Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101537
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor阮雪芬zh_TW
dc.contributor.advisorHsueh-Fen Juanen
dc.contributor.authorNGUYEN HOANG PHUONG UYENzh_TW
dc.contributor.authorNGUYEN HOANG PHUONG UYENen
dc.date.accessioned2026-02-11T16:11:09Z-
dc.date.available2026-02-12-
dc.date.copyright2026-02-11-
dc.date.issued2026-
dc.date.submitted2026-01-30-
dc.identifier.citationAhmed, R., Zaman, T., Chowdhury, F., Mraiche, F., Tariq, M., Ahmad, I. S., & Hasan, A. (2022). Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues. In International Journal of Molecular Sciences (Vol. 23, Issue 6). https://doi.org/10.3390/ijms23063042
Andreatta, M., & Carmona, S. J. (2021). UCell: Robust and scalable single-cell gene signature scoring. Computational and Structural Biotechnology Journal, 19. https://doi.org/10.1016/j.csbj.2021.06.043
Bae, S., Na, K. J., Koh, J., Lee, D. S., Choi, H., & Kim, Y. T. (2022). CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data. Nucleic Acids Research, 50(10). https://doi.org/10.1093/nar/gkac084
Bhatia, A., Sobti, R. C., & Sharma, S. (2023). Tumor Inflammatory Microenvironment in Lung Cancer: Heterogeneity and Implications. In Handbook of Oncobiology: From Basic to Clinical Sciences. https://doi.org/10.1007/978-981-99-2196-6_20-1
Cao, J., Li, C., Cui, Z., Deng, S., Lei, T., Liu, W., Yang, H., & Chen, P. (2024). Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery. In Theranostics (Vol. 14, Issue 7). https://doi.org/10.7150/thno.95908
Casanova-Acebes, M., Dalla, E., Leader, A. M., LeBerichel, J., Nikolic, J., Morales, B. M., Brown, M., Chang, C., Troncoso, L., Chen, S. T., Sastre-Perona, A., Park, M. D., Tabachnikova, A., Dhainaut, M., Hamon, P., Maier, B., Sawai, C. M., Agulló-Pascual, E., Schober, M., … Merad, M. (2021). Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature, 595(7868). https://doi.org/10.1038/s41586-021-03651-8
Chen, C., Guo, Q., Liu, Y., Hou, Q., Liao, M., Guo, Y., Zang, Y., Wang, F., Liu, H., Luan, X., Liang, Y., Guan, Z., Li, Y., Liu, H., Dong, X., Zhang, X., Liu, J., & Xu, Q. (2023). Single‐cell and spatial transcriptomics reveal POSTN + cancer‐associated fibroblasts correlated with immune suppression and tumour progression in non‐small cell lung cancer . Clinical and Translational Medicine, 13(12). https://doi.org/10.1002/ctm2.1515
Cords, L., de Souza, N., & Bodenmiller, B. (2024). Classifying cancer-associated fibroblasts—The good, the bad, and the target. Cancer Cell, 42(9), 1480–1485. https://doi.org/10.1016/j.ccell.2024.08.011
Cotechini, T., Atallah, A., & Grossman, A. (2021). Tissue‐resident and recruited macrophages in primary tumor and metastatic microenvironments: Potential targets in cancer therapy. In Cells (Vol. 10, Issue 4). https://doi.org/10.3390/cells10040960
Coulton, A., Murai, J., Qian, D., Thakkar, K., Lewis, C. E., & Litchfield, K. (2024). Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49885-8
De Zuani, M., Xue, H., Park, J. S., Dentro, S. C., Seferbekova, Z., Tessier, J., Curras-Alonso, S., Hadjipanayis, A., Athanasiadis, E. I., Gerstung, M., Bayraktar, O., & Cvejic, A. (2024). Single-cell and spatial transcriptomics analysis of non-small cell lung cancer. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48700-8
Franklin, R. A., & Li, M. O. (2016). Ontogeny of Tumor-Associated Macrophages and Its Implication in Cancer Regulation. In Trends in Cancer (Vol. 2, Issue 1). https://doi.org/10.1016/j.trecan.2015.11.004
Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344(6186). https://doi.org/10.1126/science.1252510
Fu, T., Dai, L. J., Wu, S. Y., Xiao, Y., Ma, D., Jiang, Y. Z., & Shao, Z. M. (2021). Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. In Journal of Hematology and Oncology (Vol. 14, Issue 1). https://doi.org/10.1186/s13045-021-01103-4
Gao, D., Fang, L., Liu, C., Yang, M., Yu, X., Wang, L., Zhang, W., Sun, C., & Zhuang, J. (2023). Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. In Biomedicine and Pharmacotherapy (Vol. 167). https://doi.org/10.1016/j.biopha.2023.115622
Godoy, L. A., Chen, J., Ma, W., Lally, J., Toomey, K. A., Rajappa, P., Sheridan, R., Mahajan, S., Stollenwerk, N., Phan, C. T., Cheng, D., Knebel, R. J., & Li, T. (2023). Emerging precision neoadjuvant systemic therapy for patients with resectable non-small cell lung cancer: current status and perspectives. In Biomarker Research (Vol. 11, Issue 1). https://doi.org/10.1186/s40364-022-00444-7
Gulati, G. S., Sikandar, S. S., Wesche, D. J., Manjunath, A., Bharadwaj, A., Berger, M. J., Ilagan, F., Kuo, A. H., Hsieh, R. W., Cai, S., Zabala, M., Scheeren, F. A., Lobo, N. A., Qian, D., Yu, F. B., Dirbas, F. M., Clarke, M. F., & Newman, A. M. (2020). Single-cell transcriptional diversity is a hallmark of developmental potential. Science, 367(6476). https://doi.org/10.1126/science.aax0249
Gunaydin, G. (2021). CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. In Frontiers in Oncology (Vol. 11). https://doi.org/10.3389/fonc.2021.668349
Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14. https://doi.org/10.1186/1471-2105-14-7
Heath, H., Yoo, J. Y., Akter, S., Jain, A., Sharma, V., McGee, H., Soliman, A., Mahmoud, A. M., Matthews, A. K., Winn, R. A., Madak-Erdogan, Z., & Kim, S. J. (2024). The Effect of Exposure to Neighborhood Violence on Glucocorticoid Receptor Signaling in Lung Tumors. Cancer Research Communications, 4(7). https://doi.org/10.1158/2767-9764.CRC-24-0032
Hu, C., Li, T., Xu, Y., Zhang, X., Li, F., Bai, J., Chen, J., Jiang, W., Yang, K., Ou, Q., Li, X., Wang, P., & Zhang, Y. (2023). CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Research, 51(D1). https://doi.org/10.1093/nar/gkac947
Huang, R., Kang, T., & Chen, S. (2024). The role of tumor-associated macrophages in tumor immune evasion. In Journal of Cancer Research and Clinical Oncology (Vol. 150, Issue 5). https://doi.org/10.1007/s00432-024-05777-4
Huang, Z., Xiao, Z., Yu, L., Liu, J., Yang, Y., & Ouyang, W. (2024). Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. In Critical Reviews in Oncology/Hematology (Vol. 196). https://doi.org/10.1016/j.critrevonc.2024.104284
Jackson, M. C., Huang, L., Xie, Q., & Tiwari, R. C. (2010). A modified version of Moran’s I. International Journal of Health Geographics, 9. https://doi.org/10.1186/1476-072X-9-33
Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C. H., Myung, P., Plikus, M. V., & Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21246-9
Kawai, T., & et al. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in Molecular Medicine, 13(11).
Khan, S. U., Khan, M. U., Azhar Ud Din, M., Khan, I. M., Khan, M. I., Bungau, S., & Hassan, S. S. ul. (2023). Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Frontiers in Immunology, 14(April), 1–14. https://doi.org/10.3389/fimmu.2023.1166487
Kim, N., Kim, H. K., Lee, K., Hong, Y., Cho, J. H., Choi, J. W., Lee, J. Il, Suh, Y. L., Ku, B. M., Eum, H. H., Choi, S., Choi, Y. La, Joung, J. G., Park, W. Y., Jung, H. A., Sun, J. M., Lee, S. H., Ahn, J. S., Park, K., … Lee, H. O. (2020). Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16164-1
Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P. ru, & Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods, 16(12). https://doi.org/10.1038/s41592-019-0619-0
Kuhn, E., Morbini, P., Cancellieri, A., Damiani, S., Cavazza, A., & Comin, C. E. (2018). Adenocarcinoma classification: Patterns and prognosis. In Pathologica (Vol. 110, Issue 1).
Lendeckel, U., Venz, S., & Wolke, C. (2022). Macrophages: shapes and functions. ChemTexts, 8(2). https://doi.org/10.1007/s40828-022-00163-4
Li, X., & Wang, C. Y. (2021). From bulk, single-cell to spatial RNA sequencing. In International Journal of Oral Science (Vol. 13, Issue 1). https://doi.org/10.1038/s41368-021-00146-0
Li, Y., Wang, R., & Gao, Q. (2023). The Roles and Targeting of Tumor-Associated Macrophages. In Frontiers in Bioscience - Landmark (Vol. 28, Issue 9). https://doi.org/10.31083/j.fbl2809207
Li, Z., Li, J., Bai, X., Huang, X., & Wang, Q. (2025). Tumor microenvironment as a complex milieu driving cancer progression: a mini review. In Clinical and Translational Oncology (Vol. 27, Issue 5). https://doi.org/10.1007/s12094-024-03697-w
Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database Hallmark Gene Set Collection. Cell Systems, 1(6). https://doi.org/10.1016/j.cels.2015.12.004
Liu, Y., Dong, G., Yu, J., & Liang, P. (2025). Integration of single-cell and spatial transcriptomics reveals fibroblast subtypes in hepatocellular carcinoma: spatial distribution, differentiation trajectories, and therapeutic potential. Journal of Translational Medicine, 23(1). https://doi.org/10.1186/s12967-025-06192-0
Luo, Y., Deng, X., Que, J., Li, Z., Xie, W., Dai, G., Chen, L., & Wang, H. (2022). Cell Trajectory-Related Genes of Lung Adenocarcinoma Predict Tumor Immune Microenvironment and Prognosis of Patients. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.911401
Nooreldeen, R., & Bach, H. (2021). Current and future development in lung cancer diagnosis. In International Journal of Molecular Sciences (Vol. 22, Issue 16). https://doi.org/10.3390/ijms22168661
Piersma, B., Hayward, M. K., & Weaver, V. M. (2020). Fibrosis and cancer: A strained relationship. In Biochimica et Biophysica Acta - Reviews on Cancer (Vol. 1873, Issue 2). https://doi.org/10.1016/j.bbcan.2020.188356
Prazanowska, K. H., & Lim, S. Bin. (2023). An integrated single-cell transcriptomic dataset for non-small cell lung cancer. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02074-6
Qi, J., Sun, H., Zhang, Y., Wang, Z., Xun, Z., Li, Z., Ding, X., Bao, R., Hong, L., Jia, W., Fang, F., Liu, H., Chen, L., Zhong, J., Zou, D., Liu, L., Han, L., Ginhoux, F., Liu, Y., … Su, B. (2022). Single-cell and spatial analysis reveal interaction of FAP + fibroblasts and SPP1 + macrophages in colorectal cancer. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29366-6
Qian, B. Z., & Pollard, J. W. (2010). Macrophage Diversity Enhances Tumor Progression and Metastasis. In Cell (Vol. 141, Issue 1). https://doi.org/10.1016/j.cell.2010.03.014
Rakina, M., Larionova, I., & Kzhyshkowska, J. (2024). Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. In Heliyon (Vol. 10, Issue 7). https://doi.org/10.1016/j.heliyon.2024.e28332
Restrepo, J. C., Dueñas, D., Corredor, Z., & Liscano, Y. (2023). Advances in Genomic Data and Biomarkers: Revolutionizing NSCLC Diagnosis and Treatment. In Cancers (Vol. 15, Issue 13). https://doi.org/10.3390/cancers15133474
Ru, B., Huang, J., Zhang, Y., Aldape, K., & Jiang, P. (2023). Estimation of cell lineages in tumors from spatial transcriptomics data. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36062-6
Sardenberg, R. A. S., Mello, E. S., & Younes, R. N. (2014). The lung adenocarcinoma guidelines: What to be considered by surgeons. In Journal of Thoracic Disease (Vol. 6). https://doi.org/10.3978/j.issn.2072-1439.2014.08.25
Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H., & Jemal, A. (2025). Cancer statistics, 2025. CA: A Cancer Journal for Clinicians, 75(1). https://doi.org/10.3322/caac.21871
Sikkema, L., Ramírez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., Madissoon, E., Markov, N. S., Zaragosi, L. E., Ji, Y., Ansari, M., Arguel, M. J., Apperloo, L., Banchero, M., Bécavin, C., Berg, M., Chichelnitskiy, E., Chung, M. i., Collin, A., Gay, A. C. A., … Theis, F. J. (2023). An integrated cell atlas of the lung in health and disease. Nature Medicine, 29(6). https://doi.org/10.1038/s41591-023-02327-2
Stat, I.-, Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by A distinct and unique transcriptional program expressed by tumor-associated macrophages ( defective NF- B and enhanced IRF-3 / STAT1 activation ). Blood, 107(5).
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43). https://doi.org/10.1073/pnas.0506580102
Suzuki, J., Tsuboi, M., & Ishii, G. (2022). Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Review of Anticancer Therapy, 22(2). https://doi.org/10.1080/14737140.2022.2019018
Tong, W., Wang, T., Bai, Y., Yang, X., Han, P., Zhu, L., Zhang, Y., & Shen, Z. (2024). Spatial transcriptomics reveals tumor-derived SPP1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. Journal of Translational Medicine, 22(1). https://doi.org/10.1186/s12967-024-05613-w
Tufail, M., Jiang, C. H., & Li, N. (2025). Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches. In Signal Transduction and Targeted Therapy (Vol. 10, Issue 1). https://doi.org/10.1038/s41392-025-02280-1
Velu, P. P., Abhari, R. E., & Henderson, N. C. (2025). Spatial genomics: Mapping the landscape of fibrosis. In Science Translational Medicine (Vol. 17, Issue 793). https://doi.org/10.1126/scitranslmed.adm6783
Wang, J., Zhu, N., Su, X., Gao, Y., & Yang, R. (2023). Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. In Frontiers in Immunology (Vol. 14). https://doi.org/10.3389/fimmu.2023.1264774
Wang, S., Wang, J., Chen, Z., Luo, J., Guo, W., Sun, L., & Lin, L. (2024). Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. In npj Precision Oncology (Vol. 8, Issue 1). https://doi.org/10.1038/s41698-024-00522-z
Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R., & Haque, A. (2022). An introduction to spatial transcriptomics for biomedical research. In Genome Medicine (Vol. 14, Issue 1). https://doi.org/10.1186/s13073-022-01075-1
Wu, B., Sodji, Q. H., & Oyelere, A. K. (2022). Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. In Cancers (Vol. 14, Issue 3). https://doi.org/10.3390/cancers14030552
Wu, F., Xu, J., Huang, Q., Han, J., Duan, L., Fan, J., Lv, Z., Guo, M., Hu, G., Chen, L., Zhang, S., Tao, X., Ma, W., & Jin, Y. (2016). The role of interleukin-17 in lung cancer. In Mediators of Inflammation (Vol. 2016). https://doi.org/10.1155/2016/8494079
Wu, H., Li, J., Yao, R., Liu, J., Su, L., & You, W. (2025). Focusing on the interplay between tumor-associated macrophages and tumor microenvironment: from mechanism to intervention. In Theranostics (Vol. 15, Issue 15). https://doi.org/10.7150/thno.113727
Xu, S., Hu, E., Cai, Y., Xie, Z., Luo, X., Zhan, L., Tang, W., Wang, Q., Liu, B., Wang, R., Xie, W., Wu, T., Xie, L., & Yu, G. (2024). Using clusterProfiler to characterize multiomics data. Nature Protocols, 19(11). https://doi.org/10.1038/s41596-024-01020-z
Yu, Z., Zou, J., & Xu, F. (2024). Tumor-associated macrophages affect the treatment of lung cancer. Heliyon, 10(7), e29332. https://doi.org/10.1016/j.heliyon.2024.e29332
Zhang, X., Wu, L., Zhang, X., & Xu, Y. (2024). Identifying the tumor-associated macrophage of lung adenocarcinoma reveals immune landscape through omics data integration. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27586
Zhu, Y., Herndon, J. M., Sojka, D. K., Kim, K. W., Knolhoff, B. L., Zuo, C., Cullinan, D. R., Luo, J., Bearden, A. R., Lavine, K. J., Yokoyama, W. M., Hawkins, W. G., Fields, R. C., Randolph, G. J., & DeNardo, D. G. (2017). Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 47(2). https://doi.org/10.1016/j.immuni.2017.07.014
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101537-
dc.description.abstract肺腺癌(LUAD)是肺癌中上普遍的一種亞型,其特徵是具有高度分子變異性佮病理生長型態的異質性。腫瘤相關巨噬細胞(TAMs)是腫瘤微環境(TME)中重要的細胞組成,會透過代謝重編程、免疫抑制以及細胞外基質重塑,展現促進腫瘤發展的功能,進一步形成纖維化的腫瘤環境佮治療抗性。然而,TAM 的起源多樣性、可塑性,以及佢佇腫瘤進程中如何驅動促腫瘤表型的機制,猶原無完全被釐清。
為著補足這个研究缺口,本研究整合公開資料庫中的單細胞轉錄體資料佮空間轉錄體資料,系統性分析 LUAD 中 TAM 的亞群組成、空間分佈佮細胞間互動,並評估其臨床相關性。
偽時間分析顯示,巨噬細胞主要呈現兩條分化軌跡:一條是佔據穩定分支的組織常駐型肺泡巨噬細胞(TRAMs),另一條則包含可能源自胚胎期巨噬細胞及循環單核球的 TAM 亞群。功能分析結果指出,TRAMs 主要存在佇正常肺組織中,負責維持組織恆定佮免疫監控;相對之下,腫瘤相關的 TAM 亞群則表現出適應低氧環境、促進血管新生佮細胞外基質重塑等促腫瘤特徵,與纖維化活性密切相關。
其中,SPP1 作為一種基質相關蛋白,主要高表現佇腫瘤富集的 TAM 亞群中,並與腫瘤惡性進展相關。進一步的細胞互動分析佮空間定位結果顯示,SPP1⁺TAMs 與癌症相關纖維母細胞(CAFs)會共同聚集佇腫瘤與基質交界區,形成支持促腫瘤發展的訊號網絡。存活分析進一步證實,高 SPP1 表現量以及 SPP1⁺ TAMs 與 CAFs 的共富集程度,皆與 LUAD 病患較差的臨床預後顯著相關。
總結來講,本研究指出 SPP1 可作為 TAM 亞群的重要代表性標記,並參與調控巨噬細胞佇低氧、血管新生及促纖維化腫瘤環境中的適應能力。SPP1⁺ TAMs 與 CAFs 佇腫瘤基質介面的空間共富集,是 LUAD 腫瘤生成過程中關鍵的細胞交互作用,亦與不良預後密切相關。本研究透過分子層級佮空間層級的整合分析,深化對 TAM–CAF 互動機制的理解,並為未來發展以 SPP1 為標的的治療策略,提供重要的研究基礎。
zh_TW
dc.description.abstractLung adenocarcinoma (LUAD) is the one of most predominant form of lung cancer, exhibiting by heterogeneity in molecular alterations and pathological growth patterns. Tumor-associated macrophages (TAMs) represent a key cellular component in the tumor microenvironment (TME), exhibiting pro-tumor functions through metabolic reprogramming, immunosuppression, and extracellular matrix (ECM) remodeling, thereby promoting a profibrotic environment and therapeutic resistance. However, the diversity and plasticity of TAM ontogeny and the mechanisms by which they drive pro-tumor phenotypes during tumor progression remain incompletely understood. Addressing this knowledge gap, we integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data from the Gene Expression Omnibus (GEO) datasets, aimed to characterize TAM subpopulations, map their spatial distribution and interaction, and evaluate their clinical relevance in LUAD.
Pseudotime analysis identified two main differentiation trajectories: Tissue-resident alveolar macrophages (TRAMs) occupying a stable branch, alongside TAM subsets likely derived from both embryonic macrophages and circulating monocytes. Functional profiling revealed that TRAMs predominate in normal lung tissues largely maintain signatures of tissue homeostasis and immune surveillance functions; in contrast, TAM subpopulations display pro-tumorigenic phenotypes via hypoxia adaptation, angiogenesis, and ECM remodeling, consistent with profibrotic activity. Notably, SPP1 (Secreted Phosphoprotein 1), a matricellular protein related to epigenetic changes and reduced drug uptake, was dominantly expressed on tumor-enriched TAM subtypes. Cell-cell communication and spatial mapping detected the colocalization of SPP1+TAMs and cancer-associated fibroblasts (CAFs) at the tumor-stromal boundaries, with ligand–receptor signaling patterns that support pro-tumorigenic networks. Finally, survival analyses further validated that high SPP1 expression and higher inferred SPP1+TAMs-CAFs co-abundance associate with worse survival outcomes in LUAD.
In conclusion, this study identified that SPP1 serves as a representative marker on TAM subpopulations, reprogramming the adaptive capability of macrophages in hypoxic, angiogenic, and pro-fibrotic tumor environ ments. The spatial co-enrichment of SPP1+TAMs and CAFs at the tumor-stromal interfaces represents a key cellular interaction in LUAD tumorigenesis linked to worse prognosis. The molecular profiling and advanced spatial analysis expand the insight of TAM-CAF crosstalk,and offer future exploration for SPP1-targeted therapies to counteract therapeutic resistance and enhance survival outcomes.
Keywords: lung adenocarcinoma (LUAD), tumor microenvironment (TME), tumor-associated macrophages (TAMs), tissue-resident macrophage (TRAMs), single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), secreted phosphoprotein 1 (SPP1), cancer-associated fibroblasts (CAFs).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-11T16:11:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-11T16:11:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENT i
摘要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xii
LIST OF ABBREVIATIONS xiv
CHAPTER 1: INTRODUCTION 1
1.1 Overview of lung adenocarcinoma 1
1.2 Tumor microenvironment complexity in lung adenocarcinoma 2
1.3 Tumor-associated macrophages in lung adenocarcinoma 3
1.4 Heterogeneity of tumor-associated macrophages in lung adenocarcinoma 5
1.5 The interaction of tumor-associated macrophages and cancer-associated fibroblasts in lung adenocarcinoma progression 9
1.6 Integration of single-cell RNA sequencing and spatial transcriptomics data analysis 12
1.7 Research aims 14
CHAPTER 2: MATERIALS AND METHODS 16
2.1 Data acquisition 16
2.2 Quality control and processing scRNA-seq and spatial transcriptomics data 17
2.3 Annotation of scRNA-seq main cell populations 20
2.4 Sub-clustering macrophage populations 20
2.5 Differentially expressed gene (DEGs) analysis 21
2.6 Cell type composition analysis 22
2.6.1 Cell type abundance quantification 22
2.6.2 Generalized Linear Mixed-effects Modeling (GLMM) 23
2.7 Functional enrichment analysis 23
2.7.1 Gene Set Enrichment Analysis (GSEA) 23
2.7.2 Gene Set Variation Analysis (GSVA) 24
2.7.3 Macrophage-specific functional signature scoring 25
2.8 Pseudotime trajectory analysis 25
2.9 Cell-cell communication analysis 27
2.10 Spatial cell type annotation using gene signature scoring 28
2.11 Spatial deconvolution analysis of cell types 29
2.12 Spatial correlation analysis of TAMs and CAFs 29
2.13 Spatial interaction analysis of TAMs and CAFs 31
2.13.1 Cell type-weighted signaling score calculation 31
2.13.2 Co-localization analysis using Moran’s I autocorrelation 32
2.13.3 Tumor-stromal interface identification 33
2.13.4 Spatial functional gene signature analysis 33
2.14 Clinical validation using TCGA data 33
2.14.1 TCGA-based validation of TAM-CAF correlation 33
2.14.2 Survival analysis 34
2.15 Statistical analysis 36
CHAPTER 3: RESULTS 37
3.1 Single-cell profiling identifies macrophages as abundant immune cells in LUAD 37
3.2 Identification and characterization of macrophage subpopulations in LUAD 38
3.3 Differential distribution of macrophage subpopulations between conditions 38
3.4 Functional characterization of macrophage subpopulations in LUAD 40
3.4.1 KEGG pathway enrichment identifies subtype-related signaling programs 41
3.4.2 Hallmark gene set analysis reveals core biological activities 42
3.4.3 Differential expression of functional marker genes validates subtype identities 44
3.5 Pseudotime analysis reveals distinct differentiation pathways of macrophage subpopulations within the tumor microenvironment 46
3.5.1 CytoTRACE analysis identifies differentiation states across macrophage subtypes 46
3.5.2 Trajectory inference reveals branched differentiation pathways 47
3.5.3 Dynamic gene expression profiling characterizes molecular transitions along pseudotime 48
3.6 Cell-cell communication reveals tumor-specific SPP1-CD44 axis interactions between TAMs and CAFs 49
3.7 SPP1+TAMs are enriched in tumors and predict worse clinical prevalent 51
3.8 Spatial profiling and deconvolution validates cellular distributions 52
3.9 Spatial proximity and co-localization of SPP1+TAMs and CD44+CAFs in lung tumors 53
3.9.1 Spatial proximity of TAMs and CAFs 53
3.9.2 Co-localization quantification of SPP1+TAMs and CD44+CAFs 55
3.10 Functional signaling pathway activation at tumor-stromal interfaces 57
3.11 Clinical validation of TAM-CAF co-enrichment 58
CHAPTER 4: DISCUSSION 59
CHAPTER 5: CONCLUSION 64
FIGURES 65
TABLES 90
REFERENCES 91
-
dc.language.isoen-
dc.subject肺腺癌-
dc.subject腫瘤微環境-
dc.subject腫瘤相關巨噬細胞-
dc.subject組織常駐型巨噬細胞-
dc.subject單細胞轉錄體-
dc.subject空間轉錄體-
dc.subject癌症相關纖維母細胞-
dc.subjectSPP1-
dc.subjectlung adenocarcinoma (LUAD)-
dc.subjecttumor microenvironment (TME)-
dc.subjecttumor-associated macrophages (TAMs)-
dc.subjecttissue-resident macrophage (TRAMs)-
dc.subjectsingle-cell RNA sequencing (scRNA-seq)-
dc.subjectspatial transcriptomics (ST)-
dc.subjectsecreted phosphoprotein 1 (SPP1)-
dc.subjectcancer-associated fibroblasts (CAFs)-
dc.title單細胞與空間轉錄體學揭示肺腺癌中腫瘤相關巨噬細胞的異性及其與癌症相關成纖維細胞之鄰近交互作用zh_TW
dc.titleSingle-Cell and Spatial Transcriptomics Unveil Heterogeneity of Tumor-Associated Macrophages and Their Proximity Interactions with Cancer-Associated Fibroblasts in Lung Adenocarcinomaen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃宣誠;許家郎zh_TW
dc.contributor.oralexamcommitteeHsuan-Cheng Huang;Chia-Lang Hsuen
dc.subject.keyword肺腺癌,腫瘤微環境腫瘤相關巨噬細胞組織常駐型巨噬細胞單細胞轉錄體空間轉錄體癌症相關纖維母細胞SPP1zh_TW
dc.subject.keywordlung adenocarcinoma (LUAD),tumor microenvironment (TME)tumor-associated macrophages (TAMs)tissue-resident macrophage (TRAMs)single-cell RNA sequencing (scRNA-seq)spatial transcriptomics (ST)secreted phosphoprotein 1 (SPP1)cancer-associated fibroblasts (CAFs)en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202600290-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-02-02-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
dc.date.embargo-lift2030-01-30-
Appears in Collections:基因體與系統生物學學位學程

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
  Restricted Access
5.64 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved