fluorescence response) and cells treated with CCCP (lacking membrane potential). These controls confirmed that the observed scattering signals are related to membrane potential changes.
Our results show that the spontaneous bacterial membrane potential dynamics create a signal that can be measured by iSCAT microscopy. However, the membrane potential is accompanied by a nonspecific scattering background, presumably due to the molecular fluctuations of the cell. This study demonstrates the feasibility of label-free, direct visualization of membrane potential dynamics at single bacterium resolution, paving the way for investigating its roles in cellular metabolism and bioenergetic regulation through noninvasive, long-term measurements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:44:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:44:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
致謝 iii
摘要 iv
Abstract v
Content vii
Figure list x
Table list xiii
Chapter 1. Introduction 1
1.1 Cell membrane structure and its role in signal transduction 1
1.2 Fundamentals of membrane potential and action potential dynamics 3
1.3 Techniques for recording membrane potential 6
1.4 Label-free optical approaches for monitoring membrane potential 8
1.5 Motivation for scattering-based detection of bacterial membrane potential 10
1.6 Aim and structure of this thesis 13
Chapter 2. Principles of detecting bacteria membrane potential by iSCAT microscopy 14
2.1 Principles of scattering-based detection at the nanoscale 14
2.2 Comparison between iSCAT and COBRI microscopy 17
2.3 Contrast-enhancement via back-pupil function engineering 19
Chapter 3. Materials and methods 20
3.1 Bacterial preparation 21
3.1.1 Voltage indicator for bacteria (ViBac1) 21
3.1.2 Detection of membrane hyperpolarization using ViBac1 22
3.1.3 Chemical treatment to manipulate membrane potential 24
3.1.4 Growth condition 26
3.1.5 Sample condition 26
3.2 System setup 28
3.2.1 Assisting optical alignment in the Fourier plane 31
3.2.2 Contrast enhancement: AuNPs demonstration 31
3.2.3 Synchronization between scattering and fluorescence imaging 33
3.3 Nanoparticles preparation 35
3.4 Analysis workflow 36
3.4.1 Data analysis 36
3.4.2 Calculation of Pearson correlation coefficient (PCC) 38
3.4.3 Pearson correlation coefficient (PCC) map 39
3.4.4 Spike detection and time delay calculation 40
3.4.5 Calculation of autocorrelation 41
3.4.6 Skew normal distribution 42
Chapter 4. Results and discussions 44
4.1 Investigating membrane potential dynamics using fluorescence and scattering techniques 44
4.1.1 Detection and validation of weak bacterial scattering signals using iSCAT 44
4.1.2 Fluorescence spike analysis of bacterial membrane potential using ViBac1 48
4.2 Correlation analysis between fluorescence and label-free Scattering Signals in Bacterial Membrane Potential 52
4.2.1 Temporal correlation of fluorescence and label-free scattering signals from single bacteria 52
4.2.2 Spatiotemporal correlation mapping of bacterial membrane potential using fluorescence and scattering signals 54
4.2.3 Temporal coupling with opposite profiles between fluorescence and scattering signals revealed by spike detection analysis 57
4.3 Validation of fluorescence and scattering correlation under different experimental conditions 61
4.4 Discussion 65
Chapter 5. Conclusion and future work 71
Reference list 73
-
dc.language.isoen-
dc.subject膜電位-
dc.subject細菌-
dc.subject干涉顯微-
dc.subject無標記檢測-
dc.subjectmembrane potential-
dc.subjectbacteria-
dc.subjectinterference microscopy-
dc.subjectlabel-free detection-
dc.title利用干涉式散射光學顯微術進行大腸桿菌膜電位的無標記成像zh_TW
dc.titleLabel-free imaging of membrane potential in E. coli via scattering-based interference optical microscopyen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor謝佳龍zh_TW
dc.contributor.coadvisorChia-Lung Hsiehen
dc.contributor.oralexamcommittee羅健榮;朱麗安zh_TW
dc.contributor.oralexamcommitteeChien-Jung Lo;Li-An Chuen
dc.subject.keyword膜電位,細菌干涉顯微無標記檢測zh_TW
dc.subject.keywordmembrane potential,bacteriainterference microscopylabel-free detectionen
dc.relation.page81-
dc.identifier.doi10.6342/NTU202600253-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-01-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2031-01-26-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
10.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved