Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101588
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author陳以庭zh_TW
dc.contributor.authorYi-Ting Chenen
dc.date.accessioned2026-02-11T16:34:45Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-02-03-
dc.identifier.citation[1] Andrews, SS. (2023) “Light and Waves” Springer Nature, 211−245.
[2] Bellucci, R; Morselli, S; Pucci, V. (2007) “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes” ASCRS and ESCRS, 33(2), 203−9.
[3] Wang, D; Yang, Y; Chen, C; Zhuo, Y. (2011) “Misalignment aberrations calibration in testing of high-numerical-aperture spherical surfaces” Applied Optics, 50(14), 2024−2031.
[4] Zhou, S; Xi, K; Zhuang, S; Cheng, Q. (2021) “Spherical Aberration-Corrected Metalens for Polarization Multiplexed Imaging” Nanometerials, 11(11), 2774−2785.
[5] Rao, L; Argaman, N; Zhuang, J; Ninan, A; Kim, C; Wang, D; Shen, S. (2024) “Display and Optics Architecture for Meta’s AR/VR Development”, 1, 71−78.
[6] Tahmi, Y; Tahmi, M; Tahmi, PM; Chenot, S; Brändli, V; Majorel, C; Patoux, A; Colom, R; Wattellier, B; Wattellier, P; Wattellier, S. (2025) “Phase Characterization of Singular Metasurfaces” ACS Photonics, 12(11), 6081−6090.
[7] Li, Y; Huang, H; Zhang, C; Shang, X; Liu, Y; Hu, J; Shan, D; Tang, N; Li, W. (2025) “Visible Light Broadband Achromatic Metalens Based on Variable Height Nanopillar Structures” Photonics, 12(1), 31−45.
[8] Wang, Y; Fan, Q; Xu, T. (2021) “Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture” Opto-Electronics Advances, 4(1), 200008-200014.
[9] Arbabi, A; Horie, Y; Bagheri, M; Faraon, A. (2015) “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission” Nature Nanoechnology, 10, 937−943.
[10] Khorasaninejad, M; Zhu, AY; Roques-Carmes, C; Chen, WT; Oh, J; Mishra, I; Devlin, RC; Capasso, F. (2016) “Polarization-Insensitive Metalenses at Visible Wavelengths” Nano Letters, 16(11), 7229−7234.
[11] Fan, ZB; Shao, ZK; Xie, MY; Pang, XN; Ruan, WS; Zhao, FL; Chen, YJ; Yu, SY; Dong, JW. (2018) “Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging” Physical Review Applied, 10(1), 014005.
[12] Ee, HS; Agarwal, R. (2016) “Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate” Nano Letters, 16(4), 2818−2823.
[13] Gutruf, P; Zou, CJ; Withayachumnankul, W; Bhaskaran, M; Sriram, S; Fumeaux, C. (2016) “Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies” ACS Nano, 10(1), 133−141.
[14] Kamali, SM; Arbabi, A; Arbabi, E; Yu, H; Faraon, A. (2016) “Decoupling optical function and geometrical formusing conformal flexible dielectric metasurfaces” Nature Communications, 7, 1−7.
[15] Moghimi, MJ; Fernandes, J; Kanhere, A; Jiang, HR. (2015) “Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field of-View and Focus Scanning” Scientific Reports, 5, 1−11.
[16] Kamali, SM; Arbabi, E; Arbabi, A; Arbabi, E; Yu, H; Faraon, A. (2016) “Highly tunable elastic dielectric metasurface lenses” Laser & Photonics Reviews, 10, 1002−1008.
[17] Hemmati, H; Magnusson, R. (2020) “Applicability of Rytov’s Full Effective-Medium Formalism to the Physical Description and Design of Resonant Metasurfaces” Micro and Nano Engineering, 7(11), 3177−3187.
[18] Teixeira, FL; Sarris, C; Zhang, Y; Na, DY; Berenger, JP; Su, Y; Okoniewski, M; Chew, WC; Backman, V; Simpson, JJ. (2023) “Finite-Difference Time-Domain Methods” Nature Reviews Methods Primers, 3, 1−19.
[19] Anderson, FL. (2021) “Huygens' Principle geometric derivation and elimination of the wake and backward wave” Scientific Reports, 11, 1−13.
[20] Lytle, FE. (1999) “An Introduction to Diffraction. Part II: The Far Field” Sage Journals, 53(7), 262A−276A.
[21] Parazzoli, CG; Greegor, RB; Li, K; Koltenbah, BEC; Tanielian, M. (2003) “Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law” Physical Review Letters, 90, 107401-107404.
[22] Wang, ZN; Sun, YY; Han, L; Liu, DH. (2013) “General laws of reflection and refraction for subwavelength phase grating” Eprint Arxiv, 7, 271−282.
[23] Yu, NF; Genevet, P; Kats, MA; Aieta, F; Tetienne, JP; Capasso, F; Gabburo, Z. (2011) “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction”, 334(6054), 333−337.
[24] Yee, KS. (1966) “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media” IEEE Transactions on Antennas and Propagation, 14(3), 302−307.
[25] Lu, Y; Peng, S; Cui, X; Li, D; Wang, K; Xing, Z. (2020) “3D FDTD anisotropic and dispersive modeling for GPR using rotated staggered grid method” Nature Reviews Methods Primers, 136, 104397−104407.
[26] Shibayama, J. (2024) “Introduction to the FDTD method and its application to implicit locally one-dimensional calculations” Nonlinear Theory and Its Applications IEICE, 15(1), 2−16.
[27] 呂嘉偉(2024)。單向準直微型發光二極體顯示裝置與二氧化鈦超穎介面研究 (未出版碩士論文)。國立臺灣大學,臺北市。
[28] Chen, PJ; Wu, CC; Chang, CJ; Tsai, CT; Lu, CW; Cheng, KT; Su, GD; Cheng, SW; Liao, RW; Dong, RL; Wu, CC. (2025) “Angular-resolution-improved light field display architecture using polarization dependent deflection metasurface and polarization switching” Optics Express, 33(21), 43837−43856.
[29] 凌聖沅(2025)。超穎介面透鏡之研製與應用。國立臺灣大學,臺北市。
[30] Hall, DJ; Skerrett, EJ; Thomas, WE. (1978) “Critical point drying for scanning electron microscopy: a semi-automatic method of preparing biological specimens” Journal of Microscopy, 113, 277−290.
[31] Kwon, J; Kim, J; Park, D; Seo, J; Han, P; Han, H. (2014) “Water Sorption Behavior in Polyimide Thin Films Controlled by Inorganic Additives” Macromolecular Research, 22(4), 431−435.
[32] Yoshimoto, K; Higgins, C; Raghunathan, A; Hartley, JG; Goldfarb, DL; Kato, H; Petrillo, K; Colburn, ME; Schefske, J; Wood, O; Wallow, TI. (2011) “Revisit Pattern Collapse for 14nm Node and Beyond” Proceedings of SPIE - The International Society for Optical Engineering, 7972, 79720K-1−79720K-12.
[33] Pleeging, RMB; Ibis, F; Fan, D; Sasso, L; Eral, HB; Staufer, U. (2021) “Polymer nano manufacturing of a biomimicking surface for kidney stone crystallization studies” Micro and Nano Engineering, 13, 1−7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101588-
dc.description.abstract近年來,超穎介面製程技術已日漸成熟,除了平面的應用場合外,可撓式超穎介面尚可透過施加外部機械應力調控光學性質。現有的軟性超穎介面製作方式大多在剛硬基板上製作奈米柱陣列,接著再填覆有機材,使奈米柱陣列嵌入其中並進行轉置製作,最常見的有機材為聚二甲基矽氧烷(Polydimethylsiloxane, PDMS),照光固化後,再將樣品剝離剛硬基板,即可取得軟性超穎介面。雖然此方式可有效製作,但製作流程較繁瑣且材料受限,因此本論文研究於室溫條件下,將高折射率的二氧化鈦(TiO2)超穎介面直接沉積製作於高透明、軟性的聚醯亞胺(Polyimide)基板,簡化製作流程。
本研究的製作流程雖與平面超穎介面大致相似,但聚醯亞胺基板不耐高溫,不適合進行高溫退火,以獲得較佳之二氧化鈦薄膜之折射率等光學性質,因此在濺鍍過程中,除了通氬氣之外,額外加入適量氧氣時則可以室溫製程獲得高折射率及透明度。濺鍍完成後以電子束微影定義超穎介面圖案,接著進行乾蝕刻,製作出側壁陡直的奈米柱陣列,最終以濕蝕刻移除金屬遮罩(Hard mask)。然而,由於水具有高表面張力,在乾燥過程中奈米柱(nanopillars)之間會產生毛細作用力且聚醯亞胺基板容易吸水與翹曲,造成奈米柱大範圍倒塌。因此,我們透過濕蝕刻後引入臨界點乾燥(Critical Point Drying, CPD)方式,並降低奈米柱深寬比,可有效改善奈米結構大範圍倒塌的情況。所製作之軟性基板超穎介面透過光學量測系統驗證超穎介面元件之光學特性與模擬結果吻合。
zh_TW
dc.description.abstractIn recent years, metasurface fabrication technology and its application have been developed. Flexible metasurfaces, are also attracting attention with their optical properties tuned by applying external mechanical stress. Current fabrication of flexible metasurface mostly involve fabricating nanopillar arrays on rigid substrates, followed by filling them with organic materials to embed the nanopillar arrays. The most common organic material is polydimethylsiloxane (PDMS). After photocuring, the sample is then lifted off the rigid substrate, resulting in a flexible metasurface. While this method is effective, the fabrication process is more complicated. Therefore, this study aims to directly fabricates high-refractive-index titanium dioxide (TiO2) metasurfaces on highly transparent, flexible polyimide substrates at room temperature, simplifying the fabrication process.
While the fabrication process in this study is similar to those planar metasurfaces, the polyimide substrate is not heat-resistant and unsuitable for high temperature annealing, hindering preparation of high refractive index and highly transparent titanium dioxide film on PI substrate. Thus, in addition to argon sputtering gas, we add an appropriate amount of oxygen in sputtering to achieve room temperature preparation of high refractive index and high-transparency TiO2 film. After sputtering, the metasurface pattern was defined using electron beam lithography, followed by dry etching to create an array of nanopillars with steep sidewalls. Finally, wet etching was used to remove the hard mask. However, due to the high surface tension of water, capillary forces were generated between the nanopillars during the drying process, and the polyimide substrate easily absorbed water and warped, causing large-scale collapse of the nanopillars. To mitigate this, we introduced critical point drying (CPD) after wet etching and reduced the aspect ratio of the nanopillars. This effectively reduced the large-scale collapse of the nanostructure. The optical measurement of the metasurface on PI substrate verified that optical properties of fabricated metasurfaces matched the simulation results.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:34:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:34:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
目次 vi
圖次 viii
第一章 緒論 1
1.1軟性超穎介面之簡介 1
1.2超穎介面設計之理論基礎 3
1.2.1惠更斯原理 3
1.2.2廣義司乃耳定律 5
1.3有限時域差分法數值電磁模擬 7
1.4研究動機與論文架構 9
第一章圖表 11
第二章 室溫及軟性基板之超穎介面製程開發 20
2.1前言 20
2.2用於製程測試之超穎介面 20
2.3室溫軟性基板超穎介面製程開發 21
2.3.1製作流程 22
2.3.2製作結果與討論 26
第二章圖表 28
第三章 軟性超穎介面尺寸及製程優化 45
3.1前言 45
3.2超穎介面模擬與設計 45
3.2.1結構單元之掃描 45
3.2.2相位設計與程式輔助圖樣生成 45
3.3超穎介面製作 46
3.4室溫軟性基板超穎介面之光學特性量測與分析 47
第三章圖表 48
第四章 總結與未來展望 61
4.1總結 61
參考文獻 62
-
dc.language.isozh_TW-
dc.subject超穎介面-
dc.subjectFDTD模擬-
dc.subject室溫製程-
dc.subject軟性基板-
dc.subject乾蝕刻-
dc.subject臨界點乾燥-
dc.subject毛細作用力-
dc.subjectMetasurface-
dc.subjectFDTD simulation-
dc.subjectroom-temperature process-
dc.subjectetching-
dc.subjectflexible substrates-
dc.subjectCPD-
dc.subjectcapillary force-
dc.title室溫製程及軟性基板超穎介面元件之研究zh_TW
dc.titleResearch on Room-Temperature Processed Metasurface Devices on Flexible Substratesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡志宏;張志豪zh_TW
dc.contributor.oralexamcommitteeChih-Hung Tsai;Chih-Hao Changen
dc.subject.keyword超穎介面,FDTD模擬室溫製程軟性基板乾蝕刻臨界點乾燥毛細作用力zh_TW
dc.subject.keywordMetasurface,FDTD simulationroom-temperature processetchingflexible substratesCPDcapillary forceen
dc.relation.page64-
dc.identifier.doi10.6342/NTU202600587-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-02-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2031-02-02-
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
  Restricted Access
5.61 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved