請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101541完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 吳柏頡 | zh_TW |
| dc.contributor.author | Bo-Jie Wu | en |
| dc.date.accessioned | 2026-02-11T16:13:08Z | - |
| dc.date.available | 2026-02-12 | - |
| dc.date.copyright | 2026-02-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-04 | - |
| dc.identifier.citation | [1] Kümmerer, K., 2007. Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chemistry 9, 899.. https://doi.org/10.1039/b618298b
[2] OECD (2019), Pharmaceutical Residues in Freshwater: Hazards and Policy Responses, OECD Studies on Water, OECD Publishing, Paris, https://doi.org/10.1787/c936f42d-en. [3] Commission for Environmental Cooperation. SAICM ICCM emerging issues proposal.http://www.cec.org/files/public_commentary/saicm_iccm_emerging_issuesd_proposal.pdf [4] U.S. Environmental Protection Agency. (2021). Safe Drinking Water Act. https://www.epa.gov/sdwa/overview-safe-drinking-water-act [5] SAICM. (2015). Chemicals of pharmaceutical origin in the environment: An emerging issue. United Nations Environment Programme. https://www.saicm.org/Portals/12/documents/meetings/ICCM4/inf/ICCM4_INF15_EPPP.pdf [6] United Nations Environment Programme. (2020). Environmentally persistent pharmaceutical pollutants (EPPPs) - Assessment report on issues of concern. https://wedocs.unep.org/bitstream/handle/20.500.11822/41470/IssuesReportEPPPs.pdf?sequence=1&isAllowed=y [7] Strategic Approach to International Chemicals Management (SAICM). (2015). Fourth session of the International Conference on Chemicals Management (ICCM4). United Nations Environment Programme. https://www.saicm.org/Meetings/ICCM4/tabid/5464/language/en-US/Default.aspx [8] Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., & van de Zee, S. E. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.05.002 [9] Gerrity, D., & Snyder, S. A. (2011). The economic value of water quality. Water Research, 45(5), 2200–2209. https://doi.org/10.1016/j.watres.2010.12.012 [10] Kümmerer, K. Pharmaceuticals in the Environment – A Brief Summary. In (pp. 3-21). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74664-5_1 [11] United Nations Environment Programme. Stockholm Convention on Persistent Organic Pollutants: Full text of the Convention. http://chm.pops.int/Portals/0/Repository/convention_text/UNEP-POPS-COP-CONVTEXT-FULL.English.PDF [12] SAICM. (2018). Independent evaluation of the Strategic Approach from 2006–2015. United Nations Environment Programme. https://www.saicm.org/Portals/12/documents/meetings/IP2/IP_2_4_Independent_Evaluation.pdf [13] European Environment Agency. Environmental health impacts. https://www.eea.europa.eu/en/topics/in-depth/environmental-health-impacts?activeAccordion [14] United Nations Environment Programme. Wastewater: Turning problem to solution.https://wedocs.unep.org/bitstream/handle/20.500.11822/43142/wastewater_turning_problem_to_solution.pdf [15] Aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment--Global occurrences and perspectives. Environmental toxicology and chemistry, 35(4), 823–835. https://doi.org/10.1002/etc.3339 [16] Hladun, O., Papaseit, E., Martín, S., Barriocanal, A. M., Poyatos, L., Farré, M., & Pérez-Mañá, C. (2021). Interaction of Energy Drinks with Prescription Medication and Drugs of Abuse. Pharmaceutics, 13(10), 1532. https://doi.org/10.3390/pharmaceutics13101532 [17] U.S. Environmental Protection Agency (EPA). (2023). Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products (PPCPs). https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products [18] H. Jones, O. A., Voulvoulis, N., & Lester, J. N. (2005). Human Pharmaceuticals in Wastewater Treatment Processes. Critical Reviews in Environmental Science and Technology, 35(4), 401–427. https://doi.org/10.1080/10643380590956966 [19] Martínez-Sánchez, C., López-Muñoz, M. J., & Nava, J. L. (2022). Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem, 9(11), e202200188. https://doi.org/10.1002/celc.202200188 [20] Z. Cetecioglu, B. Ince, M. Gros, S. Rodriguez-Mozaz, D. Barceló, O. Ince, D. Orhon, Sci. Total Environ. 2015, 536, 667–674. [21] Clara, M., Strenn, B., Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947-954. [22] Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065 [23] Ding, Y., Liang, B., Jiang, W., Han, J., Guadie, A., Yun, H., Cheng, H., Yang, R., Liu, S. J., Wang, A., & Ren, N. (2021). Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. Journal of Hazardous Materials, 414, 125484. https://doi.org/10.1016/j.jhazmat.2021.125484 [24] I. León, H. Gomes, S. Sepúlveda-Guzmán, J. Cárdenas, F. Rivera, J. Manríquez, E. Bustos, J. Chem. Technol. Biotechnol. 2020 2021, 96, 622-629. https://www.webofscience.com/wos/woscc/full-record/WOS:000577823900001 [25] J. A. Bañuelos, O. García-Rodríguez, F. J. Rodríguez-Valadez, J. Manríquez, E. Bustos, A. Rodriguez, L. A. Godínez, J. Appl. Electrochem. 2015.https://link.springer.com/article/10.1007/s10800-015-0815-2 [26] N. De la Cruz González, Universitat de Barcelona, Barcelona, España 2013. https://diposit.ub.edu/dspace/handle/2445/66864 [27] U.S. Environmental Protection Agency. (2004, September). Primer for municipal wastewater treatment systems (EPA 832-R-04-001). https://www.epa.gov/sites/default/files/2015-09/documents/primer.pdf [28] U.S. Environmental Protection Agency. (2021). Contaminant Candidate List 5 (CCL 5). https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5 [29] U.S. Environmental Protection Agency. (2016). The third unregulated contaminant monitoring rule (UCMR 3): Data summary. https://www.epa.gov/dwucmr/third-unregulated-contaminant-monitoring-rule [30] European Commission. (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment. Official Journal of the European Communities. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271 [31] European Commission. (2022). Watch List under the Water Framework Directive. https://ec.europa.eu/environment/water/water-framework/priority_substances.htm [32] World Health Organization. (2024). Environmental pollution and health. https://apps.who.int/gb/ebwha/pdf_files/EB154/B154_24-ch.pdf [33] Tennant, B. (2019, October 11). What is the National Pollutant Discharge Elimination System (NPDES)? Water & Wastes Digest. https://www.wwdmag.com/what-is-articles/article/11004207/what-is-the-national-pollutant-discharge-elimination-system-npdes [34] United Nations Environment Programme. (1972). Declaration of the United Nations Conference on the Human Environment. Stockholm Conference. https://www.unep.org/resources/report/stockholm-declaration [35] U.S. Drug Enforcement Administration. (2010). Secure and Responsible Drug Disposal Act of 2010. https://www.congress.gov/111/plaws/publ273/PLAW-111publ273.pdf [36] United Nations Environment Programme. (2006). Strategic approach to international chemicals management (SAICM): Policy and implementation. https://wedocs.unep.org/bitstream/handle/20.500.11822/31595/SAICM.pdf?sequence=1&isAllowed=y [37] U.S. Environmental Protection Agency. (2019). Water Quality Standards Handbook. https://www.epa.gov/wqs-tech/water-quality-standards-handbook [38] U.S. Environmental Protection Agency. (2021, November 14). Overview of the CCL 5 approach. https://www.epa.gov/ccl/overview-ccl-5-approach [39] Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049 [40] Pal, A., Gin, K. Y. H., Lin, A. Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate, and effects. Science of The Total Environment, 408(24), 6062–6069. https://pubmed.ncbi.nlm.nih.gov/20934204/ [41] U.S. Environmental Protection Agency. (2020). National Pollutant Discharge Elimination System (NPDES). https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-122 [42] U.S. Environmental Protection Agency. (2021). Clean Water Act. EPA. https://www.epa.gov/laws-regulations/summary-clean-water-act [43] Pruden, A., Larsson, D. G. J., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y.-G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878–885. https://doi.org/10.1289/ehp.1206446 [44] United Nations Environment Programme Global Environment Facility. International waters projects. United Nations Environment Programme. https://www.unep.org/gef/focal-areas/international-waters/projects [45] Global chemicals outlook II: From legacies to innovative solutions – Implementing the 2030 Agenda for Sustainable Development. https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions [46] Liu, Y., Hu, X., Tan, Y., Feng, L., & Zhang, Z. (2023). A systematic review of pharmaceutical pollutants and their effects on aquatic environments. Toxics, 11(11), 903. https://www.mdpi.com/2305-6304/11/11/903 [47] United States Environmental Protection Agency (EPA). (2021). Safe Drinking Water Act (SDWA). https://www.epa.gov/laws-regulations/summary-safe-drinking-water-act [48] Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – A review. Journal of Plant Nutrition and Soil Science, 166(2), 145–167. https://doi.org/10.1002/jpln.200390023 [49] United Nations Environment Programme. GEF supported mercury initiatives. https://www.unep.org/globalmercurypartnership/GEF%20supported%20mercury%20initiatives [50] United Nations Environment Programme. (2021). Chemicals & waste in Latin America and Caribbean. https://www.unep.org/resources/factsheet/chemicals-waste-latin-america-and-caribbean [51] Verlicchi, P. (2017). Despo Fatta-Kassinos, Dionysios D. Dionysiou, Klaus Kümmerer (Eds.): Advanced treatment technologies for urban wastewater reuse. Analytical and Bioanalytical Chemistry, 409(1), 19-20. https://doi.org/10.1007/s00216-016-9832-1 [52] Global Goals Taiwan. (n.d.-a). 目標6:清潔飲水與衛生。全球目標在台灣。https://globalgoals.tw/6-clean-water-and-sanitation [53] Global Goals Taiwan. (n.d.-b). 目標12:負責任的消費與生產。全球目標在台灣。https://globalgoals.tw/12-responsible-consumption-and-production [54] United Nations Environment Programme. 聯合國環境署與世界衛生組織就環境健康風險進行重大合作. https://www.unep.org/zh-hans/xinwenyuziyuan/xinwengao-3 [55] 行政院環境保護署(2023).《水污染防治法》https://oaout.moenv.gov.tw/law/LawContent.aspx?id=FL015486 [56] 行政院環境保護署(2024)。放流水標準。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawGetFile.ashx?FileId=0000380991&lan=C [57] 環境部.持久性有機污染物(POPs).台灣環境部. https://topic.moenv.gov.tw/pops/cp-74-60-4dd6a-2.html [58] 王根樹、蔡詩偉、陳家揚(2012)。飲用水水源與水質中新興污染物對人體健康風險評估之研究計畫(3/4)(EPA-101-U1J1-02-101)。行政院環保署. [59] 王根樹、蔡詩偉、陳家揚(2013)。飲用水水源與水質中新興污染物對人體健康風險評估之研究計畫(4/4)(計畫編號:EPA-102-U1J1-02-101)。行政院環保署. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101541 | - |
| dc.description.abstract | 近年來,全球人口增長與醫療需求提升,環境持久性藥物污染物(Environmental Persistent Pharmaceutical Pollutants, EPPPs)已成為全球環境治理的重要議題。EPPPs主要來源包括家庭污水、醫療機構及製藥業廢水,這些污染物因其化學穩定性與生物降解性低,容易在水體中長期累積,對生態系統與人類健康構成潛在風險。研究顯示,EPPPs可能影響水生生物的繁殖能力、干擾內分泌系統,並加劇抗生素抗性菌株的擴散,使公共衛生面臨更大挑戰。由於EPPPs在環境中的普遍性與危害性,國際社會對其治理的關注度日益提升。
本研究分析聯合國(UN)與美國(U.S.)在放流水EPPPs管理方面的政策與執行策略,探討其異同點與挑戰。聯合國透過《國際化學品策略方針》(SAICM)與《可持續發展目標》(SDGs)等國際框架,鼓勵各國加強監測與污水處理技術發展。而聯合國的政策多為指導性建議,欠缺強制性,使各國落實情況存在顯著差異,特別是在技術與經濟資源有限的發展中國家,EPPPs的治理成效仍然不足。相較於美國環保署(EPA)則透過《清潔水法》(CWA)與《安全飲用水法》(SDWA)建立嚴格的污染物監管標準,要求污水處理廠強化EPPPs去除技術,並實施藥品回收計畫,以降低藥物污染風險。另外,美國近年來積極研發並應用先進污水處理技術,如活性碳吸附、薄膜過濾技術與先進氧化技術(AOPs),以提升藥物污染物的去除率。而現行技術仍然無法完全消除所有類型的EPPPs,顯示政策與技術發展之間的落差。 本研究發現,聯合國強調國際合作與政策指導,有助於全球性污染治理的長遠規劃,但因缺乏強制性約束,使執行成效受各國資源與政策優先順序影響;美國則透過嚴格法規與技術發展,提高EPPPs管控成效,但高昂的治理成本與監測範圍的限制仍是一大挑戰。經過綜合比較後,建議未來聯合國與美國於EPPPs治理上應加強國際間法規協調、促進污水處理技術創新、優化藥品回收制度,並提高公眾參與度,以確保全球水資源的永續發展。而台灣目前在EPPPs的管理上仍處於初步階段,雖然《水污染防治法》與《廢棄物清理法》已規範部分醫療廢水與藥品廢棄物的處理,但針對EPPPs的專門法規與監測標準仍需進一步強化,可透過參考歐盟與美國標準,制定台灣水體中EPPPs的允許濃度,並強制污水處理廠進行定期監測與報告,以及提供政府補助,幫助污水處理廠導入先進處理技術,如活性碳吸附或薄膜過濾技術,以提高EPPPs去除效率。未來,在法規制定、技術創新、藥品回收與公眾教育等方面同步推動,確保EPPPs的污染問題能獲得更全面的治理,並與國際標準接軌,以維護水資源的永續發展。 | zh_TW |
| dc.description.abstract | With the rapid growth of the global population and the increased demand for healthcare, Environmental Persistent Pharmaceutical Pollutants (EPPPs) have emerged as a critical issue in global environmental governance. EPPPs mainly originate from domestic sewage, healthcare facilities, and pharmaceutical manufacturing wastewater. Due to their high chemical stability and low biodegradability, these pollutants tend to accumulate in water bodies over time, posing significant risks to both ecosystems and human health. Studies indicate that EPPPs can impair the reproductive capabilities of aquatic organisms, disrupt endocrine systems, and facilitate the spread of antibiotic-resistant bacteria, thereby intensifying public health challenges. As a result of their widespread presence and potential hazards, international attention towards the management of EPPPs has steadily increased.
This study examines the policies and implementation strategies adopted by the United Nations (UN) and the United States (U.S.) for managing EPPPs in effluent discharges, highlighting their similarities, differences, and associated challenges. The UN, through international frameworks such as the Strategic Approach to International Chemicals Management (SAICM) and the Sustainable Development Goals (SDGs), advocates for enhanced monitoring and the development of advanced wastewater treatment technologies. However, the UN’s recommendations are largely advisory and lack enforceability, leading to significant variations in implementation—especially in developing nations with limited technical and economic resources. In contrast, the U.S. Environmental Protection Agency (EPA) enforces stringent regulatory standards through the Clean Water Act (CWA) and the Safe Drinking Water Act (SDWA), requiring wastewater treatment plants to upgrade their EPPP removal technologies and implement pharmaceutical take-back programs to mitigate pollution risks. Moreover, the U.S. has actively developed and applied advanced treatment technologies, including activated carbon adsorption, membrane filtration, and advanced oxidation processes (AOPs), to enhance the removal efficiency of pharmaceutical pollutants. Nonetheless, existing technologies remain insufficient to completely eliminate all types of EPPPs, revealing a gap between policy ambitions and technological capabilities. The findings of this study suggest that while the UN’s emphasis on international cooperation and policy guidance is beneficial for long-term global pollution management, the absence of binding regulations leads to varied outcomes based on national resources and policy priorities. Conversely, the U.S. model, characterized by strict regulations and technological advancements, achieves higher efficacy in controlling EPPPs but faces challenges related to high implementation costs and limited monitoring scopes. Based on a comprehensive comparative analysis, this study recommends that future management of EPPPs should involve enhanced international regulatory coordination, continuous innovation in wastewater treatment technologies, optimization of pharmaceutical recycling programs, and increased public engagement to ensure the sustainable development of global water resources. In the context of Taiwan, current EPPP management remains at an early stage. Although the Water Pollution Control Act and the Waste Disposal Act regulate certain aspects of medical wastewater and pharmaceutical waste, there is a pressing need for specialized regulations and monitoring standards for EPPPs. By adopting standards from the European Union and the United States, Taiwan should establish permissible concentration limits for EPPPs in water bodies, mandate regular monitoring and reporting by wastewater treatment facilities, and provide government subsidies to support the integration of advanced treatment technologies such as activated carbon adsorption or membrane filtration. A synchronized effort in legislative formulation, technological innovation, pharmaceutical recycling, and public education is essential to comprehensively address EPPP challenges and align with international standards to safeguard sustainable water resource management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:13:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-11T16:13:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝...................................................................i
中文摘要...........................................................ii 英文摘要...........................................................iv 目 次..............................................................vii 圖 次..............................................................xi 表 次...............................................................xii 第一章 緒論...................................................... 1 1.1 研究緣起........................................................... 1 1.2 研究範圍和目的................................................. 2 1.3 研究方法.......................................... 3 第二章 文獻回顧.......................................... 4 2.1 EPPPs 的定義與分類...................................... 4 2.1.1 定義 .............................................................. 4 2.1.2 分類 .................................................... 5 2.1.3 來源及主要途徑 .................................................... 6 2.2 EPPPs 對人體健康及生物鏈的影響..................................... 8 2.2.1 健康風險與潛在威脅 .................................... 9 2.2.2 環境與飲用水中的毒性傳遞.......................... 10 2.2.3 食物鏈的生物累積效應....................... 10 2.3 EPPPs 對於環境之影響............................. 10 2.3.1 環境傳播途徑............................................. 11 2.3.2 對水生生態系統的影響...................................... 12 2.3.3 土壤污染及其對陸地生態系統的影響.............................. 12 2.3.4 生物累積與食物鏈影響................................................ 12 2.4 EPPPs 的處理技術............................... 12 2.4.1 生物處理......................................................... 13 2.4.2 光解處理.................................................. 14 2.4.3 高級氧化程序處理 ............................................... 15 2.4.4 電化學高級氧化程序處理................................... 16 2.5 放流水限值及法規 .......................... 17 2.5.1 美國的放流水排放限值............................... 17 2.5.2 歐盟的放流水排放限值................................... 18 第三章 聯合國於放流水中EPPPs 管理現狀及法規............................................... 19 3.1 聯合國對於放流水中 EPPPs 的管理現狀................................... 19 3.1.1 聯合國現行政策與框架............................................... 19 3.1.2 聯合國管理 EPPPs 現狀及評估.......................... 21 3.2 聯合國相關政策和法規 ........................................... 21 3.2.1 聯合國環境規劃署(UNEP)倡議.................................. 23 3.2.2 斯德哥爾摩公約 ................................................ 24 3.2.3 成功案例說明—以瑞典、德國為例....................... 26 3.2.4 可持續發展目標 SDGs .................................. 27 3.2.5 巴塞爾公約....................................... 28 3.2.6 全球化學品戰略 SAICM........................................ 28 3.2.7 聯合國政策實施與全球化學品戰略 SAICM 之挑戰及展望................ 29 第四章 美國放流水中EPPPs 管理現狀及策略.................................. 31 4.1 美國相關政策與法規 ..................................... 31 4.1.1 清潔水法...................................................... 31 4.1.2 安全飲用水法.................................................... 33 4.1.3 特定監督計畫與法案 ................................................. 34 4.1.4 執行挑戰與未來方向 ......................................... 35 4.2 美國政策及策略執行 .............................................. 36 4.2.1 先進污水處理技術的應用.................................... 36 4.2.2 監測與風險評估 .................................... 38 4.2.3 監源頭控制與污染削減計畫................................ 40 4.2.4 公眾參與與教育之推廣.................................... 41 4.2.5 美國政策執行上成效與挑戰............................... 41 第五章 結果與討論............................................. 43 5.1 比較聯合國及美國 EPPPs 放流水管理方面的法規與監管機制.............. 43 5.1.1 聯合國之法規框架 ................................ 43 5.1.2 美國之法規框架 ................................................ 44 5.1.3 聯合國與美國之法規差異與挑戰 ........................................ 44 5.1.4 台灣水體中 EPPPs 管理現況與挑戰..................................... 46 5.2 聯合國與美國 EPPPs 整體治理策略比較與策略方向建議...................... 49 5.2.1 政策與法規架構比較 ................................................ 50 5.2.2 管理技術發展與應用策略之比較分析................................. 51 5.2.3 EPPPs 污染物監測機制與政策執行挑戰.................................. 51 5.2.4 未來發展方向................. 52 第六章 結論與建議..................................... 56 6.1 結論 ............................................ 56 6.2 建議 .................................................. 57 參考文獻—英文......................................... 59 參考文獻—中文................................................. 66 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 環境持久性藥物污染物 | - |
| dc.subject | 聯合國 | - |
| dc.subject | 美國環保署 | - |
| dc.subject | 清潔水法 | - |
| dc.subject | 藥品回收 | - |
| dc.subject | 國際化學品策略方針 | - |
| dc.subject | Environmental Persistent Pharmaceutical Pollutants (EPPPs) | - |
| dc.subject | United Nations (UN) | - |
| dc.subject | United States Environmental Protection Agency (USEPA) | - |
| dc.subject | Clean Water Act (CWA) | - |
| dc.subject | Pharmaceutical recycle | - |
| dc.subject | Strategic Approach to International Chemicals Management (SAICM) | - |
| dc.title | 探討聯合國及美國對放流水中環境持久性藥物汙染物 之管理現狀及執行策略 | zh_TW |
| dc.title | Exploring the Management Status and Implementation Strategies for Environmental Persistent Pharmaceutical Pollutants in Effluents: A Comparative Analysis of the United Nations, the United States | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡景堯;闕蓓德;黃于峯 | zh_TW |
| dc.contributor.oralexamcommittee | JING-YAO HU ;BEI-DE CYUE;YU-FONG HUANG | en |
| dc.subject.keyword | 環境持久性藥物污染物,聯合國美國環保署清潔水法藥品回收國際化學品策略方針 | zh_TW |
| dc.subject.keyword | Environmental Persistent Pharmaceutical Pollutants (EPPPs),United Nations (UN)United States Environmental Protection Agency (USEPA)Clean Water Act (CWA)Pharmaceutical recycleStrategic Approach to International Chemicals Management (SAICM) | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202501136 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2030-03-10 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 2.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
