Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李賢源zh_TW
dc.contributor.advisorShyan-Yuan Leeen
dc.contributor.author黃國維zh_TW
dc.contributor.authorKuo-Wei Huangen
dc.date.accessioned2026-02-11T16:13:36Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-01-29-
dc.identifier.citation1. Arrieta, A. B., Arrieta A B., Rodriguez N D. & Ser J D., et al. (2020). Explainable Artificial Intelligenc e (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Volume 58, 82-115,Elsevie.
2. Bartram, S. M., Branke, J., & Motahari, M. (2021). Artificial Intelligence in Asset Management. CFA Institute Research Foundation.
3. Cheryll-Ann Wilson, CFA. (August 7 2025). Research Reports. Explainable AI in Finance: Addressing the Needs of Diverse Stakeholders. CFA Institute
4. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 383-417 (35 pages) Published By: Wiley
5. Gârleanu, N., & Pedersen, L. H. (2022). Active and Passive Investing: Understanding. Samuelson’s Dictum. The Review of Asset Pricing Studies, Volume 12, Issue 2, June 2022, Pages 389-446. Retrieved From https://doi.org/10.1093/rapstu/raab020
6. Joshi, P., & Dash, S. R. (2022). Smart Beta Strategies: A Literature Review.
7. McKinsey & Company (July 16, 2025). How AI could reshape the economics of the asset management industry.
8. The Investment Association (Octobe 2024). Artificial Intelligence: Current and future usage within investment management Intelligence in Investment Management.
9. World Economic Forum (2025). Investment companies can use AI responsibly to gain an edge.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101542-
dc.description.abstract隨著全球金融市場進入數位化與智能化時代,資產管理產業正經歷前所未有的典範轉移。傳統投資環境中,主動型基金長期面臨高昂管理成本與人類行為偏差(人性)的挑戰,導致多數績效難以在長期內超越大盤指標,進而促使低成本、透明度高的被動型基金(如指數型基金、ETF)在過去數十年內迅速崛起並成為市場主流。然而,隨著運算能力(Computing Power)的突破與人工智慧(AI)技術的深化,金融交易的生態系正再次面臨劇變。
本研究旨在探討 AI 技術如何重塑主動與被動投資的界線,並分析在AI交易轉型浪潮下,資產管理產業的未來演進趨勢。研究指出,AI的導入不僅止於優化交易執行,更催生了如量子基金、複雜模型交易及高頻交易等多元化策略,使得「主動」與「被動」的定義逐漸模糊。
研究發現,未來主動基金的轉型路徑在於利用AI捕捉「微Alpha」與非主流市場的超額報酬,並透過技術手段克服人性偏誤;而被動基金則將演化為「智能 Beta」(Smart Beta)的增強模式,利用AI進行動態風險調整。在產品定價策略上,建議實施三級定價模式,從純自動化的零費率產品到高附加價值的績效制收費產品,以因應差異化競爭。
最後,本研究針對投資者、資產管理機構及監管機構提出具體建議。在 AI 交易生態中,投資者需提升 AI 素養以辨識新型風險,監管機構則須在創新鼓勵與市場穩定(防範閃崩與算法共謀)之間取得平衡。總結而言,未來的基金產業將不再是單純的主被動之爭,而是 AI 技術整合能力與數據倫理價值的全面競爭,資產管理業者必須積極擁抱 AI 轉型,方能在演算法主導的市場中立於不敗之地。
zh_TW
dc.description.abstractAs the global financial market enters an era of digitalization and intelligence, the asset management industry is undergoing an unprecedented paradigm shift. In traditional investment environments, active funds have long faced challenges from high management costs and behavioral biases (human nature), leading to the historical reality that most active managers struggle to outperform market benchmarks over the long term. This catalyzed the rise of low-cost, highly transparent passive investment vehicles, such as index funds and ETFs, which have become the market mainstream over the past few decades. However, with breakthroughs in computing power and the deep integration of Artificial Intelligence (AI), the ecosystem of financial trading is once again facing a radical transformation.
This research aims to explore how AI technology is reshaping the boundaries between active and passive investment and to analyze the evolutionary trends of the asset management industry under the wave of AI-driven trading. The study indicates that the introduction of AI extends beyond merely optimizing trade execution; it has given birth to diverse trading strategies such as Quantum Funds, complex model-based trading, and High-Frequency Trading (HFT), which are increasingly blurring the definitions of “active” and “passive”

The thesis is structured into six chapters. First, it reviews the historical development and the shifting balance of power between active and passive funds. Second, it analyzes the current applications of AI technologies—including machine learning, big data analytics, and Explainable AI (XAI)—in modern trading. Subsequent chapters delve into the impact of AI trading on market liquidity, volatility, and efficiency, while analyzing how institutional investors are transforming their organizational cultures toward a “Quantitative-First” decision-making model.
The findings suggest that the future transformation path for active funds lies in leveraging AI to capture “Micro-Alpha” and excess returns in non-mainstream markets while utilizing technical means to overcome human biases. Conversely, passive funds will evolve into “Enhanced Passive” or “Smart Beta” models, using AI for dynamic risk adjustment. Regarding pricing strategies, the study recommends a three-tier pricing model: ranging from zero-fee fully automated products to high-value-added performance-based fee structures to address differentiated competition.
Finally, this research provides specific recommendations for investors, asset management institutions, and regulatory bodies. In the AI trading ecosystem, investors must enhance their “AI Literacy” to identify emerging risks, while regulators must strike a balance between encouraging innovation and maintaining market stability (preventing flash crashes and algorithmic collusion). In conclusion, the future of the fund industry will no longer be a simple rivalry between active and passive strategies, but a comprehensive competition centered on AI integration capabilities and data ethical values. Asset management firms must proactively embrace AI transformation to remain competitive in a market dominated by algorithms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:13:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:13:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 i
致謝 ii
中文摘要 iii
THESIS ABSTRACT iv
目次 vi
表次 viii
第一章 緒論 1
1.1 研究背景與研究動機 1
1.2 核心研究問題與目的 2
1.3 研究方法與論文限制 3
1.4 論文架構與研究流程 4
第二章 文獻探討 5
2.1 生成式 AI 技術與應用發展 5
2.2 基金型態的歷史演進與差異化分析 6
2.3 新興競爭者:AI在量化交易中的初步融合與衝擊 8
2.4 綜合評析:文獻中的結構性困境與研究缺口 9
第三章 傳統主被動基金的實證困境與AI轉型趨勢的結構性分析 10
3.1 傳統主動式基金的長期實證困境與式微的結構性根源 10
3.2 AI的崛起:作為超級主動管理者的挑戰與機遇 13
3.3 高頻交易、量化基金的歷史演進與AI的深化應用 17
3.4 被動/AI基金的崛起對全球股市的結構性變化與投資人的因應 21
第四章 AI對主動與被動投資的衝擊與融合:新型態資產管理生態圈的形成 24
4.1 AI對傳統主動式基金的深度賦能與轉型:從經理人到智慧指揮家 24
4.2 AI對被動式基金的深度滲透與進化:自適應型指數基金(Adaptive Indexing) 29
4.3 AI時代下的競爭格局:量化巨頭的壁壘與藍海策略的細節 31
4.4 AI主導資產管理生態圈的系統性與倫理衝擊 33


第五章 結論與未來投資模式的預測 35
5.1 研究總結與發現 35
5.2 對未來投資模式演變的預測 39
5.3 理論與實務貢獻 41
5.4 AI時代的資金流向與定價效率 43
5.5 監管機構的應對與倫理挑戰 44
第六章 策略性建議與未來研究方向 45
6.1 對資產管理機構的策略性建議 45
6.2 對投資者與監管機構的建議 47
6.3 研究限制與未來研究方向 48
參考文獻 49

表次
表1-1:主動與被動基金的核心差異比較 7
表 4-1 :人機協作的決策分工模型(The Teaming Model) 26
-
dc.language.isozh_TW-
dc.subject主動基金-
dc.subject被動基金-
dc.subjectAI 交易-
dc.subject轉型生態-
dc.subject量化投資-
dc.subject金融科技-
dc.subjectSmart Beta-
dc.subjectActive Funds-
dc.subjectPassive Funds-
dc.subjectAI Trading-
dc.subjectTransformation Ecosystem-
dc.subjectQuantitative Investment-
dc.subjectFintech-
dc.subjectSmart Beta-
dc.title主動/被動基金面對未來AI交易的轉型zh_TW
dc.titleActive & Passive Funds’ Transformation and Adoption on AI Trading Case Studyen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor姜堯民zh_TW
dc.contributor.coadvisorYao-Min Chiangen
dc.contributor.oralexamcommittee李宗培;龔尚智zh_TW
dc.contributor.oralexamcommitteeTsung-Pei Lee;Shang-Chi Gongen
dc.subject.keyword主動基金,被動基金AI 交易轉型生態量化投資金融科技Smart Betazh_TW
dc.subject.keywordActive Funds,Passive FundsAI TradingTransformation EcosystemQuantitative InvestmentFintechSmart Betaen
dc.relation.page49-
dc.identifier.doi10.6342/NTU202600108-
dc.rights.note未授權-
dc.date.accepted2026-02-02-
dc.contributor.author-college管理學院-
dc.contributor.author-dept碩士在職專班財務金融組-
dc.date.embargo-liftN/A-
顯示於系所單位:財務金融組

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved