請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101521完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | Thembeka Mabaso | zh_TW |
| dc.contributor.author | Thembeka Mabaso | en |
| dc.date.accessioned | 2026-02-04T16:27:05Z | - |
| dc.date.available | 2026-02-05 | - |
| dc.date.copyright | 2026-02-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-21 | - |
| dc.identifier.citation | Abiye, T. A., & Ali, K. A. (2022). Potential role of acid mine drainage management towards achieving sustainable development in the Johannesburg region, South Africa. Groundwater for Sustainable Development, 19, 100839. https://doi.org/10.1016/j.gsd.2022.100839
Aborisade, M. A., Geng, H., Oba, B. T., Kumar, A., Ndudi, E. A., Battamo, A. Y., Liu, J., Chen, D., Okimiji, O. P., Ojekunle, O. Z., Yang, Y., Sun, P., & Zhao, L. (2023). Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. Journal of Plant Physiology, 287, 154023. https://doi.org/10.1016/j.jplph.2023.154023 Ajeethan, N., Ali, S., Fuller, K. D., Abbey, L., & Yurgel, S. N. (2023). Apple root microbiome as Indicator of plant adaptation to apple replant diseased soils. Microorganisms, 11(6), 1372. https://doi.org/10.3390/microorganisms11061372 Akabzaa, T. M., Jamieson, H. E., Jorgenson, N., & Nyame, K. (2009). The combined impact of mine drainage in the Ankobra River Basin, SW Ghana. Mine Water and the Environment, 28(1). https://doi.org/10.1007/s10230-008-0057-1 Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., & Härtel, G. (2010a). Nanofiltration of acid mine drainage. Desalination and Water Treatment, 21(1–3), 148–161. https://doi.org/10.5004/dwt.2010.1316 Alomairy, S., Gnanasekaran, L., Rajendran, S., & Alsanie, W. F. (2023). Biochar supported nano core-shell (TiO2/CoFe2O4) for wastewater treatment. Environmental Research, 238, 117169. https://doi.org/10.1016/j.envres.2023.117169 Ambaye, T. G., Vaccari, M., Van Hullebusch, E. D., Amrane, A., Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/s13762-020-03060-w Amin, S., Abbas, M., Tahir, A., Ghani, N., Abrar, A., Aslam, F., & Ahmad, S. (2022). SEM and XRD for removal of heavy metals from industrial wastewater and characterization of chicken eggshell. Microscopy Research and Technique, 85(7), 2587–2595. https://doi.org/10.1002/jemt.24113 An, W., Liu, Y., Chen, H., Sun, X., Wang, Q., Hu, X., & Di, J. (2024). Adsorption properties of Pb(II) and Cd(II) in acid mine drainage by oyster shell loaded lignite composite in different morphologies. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62506-0 Arabkhani, P., Asfaram, A., & Sadegh, F. (2023). Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies. Environmental Science and Pollution Research, 30(57), 120085–120102. https://doi.org/10.1007/s11356-023-30469-w Arif, M., Liu, G., Yousaf, B., Ahmed, R., Irshad, S., Ashraf, A., Zia-Ur-Rehman, M., & Rashid, M. S. (2021). Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review. Journal of Cleaner Production, 310, 127548. https://doi.org/10.1016/j.jclepro.2021.127548 Ayaz, T., Khan, S., Khan, A. Z., Lei, M., & Alam, M. (2020). Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). Journal of Environmental Management, 255, 109833. https://doi.org/10.1016/j.jenvman.2019.109833 Bacirhonde, P. M., Dzade, N. Y., Eya, H. I., Kim, C. S., & Park, C. H. (2022). A potential peanut shell feedstock pyrolyzed biochar and Iron-Modified peanut shell biochars for heavy metal fixation in acid mine drainage. ACS Earth and Space Chemistry, 6(11), 2651–2665. https://doi.org/10.1021/acsearthspacechem.2c00185 Balistrieri, L. S., Seal, R. R., Piatak, N. M., & Paul, B. (2007). Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 22(5), 930–952. https://doi.org/10.1016/j.apgeochem.2007.02.005 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 Borken, W., Horn, M. A., Geimer, S., Aguilar, N. A., & Knorr, K. H. (2016). Associative nitrogen fixation in nodules of the conifer Lepidothamnus fonkii (Podocarpaceae) inhabiting ombrotrophic bogs in southern Patagonia. Scientific Reports, 6, 39072. https://doi.org/10.1038/srep39072 Braghiroli, F. L., Bouafif, H., Neculita, C. M., & Koubaa, A. (2019). Performance of Physically and Chemically Activated Biochars in Copper Removal from Contaminated Mine Effluents. Water Air & Soil Pollution, 230(8). https://doi.org/10.1007/s11270-019-4233-7 Brown, J., Sander, S., Craw, D., & Hunter, K. (2005). Measurement of labile metals in acid rock drainage springs, New Zealand: Field application of anodic stripping voltammetry. Applied Geochemistry, 20(8), 1533–1545. https://doi.org/10.1016/j.apgeochem.2005.04.014 Cacciuttolo, C., Cano, D., & Custodio, M. (2023). Socio-Environmental Risks Linked with Mine Tailings Chemical Composition: Promoting Responsible and Safe Mine Tailings Management Considering Copper and Gold Mining Experiences from Chile and Peru. Toxics, 11(5), 462. https://doi.org/10.3390/toxics11050462 Cai, X., Li, J., Liu, Y., Yan, Z., Tan, X., Liu, S., Zeng, G., Gu, Y., Hu, X., & Jiang, L. (2018). Titanium dioxide‐coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants. Journal of Chemical Technology & Biotechnology, 93(3), 783–791. https://doi.org/10.1002/jctb.5428 Cairns, S., Todd, A., Robertson, I., Byrne, P., & Dunlop, T. (2022). Treatment of mine water for the fast removal of zinc and lead by wood ash amended biochar. Environmental Science Advances, 1(4), 506–516. https://doi.org/10.1039/d2va00085g Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 Chamorro, S., Barata, C., Piña, B., Casado, M., Schwarz, A., Sáez, K., & Vidal, G. (2017). Toxicological analysis of acid mine drainage by water quality and land use bioassays. Mine Water and the Environment, 37(1), 88–97. https://doi.org/10.1007/s10230-017-0472-2 Chandra, S., Jagdale, P., Medha, I., Tiwari, A., Bartoli, M., Nino, A., & Olivito, F. (2021). Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review. Toxics, 9(11), 313. https://doi.org/10.3390/toxics9110313 Chang, C., Chen, C., Yang, C., Chen, Y., Huang, M., Chang, C., Shie, J., Yuan, M., Chen, Y., Ho, C., Li, K., & Yang, M. (2016). Conversion of waste bamboo chopsticks to bio-oil via catalytic hydrothermal liquefaction using K2CO3. Sustainable Environment Research, 26(6), 262–267. https://doi.org/10.1016/j.serj.2016.08.002 Chang, J., Deng, S., Li, X., Li, Y., Chen, J., & Duan, C. (2022). Effective treatment of acid mine drainage by constructed wetland column: Coupling walnut shell and its biochar product as the substrates. Journal of Water Process Engineering, 49, 103116. https://doi.org/10.1016/j.jwpe.2022.103116 Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A. K., & Verma, S. (2023). Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03715-3 Chen, C., & Jiang, W. (2012). Influence of waterfall aeration and seasonal temperature variation on the iron and arsenic attenuation rates in an acid mine drainage system. Applied Geochemistry, 27(10), 1966–1978. https://doi.org/10.1016/j.apgeochem.2012.06.003 Chen, D., Yu, X., Song, C., Pang, X., Huang, J., & Li, Y. (2016). Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Bioresource Technology, 218, 1303–1306. https://doi.org/10.1016/j.biortech.2016.07.112 Chen, J., Deng, S., Jia, W., Li, X., & Chang, J. (2021). Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. Bioresource Technology, 331, 125061. https://doi.org/10.1016/j.biortech.2021.125061 Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B., & Chang, J. (2020). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. Journal of Hazardous Materials, 404, 124125. https://doi.org/10.1016/j.jhazmat.2020.124125 Cloutier-Hurteau, B., Sauvé, S., & Courchesne, F. (2008). Influence of microorganisms on Cu speciation in the rhizosphere of forest soils. Soil Biology and Biochemistry, 40(9), 2441–2451. https://doi.org/10.1016/j.soilbio.2008.06.006 Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. G. S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7, 100094. https://doi.org/10.1016/j.hazadv.2022.100094 Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3, 100064. https://doi.org/10.1016/j.hazl.2022.100064 Cun, D., Deng, S., Li, X., Yang, F., Chang, J., Duan, P., & Duan, C. (2024). High acidity notably influences acid mine drainage treatment performance in constructed wetlands packed with composite organic substrates by affecting both abiotic and biotic routes. Chemical Engineering Journal, 496, 153836 https://doi.org/10.1016/j.cej.2024.153836 Di, J., Ruan, Z., Zhang, S., Dong, Y., Fu, S., Li, H., & Jiang, G. (2022). Adsorption behaviors and mechanisms of Cu2+, Zn2+ and Pb2+ by magnetically modified lignite. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05453-y Ding, E., Jiang, J., Lan, Y., Zhang, L., Gao, C., Jiang, K., Qi, X., & Fan, X. (2023). Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. Journal of Analytical and Applied Pyrolysis, 169, 105788. https://doi.org/10.1016/j.jaap.2022.105788 Dold, B., Wade, C., & Fontboté, L. (2008). Water management for acid mine drainage control at the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit Cerro de Pasco, Peru. Journal of Geochemical Exploration, 100(2–3), 133–141. https://doi.org/10.1016/j.gexplo.2008.05.002 Dong, Q., Li, H., Niu, M., Luo, C., Zhang, J., Qi, B., Li, X., & Zhong, W. (2018). Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresource Technology, 266, 284–290. https://doi.org/10.1016/j.biortech.2018.06.104 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature biotechnology, 38(6), 685–688. https://doi.org/10.1038/s41587-020-0548-6 Dutta, M., Islam, N., Rabha, S., Narzary, B., Bordoloi, M., Saikia, D., Silva, L. F., & Saikia, B. K. (2019). Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study. Journal of Hazardous Materials, 389, 121851. https://doi.org/10.1016/j.jhazmat.2019.121851 European Union (EU). (2021). Drinking Water - Essential Quality Standards. https://eur-lex.europa.eu/EN/legal-content/summary/drinking-water-essential-quality-standards.html (accessed 3 December 2024). Fosso-Kankeu, E., Manyatshe, A., & Waanders, F. (2016). Mobility potential of metals in acid mine drainage occurring in the Highveld area of Mpumalanga Province in South Africa: Implication of sediments and efflorescent crusts. International Biodeterioration & Biodegradation, 119, 661–670. https://doi.org/10.1016/j.ibiod.2016.09.018 Fahmi, A. H., Samsuri, A. W., Hamdan, J., & Karam, D. S. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Advances, 8(67), 38270–38280. https://doi.org/10.1039/c8ra06867d Fuchida, S., Suzuki, K., Kato, T., Kadokura, M., & Tokoro, C. (2020). Understanding the biogeochemical mechanisms of metal removal from acid mine drainage with a subsurface limestone bed at the Motokura Mine, Japan. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78069-9 Gao, J., Zhao, M., Xu, Z., Liu, K., Zhong, H., & Tsang, D. C. (2023). Mechanochemical synthesis of calcium-biochar for decontamination of arsenic-containing acid mine drainage. Bioresource Technology, 390, 129892. https://doi.org/10.1016/j.biortech.2023.129892 Gao, L., Li, Z., Yi, W., Wang, L., Song, N., Zhang, W., Li, G., Wang, S., Li, N., & Zhang, A. (2022). Effective Pb2+ adsorption by calcium alginate/modified cotton stalk biochar aerogel spheres: With application in actual wastewater. Journal of Environmental Chemical Engineering, 11(1), 109074. https://doi.org/10.1016/j.jece.2022.109074 García-Valero, A., Martínez-Martínez, S., Faz, A., Rivera, J., & Acosta, J. (2019). Environmentally sustainable acid mine drainage remediation: Use of natural alkaline material. Journal of Water Process Engineering, 33, 101064. https://doi.org/10.1016/j.jwpe.2019.101064 Gardner, M., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/s1352-2310(97)00447-0 Godwin, P. M., Pan, Y., Xiao, H., & Afzal, M. T. (2019). Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. Journal of Bioresources and Bioproducts, 4(1), 31–42. https://doi.org/10.21967/jbb.v4i1.180 Gonçalves, O. S., Fernandes, A. S., Tupy, S. M., Ferreira, T. G., Almeida, L. N., Creevey, C. J., & Santana, M. F. (2024). Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil Biology and Biochemistry, 192, 109369. https://doi.org/10.1016/j.soilbio.2024.109369 Guo, X., Liu, A., Lu, J., Niu, X., Jiang, M., Ma, Y., Liu, X., & Li, M. (2020). Adsorption mechanism of hexavalent chromium on Biochar: Kinetic, Thermodynamic, and Characterization studies. ACS Omega, 5(42), 27323–27331. https://doi.org/10.1021/acsomega.0c03652 Gupta, S., Sireesha, S., Sreedhar, I., Patel, C. M., & Anitha, K. (2020). Latest trends in heavy metal removal from wastewater by biochar based sorbents. Journal of Water Process Engineering, 38, 101561. https://doi.org/10.1016/j.jwpe.2020.101561 Hassan, A., Kaewsichan, L. 2016. Removal of Pb(II) from aqueous solutions using mixtures of bamboo biochar and calcium sulphate, and hydroxyapatite and calcium sulphate. Environment Asia 9(1):37-44. Hornung, A., Stenzel, F., & Grunwald, J. (2021). Biochar—just a black matter is not enough. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01284-5 Hou, D., Zhang, P., Wei, D., Zhang, J., Yan, B., Cao, L., Zhou, Y., & Luo, L. (2020). Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. Journal of Hazardous Materials, 396, 122631. https://doi.org/10.1016/j.jhazmat.2020.122631 Huang, Y., Chiueh, P., & Lo, S. (2022). Carbon capture of biochar produced by microwave co-pyrolysis: adsorption capacity, kinetics, and benefits. Environmental Science and Pollution Research, 30(9), 22211–22221. https://doi.org/10.1007/s11356-022-23734-x Hussain, A., Maitra, J., & Khan, K. A. (2017). Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Applied Water Science, 7(8), 4525–4537. https://doi.org/10.1007/s13201-017-0604-7 International Agency for Research on Cancer (IARC). (2006). IARC monographs on the evaluation of carcinogenic risks to humans: Inorganic and organic lead compounds. World Health Organization, vol. 87. Irfan, M., Ghalib, S. A., Waqas, S., Khan, J. A., Rahman, S., Mursal, S. N. F., & Ghanim, A. a. J. (2023). Response Surface Methodology for the Synthesis and Characterization of Bio-Oil Extracted from Biomass Waste and Upgradation Using the Rice Husk Ash Catalyst. ACS Omega, 8(20), 17869–17879. https://doi.org/10.1021/acsomega.3c00868 Irshad, S., Xie, Z., Kamran, M., Nawaz, A., Faheem, N., Mehmood, S., Gulzar, H., Saleem, M. H., Rizwan, M., Malik, Z., Parveen, A., & Ali, S. (2021). Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland. Environmental Pollution, 291, 118269. https://doi.org/10.1016/j.envpol.2021.118269 Isaac, R., & Siddiqui, S. (2022). Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresource Technology Reports, 18, 101004. https://doi.org/10.1016/j.biteb.2022.101004 Islam, M. S., Kwak, J. H., Nzediegwu, C., Wang, S., Palansuriya, K., Kwon, E. E., Naeth, M. A., El-Din, M. G., Ok, Y. S., & Chang, S. X. (2021). Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution, 281, 117094. https://doi.org/10.1016/j.envpol.2021.117094 Jain, M., Khan, S. A., Sahoo, A., Dubey, P., Pant, K. K., Ziora, Z. M., & Blaskovich, M. A. (2022). Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresource Technology, 352, 127030. https://doi.org/10.1016/j.biortech.2022.127030 Jee, H. K., & Park, J. H. (2025). Mitigating manganese phytoavailability in Cr(III)-contaminated soils using biochar and lime. Environmental Pollutants and Bioavailability, 37(1). https://doi.org/10.1080/26395940.2025.2543318 Jensen, A. B., Eller, F., & Sorrell, B. K. (2023). Comparative flooding tolerance of Typha latifolia and Phalaris arundinacea in wetland restoration: Insights from photosynthetic CO2 response curves, photobiology and biomass allocation. Heliyon, 10(1), e23657. https://doi.org/10.1016/j.heliyon.2023.e23657 Ji, Z., Tang, W., & Pei, Y. (2022). Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere, 286, 131564. https://doi.org/10.1016/j.chemosphere.2021.131564 Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z., & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, 1240–1260. https://doi.org/10.1016/j.psep.2022.12.083 Jodnok, S., Choeisai, P., Kruehong, C., & Choeisai, K. (2021). Recycling disposable bamboo chopstick waste as a renewable energy resource: Case study in Khon Kaen University, Thailand. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00101-y Kamran, U., Lee, S., Rhee, K. Y., & Park, S. (2023). Rice husk valorization into sustainable Ni@TiO2/biochar nanocomposite for highly selective Pb (II) ions removal from an aqueous media. Chemosphere, 323, 138210. https://doi.org/10.1016/j.chemosphere.2023.138210 Kang, J., Lee, Y., Son, C., Park, S., Lee, C. (2024). Alternative assessment of machine learning to polynomial regression in response surface methodology for predicting decolorization efficiency in textile wastewater treatment. Chemosphere, 370, 143996. https://doi.org/10.1016/j.chemosphere.2024.143996 Kang, J., Seo, E., Lee, C., Jeong, S., & Park, S. (2022). Application of response surface methodology and artificial neural network for the preparation of Fe-loaded biochar for enhanced Cr(VI) adsorption and its physicochemical properties and Cr(VI) adsorption characteristics. Environmental Science and Pollution Research, 29(40), 60852–60866. https://doi.org/10.1007/s11356-022-20009-3 Kavehei, A., Hose, G. C., & Gore, D. B. (2020). History of environmental contamination at Sunny Corner Ag–Pb–Zn mine, eastern Australia: A meta-analysis approach. Environmental Pollution, 273, 115742. https://doi.org/10.1016/j.envpol.2020.115742 Khoshraftar, Z., Masoumi, H., & Ghaemi, A. (2023). Experimental, response surface methodology (RSM) and mass transfer modeling of heavy metals elimination using dolomite powder as an economical adsorbent. Case Studies in Chemical and Environmental Engineering, 7, 100329. https://doi.org/10.1016/j.cscee.2023.100329 Kołodyńska, D., Bąk, J., Kozioł, M., & Pylychuk, L. V. (2017). Investigations of heavy metal ion sorption using nanocomposites of Iron-Modified biochar. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/s11671-017-2201-y Lam, S. S., Azwar, E., Peng, W., Tsang, Y. F., Ling, N., Liu, Z., Park, Y., & Kwon, E. E. (2019). Cleaner conversion of bamboo into carbon fibre with favourable physicochemical and capacitive properties via microwave pyrolysis combining with solvent extraction and chemical impregnation. Journal of Cleaner Production, 236, 117692. https://doi.org/10.1016/j.jclepro.2019.117692 Lazareva, E., Myagkaya, I., Kirichenko, I., Gustaytis, M., & Zhmodik, S. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. The Science of the Total Environment, 660, 468–483. https://doi.org/10.1016/j.scitotenv.2018.12.467 Le, O. T. H., Tran, L. N., Doan, V. T., Van Pham, Q., Van Ngo, A., & Nguyen, H. H. (2020). Mucilage Extracted from Dragon Fruit Peel (Hylocereus undatus) as Flocculant for Treatment of Dye Wastewater by Coagulation and Flocculation Process. International Journal of Polymer Science, 2020, 1–9. https://doi.org/10.1155/2020/7468343 Lepš, J., & Šmilauer, P. (2003a). Basics of gradient analysis. In Multivariate analysis of ecological data using CANOCO (pp. 25-42). Cambridge University Press. Li, D., Fang, Y., Lu, J., Sun, J., Zhao, X., Hou, N., & Xing, J. (2023). Enhanced biodegradation of PAHs by biochar and a TiO2@biochar composite under light irradiation: Photocatalytic mechanism, toxicity evaluation and ecological response. Chemical Engineering Journal, 458, 141495. https://doi.org/10.1016/j.cej.2023.141495 Li, Z., Huang, C., Guo, L., Cui, L., & Zhou, B. (2016). Mass production and application of TiO2@CaCO3 composites in interior emulsion coatings. Colloids and Surfaces a Physicochemical and Engineering Aspects, 498, 98–105. https://doi.org/10.1016/j.colsurfa.2016.03.038 Lian, W., Yang, L., Joseph, S., Shi, W., Bian, R., Zheng, J., Li, L., Shan, S., & Pan, G. (2020). Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresource Technology, 317, 124011. https://doi.org/10.1016/j.biortech.2020.124011 Liu, C., Lin, J., Chen, Y., Wang, W., & Yang, Y. (2022). Comparative Study of Biochar Modified with Different Functional Groups for Efficient Removal of Pb(II) and Ni(II). International Journal of Environmental Research and Public Health, 19(18), 11163. https://doi.org/10.3390/ijerph191811163 Liu, D., Hao, Z., Chen, D., Jiang, L., Li, T., Tian, B., Yan, C., Luo, Y., Chen, G., & Ai, H. (2022). Use of Eggshell-Catalyzed Biochar Adsorbents for Pb Removal from Aqueous Solution. ACS Omega, 7(25), 21808–21819. https://doi.org/10.1021/acsomega.2c01957 Liu, L., Yang, X., Ahmad, S., Li, X., Ri, C., Tang, J., Ellam, R. M., & Song, Z. (2023). Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chemical Engineering Journal, 457, 141194. https://doi.org/10.1016/j.cej.2022.141194 Liu, S., Peng, S., Zhang, B., Xue, B., Yang, Z., Wang, S., & Xu, G. (2022). Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. RSC Advances, 12(16), 9587–9598. https://doi.org/10.1039/d1ra09167k Liu, Y., Dai, X., Li, J., Cheng, S., Zhang, J., & Ma, Y. (2024). Recent progress in TiO2–biochar-based photocatalysts for water contaminants treatment: strategies to improve photocatalytic performance. RSC Advances, 14(1), 478–491. https://doi.org/10.1039/d3ra06910a Lizárraga-Mendiola, L., González-Sandoval, M. R., Durán-Domínguez, M. C., & Márquez-Herrera, C. (2008). Geochemical behavior of heavy metals in a Zn–Pb–Cu mining area in the State of Mexico (central Mexico). Environmental Monitoring and Assessment, 155(1–4), 355–372. https://doi.org/10.1007/s10661-008-0440-1 López-Cano, A. A., Martínez-Aguilar, V., Peña-Juárez, M. G., López-Esparza, R., Delgado-Alvarado, E., Gutiérrez-Castañeda, E. J., Del Angel-Monroy, M., Pérez, E., Herrera-May, A. L., & Gonzalez-Calderon, J. A. (2023). Chemically Modified Nanoparticles for Enhanced Antioxidant and Antimicrobial Properties with Cinnamon Essential Oil. Antioxidants, 12(12), 2057. https://doi.org/10.3390/antiox12122057 Lu, L., Shan, R., Shi, Y., Wang, S., & Yuan, H. (2019). A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 222, 391–398. https://doi.org/10.1016/j.chemosphere.2019.01.132 Luís, A. T., Teixeira, P., Almeida, S. F. P., Ector, L., Matos, J. X., & Da Silva, E. a. F. (2009). Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel Mining Area (Portugal). Water Air & Soil Pollution, 200(1–4), 147–167. https://doi.org/10.1007/s11270-008-9900-z Lyonga, F. N., Hong, S., Cho, E., Kang, J., Lee, C., & Park, S. (2020). As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. Environmental Geochemistry and Health, 43(9), 3303–3321. https://doi.org/10.1007/s10653-020-00739-4 Mabaso, T., Lo, S., & Chiueh, P. (2024). Effect of pyrolytic temperature on the adsorption of Pb(II) from synthetic wastewater onto bamboo chopstick biochar: a conventional vs. microwave-assisted pyrolysis approach. Sustainable Environment Research, 34(1). https://doi.org/10.1186/s42834-024-00238-6 Mabaso, T., Xue, T., Lo, S., Wu, H., & Singh, S. (2025). Sustainably Engineered Chopstick–Eggshell Composite Biochar: Integrated Optimization and Machine Learning Framework for Heavy Metal Removal from Acid Mine Drainage. Journal of Hazardous Materials Advances, 19, 100838. https://doi.org/10.1016/j.hazadv.2025.100838 Manyà, J. J. (2012). Pyrolysis for Biochar Purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939–7954. https://doi.org/10.1021/es301029g Martínez-Martínez, J. G., Rosales-Loredo, S., Hernández-Morales, A., Arvizu-Gómez, J. L., Carranza-Álvarez, C., Macías-Pérez, J. R., Rolón-Cárdenas, G. A., & Pacheco-Aguilar, J. R. (2023). Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes. Microorganisms, 11(6), 1587. https://doi.org/10.3390/microorganisms11061587 Ministry of Environment (MOEnv). (2024). Laws and Regulations Database of the Republic of China (Taiwan) – Drinking Water Quality Standards. https://oaout.moenv.gov.tw/law//EngLawContent.aspx?id=338 (accessed 24 June 2025). Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of FE deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945. https://doi.org/10.3390/plants12101945 Mothetha, M., Kebede, K., Masindi, V., & Msagati, T. A. (2022). Effective treatment of real acid mine drainage using MgO-metakaolinite nanocomposite. Journal of Water Process Engineering, 51, 103370. https://doi.org/10.1016/j.jwpe.2022.103370 Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., De Medeiros, G. A., Pereira, A. D. E. S., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815 Mukome, F. N., Zhang, X., Silva, L. C. R., Six, J., & Parikh, S. J. (2013). Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks. Journal of Agricultural and Food Chemistry, 61(9), 2196–2204. https://doi.org/10.1021/jf3049142 Murray, J., Nordstrom, D. K., Dold, B., & Kirschbaum, A. (2021). Seasonal fluctuations and geochemical modeling of acid mine drainage in the semi-arid Puna region: The Pan de Azúcar Pb–Ag–Zn mine, Argentina. Journal of South American Earth Sciences, 109, 103197. https://doi.org/10.1016/j.jsames.2021.103197 Mustapha, L., Yusuff, A., & Dim, P. (2023). RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon, 9(8), e18634. https://doi.org/10.1016/j.heliyon.2023.e18634 Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, 318–336. https://doi.org/10.1016/j.sajce.2022.09.007 Nan, H., Yin, J., Yang, F., Luo, Y., Zhao, L., & Cao, X. (2021). Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 287, 117566. https://doi.org/10.1016/j.envpol.2021.117566 Naniwa, S., Kato, K., Yamakata, A., Yamamoto, A., & Yoshida, H. (2023). A quantitative study on the relationship of specific surface area and carrier lifetime to photocatalytic activity of anatase TIO2 nanoparticles. ACS Catalysis, 13(22), 15212–15218. https://doi.org/10.1021/acscatal.3c04209 Nguyen, T. T., He, H., Nguyen, T. a. H., & Soda, S. (2022). Recycling clamshell as substrate in lab-scale constructed wetlands for heavy metal removal from simulated acid mine drainage. Process Safety and Environmental Protection/Transactions of the Institution of Chemical Engineers. Part B, Process Safety and Environmental Protection/Chemical Engineering Research and Design/Chemical Engineering Research & Design, 165, 950–958. https://doi.org/10.1016/j.psep.2022.04.026 Nieto, J. M., Sarmiento, A. M., Olías, M., Canovas, C. R., Riba, I., Kalman, J., & Delvalls, T. A. (2006). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33(4), 445–455. https://doi.org/10.1016/j.envint.2006.11.010 Nnadozie, E. C., & Ajibade, P. A. (2020). Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous and Mesoporous Materials, 309, 110573. https://doi.org/10.1016/j.micromeso.2020.110573 Nnadozie, E. C., & Ajibade, P. A. (2021). Isotherm, kinetics, thermodynamics studies and effects of carbonization temperature on adsorption of Indigo Carmine (IC) dye using C. odorata biochar. Chemical Data Collections, 33, 100673. https://doi.org/10.1016/j.cdc.2021.100673 Nqombolo, A., Mpupa, A., Gugushe, A. S., Moutloali, R. M., & Nomngongo, P. N. (2018). Adsorptive removal of lead from acid mine drainage using cobalt-methylimidazolate framework as an adsorbent: kinetics, isotherm, and regeneration. Environmental Science and Pollution Research, 26(4), 3330–3339. https://doi.org/10.1007/s11356-018-3868-z Nzediegwu, C., Naeth, M. A., & Chang, S. X. (2021). Lead(II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature. Journal of Hazardous Materials, 412, 125255. https://doi.org/10.1016/j.jhazmat.2021.125255 Pal, G., Saxena, S., Kumar, K., Verma, A., Sahu, P. K., Pandey, A., White, J. F., & Verma, S. K. (2022). Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiological Research, 265, 127201. https://doi.org/10.1016/j.micres.2022.127201 Pandey, V. C., Singh, N., Singh, R. P., & Singh, D. (2014). Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: Study from the field. Ecological Engineering, 71, 722–727. https://doi.org/10.1016/j.ecoleng.2014.08.002 Pang, Y. X., Sharmin, N., Wu, T., & Pang, C. H. (2023). An investigation on plant cell walls during biomass pyrolysis: A histochemical perspective on engineering applications. Applied Energy, 343, 121055. https://doi.org/10.1016/j.apenergy.2023.121055 Patil, P., Jeppu, G., Vallabha, M. S., & Girish, C. R. (2024). Enhanced adsorption of phenolic compounds using biomass-derived high surface area activated carbon: Isotherms, kinetics and thermodynamics. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-32971-1 Pettinato, M., Chakraborty, S., Arafat, H. A., & Calabro, V. (2015). Eggshell: A green adsorbent for heavy metal removal in an MBR system. Ecotoxicology and Environmental Safety, 121, 57–62. https://doi.org/10.1016/j.ecoenv.2015.05.046 Phadungbut, P., Koo‐Amornpattana, W., Bumroongsri, P., Ratchahat, S., Kunthakudee, N., Jonglertjunya, W., Chalermsinsuwan, B., & Hunsom, M. (2022). Adsorptive purification of CO2/H2 gas mixtures of spent disposable wooden chopstick-derived activated carbon: Optimal synthesis condition. Separation and Purification Technology, 291, 120948. https://doi.org/10.1016/j.seppur.2022.120948 Phiri, Z., Moja, N. T., Nkambule, T. T., & De Kock, L. (2024). Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon, 10(4), e25785. https://doi.org/10.1016/j.heliyon.2024.e25785 Potnuri, R., Surya, D. V., Rao, C. S., Yadav, A., Sridevi, V., & Remya, N. (2023). A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass. Journal of Analytical and Applied Pyrolysis, 173, 106094. https://doi.org/10.1016/j.jaap.2023.106094 Qin, J., Wang, X., Deng, M., Li, H., & Lin, C. (2022). Red mud-biochar composites (co-pyrolyzed red mud-plant materials): Characteristics and improved efficacy on the treatment of acidic mine water and trace element-contaminated soils. The Science of the Total Environment, 844, 157062. https://doi.org/10.1016/j.scitotenv.2022.157062 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(Database issue), D590–D596. https://doi.org/10.1093/nar/gks1219 Raj, K., & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, 79–85. https://doi.org/10.1016/j.enceco.2023.02.001 Ramalingam, S., Parthiban, L., & Rangasamy, P. (2014). Biosorption Modeling with Multilayer Perceptron for Removal of Lead and Zinc Ions Using Crab Shell Particles. Arabian Journal for Science and Engineering, 39(12), 8465–8475. https://doi.org/10.1007/s13369-014-1412-0 Reis, V. M., & Teixeira, K. R. (2015). Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. Journal of basic microbiology, 55(8), 931–949. https://doi.org/10.1002/jobm.201400898 Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T., & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. https://doi.org/10.1016/j.cej.2022.136778 Romero, F. M., Núñez, L., Gutiérrez, M. E., Armienta, M. A., & Ceniceros-Gómez, A. E. (2010). Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco Mining Area, Mexico. Archives of Environmental Contamination and Toxicology, 60(2), 191–203. https://doi.org/10.1007/s00244-010-9544-z Roy, S., Kumar, U., & Bhattacharyya, P. (2019). Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Environmental Science and Pollution Research, 26(7), 7272–7276. https://doi.org/10.1007/s11356-018-04117-7 RoyChowdhury, A., Sarkar, D., & Datta, R. (2018). Removal of Acidity and Metals from Acid Mine Drainage-Impacted Water using Industrial Byproducts. Environmental Management, 63(1), 148–158. https://doi.org/10.1007/s00267-018-1112-8 Rumelhart, D., Hinton, G. & Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0 Sadhiyan, B., Mezlini, W., Madan, S., & Kumari, M. (2025). Biochar in Constructed Wetlands and Biofilters: Unveiling its Potential for Wastewater Treatment Enhancement and Ecological Benefits. Groundwater for Sustainable Development, 101533. https://doi.org/10.1016/j.gsd.2025.101533 Saeed, A. a. H., Harun, N. Y., Sufian, S., Bilad, M. R., Nufida, B. A., Ismail, N., Zakaria, Z.Y., Jagaba, A. H., Ghaleb, A. a. S., & Al-Dhawi, B. N. S. (2021). Modeling and Optimization of Biochar Based Adsorbent Derived from Kenaf Using Response Surface Methodology on Adsorption of Cd2+. Water (Basel), 13(7), 999. https://doi.org/10.3390/w13070999 Sağlam, E. S., & Akçay, M. (2015). Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environmental Science and Pollution Research, 23(7), 6584–6607. https://doi.org/10.1007/s11356-015-5835-2 Sanders, H. L. (1968). Marine benthic diversity: A comparative study. The American Naturalist, 102(925), 243–282. http://www.jstor.org/stable/2459027 Sekarjannah, F. A., Wardoyo, S. S., & Ratih, Y. W. (2019). Management of mine acid drainage in a constructed wetland using hyacinth plant and addition of organic materials. Journal of Degraded and Mining Lands Management, 6(4), 1847–1855. https://doi.org/10.15243/jdmlm.2019.064.1847 Selvam, S., & Balasubramanian, P. (2022). Influence of Biomass Composition and Microwave Pyrolysis Conditions on Biochar Yield and its Properties: a Machine Learning Approach. Bioenergy Research, 16(1), 138–150. https://doi.org/10.1007/s12155-022-10447-9 Sha, H., Song, X., Al-Dhabi, N. A., Zeng, T., Mao, Y., Fu, Y., Liu, Z., Wang, G., & Tang, W. (2023). Effects of biochar layer position on treatment performance and microbial community in subsurface flow constructed wetlands for removal of cadmium and lead. Bioresource Technology, 394, 130194. https://doi.org/10.1016/j.biortech.2023.130194 Shafiq, M., Alazba, A. A., & Amin, M. (2021). Kinetic and Isotherm Studies of Ni2+ and Pb2+ Adsorption from Synthetic Wastewater Using Eucalyptus camdulensis—Derived Biochar. Sustainability, 13(7), 3785. https://doi.org/10.3390/su13073785 Shikuku, V. O., & Mishra, T. (2021). Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Applied Water Science, 11(6). https://doi.org/10.1007/s13201-021-01440-2 Shirvanimoghaddam, K., Czech, B., Abdikheibari, S., Brodie, G., Krzyszczak, A., Al‐Othman, A., & Naebe, M. (2022). Microwave synthesis of biochar for environmental applications. Journal of Analytical and Applied Pyrolysis, 161, 105415. https://doi.org/10.1016/j.jaap.2021.105415 Shooto, N. D. (2020). Removal of toxic hexavalent chromium (Cr(VI)) and divalent lead (Pb(II)) ions from aqueous solution by modified rhizomes of Acorus calamus. Surfaces and Interfaces, 20, 100624. https://doi.org/10.1016/j.surfin.2020.100624 Silva, C. P., Pereira, D., Calisto, V., Martins, M. A., Otero, M., Esteves, V. I., & Lima, D. L. (2021). Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. Journal of Environmental Management, 294, 112937. https://doi.org/10.1016/j.jenvman.2021.112937 Silva, L. F. O., Wollenschlager, M., & Oliveira, M. L. S. (2010). A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environmental Geochemistry and Health, 33(1), 55–65. https://doi.org/10.1007/s10653-010-9322-x Simonin, J. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079 Singh, S., & Chakraborty, S. (2022). Biochemical treatment of coal mine drainage in constructed wetlands: Influence of electron donor, biotic–abiotic pathways and microbial diversity. Chemical Engineering Journal, 440, 135986. https://doi.org/10.1016/j.cej.2022.135986 Soro, A. T., Mufalo, W., Arima, T., Tabelin, C. B., & Igarashi, T. (2023). Geochemical Characterization of Rock Samples from Selected Fiji Mine Sites to Evaluate On-Site Environmental Vulnerabilities. Minerals, 13(5), 661. https://doi.org/10.3390/min13050661 Stylianou, M., Christou, A., Dalias, P., Polycarpou, P., Michael, C., Agapiou, A., Papanastasiou, P., & Fatta-Kassinos, D. (2020). Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds. Journal of the Energy Institute, 93(5), 2063–2073. https://doi.org/10.1016/j.joei.2020.05.002 Su, Y., Zhang, S., Liu, L., Qi, P., Xu, D., Shi, L., Gao, J., Zhang, H., & Zhu, S. (2021). Upgrading biomass fuels via combination of CO2-Leaching and torrefaction. Energy & Fuels, 35(6), 5006–5014. https://doi.org/10.1021/acs.energyfuels.1c00095 Taylor, G. J. (2004). Chemical impacts of acid mine drainage in the Dee River, downstream of the Mt Morgan Mine, Central Queensland, Australia. (Thesis). Central Queensland University. Retrieved from http://hdl.handle.net/10.25946/25271014 Temel, F. A., Yolcu, Ö. C., & Kuleyin, A. (2020). A multilayer perceptron-based prediction of ammonium adsorption on zeolite from landfill leachate: Batch and column studies. Journal of Hazardous Materials, 410, 124670. https://doi.org/10.1016/j.jhazmat.2020.124670 Torres-Rivero, K., Bastos-Arrieta, J., Florido, A., & Martí, V. (2023). Potential Use of Precipitates from Acid Mine Drainage (AMD) as Arsenic Adsorbents. Water, 15(18), 3179. https://doi.org/10.3390/w15183179 Tozsin, G. (2022). Removal of heavy metals from synthetic acidic mine water using recycled aggregates. Middle East Journal of Science : (Online), 8(2), 77–83. https://doi.org/10.51477/mejs.1102985 Uugwanga, M. N., & Kgabi, N. A. (2021). Heavy metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub. Physics and Chemistry of the Earth Parts a/B/C, 124, 103067. https://doi.org/10.1016/j.pce.2021.103067 US Environmental Protection Agency. (2024). National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganics (accessed 3 December 2024). US Environmental Protection Agency. (2004). Lead and compounds (inorganic); CASRN 7439-92-1. Integrated Risk Information System (IRIS). https://iris.epa.gov/static/pdfs/0277_summary.pdf (accessed 3 June 2025). Vaziri, H., Shorafa, M., & Mohammadi, M. H. (2025). Influence of biochar compaction on zinc mobility compared to soil: The role of pore structure and pH stability in contaminant dynamics. Chemosphere, 385, 144594. https://doi.org/10.1016/j.chemosphere.2025.144594 Vyavahare, G. D., Lee, Y., Seok, Y. J., Kim, H. N., Sung, J., & Park, J. H. (2023). Monitoring of Soil Nutrient Levels by an EC Sensor during Spring Onion (Allium fistulosum) Cultivation under Different Fertilizer Treatments. Agronomy, 13(8), 2156. https://doi.org/10.3390/agronomy13082156 Wang, G., Yu, G., Chi, T., Li, Y., Zhang, Y., Wang, J., Li, P., Liu, J., Yu, Z., Wang, Q., Wang, M., & Sun, S. (2023). Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. Journal of Hazardous Materials, 443, 130148. https://doi.org/10.1016/j.jhazmat.2022.130148 Wang, H., Zhang, M., Xue, J., Lv, Q., Yang, J., & Han, X. (2021). Performance and microbial response in a multi-stage constructed wetland microcosm co-treating acid mine drainage and domestic wastewater. Journal of Environmental Chemical Engineering, 9(6), 106786. https://doi.org/10.1016/j.jece.2021.106786 Wang, J., Long, Y., Yu, G., Wang, G., Zhou, Z., Li, P., Zhang, Y., Yang, K., & Wang, S. (2022). A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.845725 Wang, J., Wang, G., Yu, T., Ding, N., Wang, M., & Chen, Y. (2023). Photocatalytic performance of biochar-modified TiO2(C/TiO2) for ammonia–nitrogen removal. RSC Advances, 13(35), 24237–24249. https://doi.org/10.1039/d3ra03789d Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., Mašek, O., Hou, R., O’Connor, D., & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 36(3), 358–386. https://doi.org/10.1111/sum.12592 Wang, T., Jiang, M., Yu, X., Niu, N., & Chen, L. (2022a). Application of lignin adsorbent in wastewater Treatment: A review. Separation and Purification Technology, 302, 122116. https://doi.org/10.1016/j.seppur.2022.122116 Wang, G., Wang, J., Yu, T., Guo, X., & Chen, Y. (2022). Efficient removal of humic acid in water using a novel TiO2 composite with biochar doping. RSC Advances, 12(49), 31966–31975. https://doi.org/10.1039/d2ra05358f Wang, L., Zhou, Z., Li, X., Zeng, L., Xu, W., Ma, Y., & Cai, J. (2024). Enhanced removal of methylene blue from water by mesopore-dominant biochar from kelp: Kinetic, equilibrium and thermodynamic studies. Colloids and Surfaces a Physicochemical and Engineering Aspects, 688, 133652.https://doi.org/10.1016/j.colsurfa.2024.133652 Weidner, E., Karbassiyazdi, E., Altaee, A., Jesionowski, T., & Ciesielczyk, F. (2022). Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A review. ACS Omega, 7(31), 27062–27078. https://doi.org/10.1021/acsomega.2c02909 Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., & Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 27. https://doi.org/10.1186/s40168-017-0237-y Wibowo, Y. G., Sudibyo, N., Naswir, M., & Ramadan, B. S. (2022). Performance of a novel biochar-clamshell composite for real acid mine drainage treatment. Bioresource Technology Reports, 17, 100993. https://doi.org/10.1016/j.biteb.2022.100993 Wibowo, Y. G., Ramadan, B. S., Sudibyo, S., Safitri, H., Rohman, A., & Syarifuddin, H. (2023). Efficient remediation of acid mine drainage through sustainable and economical biochar-CaO composite derived from solid waste. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03311-z Wibowo, Y. G., Wijaya, C., Yudhoyono, A., Sudibyo, N., Yuliansyah, A. T., Safitri, H., Tsabitah, N., Nur’ani, H., Khairurrijal, K., & Petrus, H. T. B. M. (2023). Highly efficient modified constructed wetlands using waste materials for natural acid mine drainage treatment. Sustainability, 15(20), 14869. https://doi.org/10.3390/su152014869 Wijitkosum, S. (2023). Repurposing disposable bamboo chopsticks waste as biochar for agronomical application. Energies, 16(2), 771. https://doi.org/10.3390/en16020771 Wijitkosum, S., & Sriburi, T. (2023). Aromaticity, polarity, and longevity of biochar derived from disposable bamboo chopsticks waste for environmental application. Heliyon, 9(9), e19831. https://doi.org/10.1016/j.heliyon.2023.e19831 World Health Organisation (WHO). (2011). Guidelines for Drinking-Water Quality. https://iris.who.int/bitstream/handle/10665/44584/9789241548151_eng.pdf. (accessed 3 December 2024). Wu, H., Wang, R., Yan, P., Wu, S., Chen, Z., Zhao, Y., Cheng, C., Hu, Z., Zhuang, L., Guo, Z., Xie, H., & Zhang, J. (2023). Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 4(4), 218–234. https://doi.org/10.1038/s43017-023-00395-z Xu, R., Deng, S., Wang, W., Schenk, J., & Wang, F. (2020). Structural Features and Combustion Behaviour of Waste Bamboo Chopstick Chars Pyrolysed at Different Temperatures. Bioenergy Research, 13(2), 439–451. https://doi.org/10.1007/s12155-020-10095-x Yaashikaa, P., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570 Yan, C., Huang, J., Cao, C., Wang, Y., Lin, X., & Qian, X. (2022). Response of constructed wetland for wastewater treatment to graphene oxide: Perspectives on plant and microbe. Journal of Hazardous Materials, 422, 126911. https://doi.org/10.1016/j.jhazmat.2021.126911 Yang, H., Kang, J., Jeong, S., Park, S., & Lee, C. (2022). Removal of perfluorooctanoic acid from water using peroxydisulfate/layered double hydroxide system: Optimization using response surface methodology and artificial neural network. Process Safety and Environmental Protection, 167, 368–377. https://doi.org/10.1016/j.psep.2022.09.032 Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366, 608–621. https://doi.org/10.1016/j.cej.2019.02.119 Ye, Q., Li, Q., & Li, X. (2022). Removal of heavy metals from wastewater using biochars: adsorption and mechanisms. Environmental Pollutants and Bioavailability, 34(1), 385–394. https://doi.org/10.1080/26395940.2022.2120542 Zhakypbek, Y., Kossalbayev, B. D., Belkozhayev, A. M., Murat, T., Tursbekov, S., Abdalimov, E., Pashkovskiy, P., Kreslavski, V., Kuznetsov, V., & Allakhverdiev, S. I. (2024). Reducing heavy metal contamination in soil and water using phytoremediation. Plants, 13(11), 1534. https://doi.org/10.3390/plants13111534 Zhang, H., Li, R., & Zhang, Z. (2022). A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. Environmental Pollution, 293, 118517. https://doi.org/10.1016/j.envpol.2021.118517 Zhang, J., Zhao, X., Wang, W., Song, Z., Mao, Y., Sun, J., & Chen, S. (2023). Removal of p-nitrophenol by double-modified nanoscale zero-valent iron with biochar and sulfide: Key factors and mechanisms. Journal of Water Process Engineering, 51, 103398. https://doi.org/10.1016/j.jwpe.2022.103398 Zhang, L., Chen, J., Zhang, Y., Liu, T., Yao, Q., Yang, L., & Zhou, X. (2021). Interactions between peracetic acid and TiO2 nanoparticle in wastewater disinfection: Mechanisms and implications. Chemical Engineering Journal, 412, 128703. https://doi.org/10.1016/j.cej.2021.128703 Zhang, Y., Liu, R., Tan, L., Yang, N., Kerkula, A., & Wang, H. (2021). Adsorption of Pb(II) by Montmorillonite modified biochars and reduction Pb(II)-stress in plants of microcosms of constructed wetlands: mechanism and treatment performances. Desalination and Water Treatment, 221, 152–162. https://doi.org/10.5004/dwt.2021.27019 Zhou, L., Chen, L., Zhang, Y., Zhang, Y., Li, Z., Yang, K., & Chen, L. (2024). The adsorption characteristics of Phosphorus-Modified Corn Stover biochar on lead and cadmium. Agriculture, 14(7), 1118. https://doi.org/10.3390/agriculture14071118 Zhou, N., Zu, J., Feng, Q., Chen, H., Li, J., Zhong, M., Zhou, Z., & Zhuang, S. (2019). Effect of pyrolysis condition on the adsorption mechanism of heavy metals on tobacco stem biochar in competitive mode. Environmental Science and Pollution Research, 26(26), 26947–26962. https://doi.org/10.1007/s11356-019-05917-1 Zhou, R., Zhang, M., Zhou, J., & Wang, J. (2019). Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54105-1 Zinicovscaia, I., Krakovská, A. S., Yushin, N., Peshkova, A., & Grozdov, D. (2025). Phytoremediation of Zinc-Contaminated Industrial Effluents with Phragmites australis and Typha latifolia in Constructed Wetlands. Water, 17(16), 2358. https://doi.org/10.3390/w17162358 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101521 | - |
| dc.description.abstract | 酸性礦業排水(AMD)因其高酸度與重金屬濃度而持續受到注目。本研究以循環利用為核心,將廢竹筷再利用,製備為具高附加價值的生物炭,用於處理AMD。本研究透過傳統與微波輔助熱解兩種方式製備 11 種生物炭,並利用 BET、CHN/O、SEM-EDS、FTIR 與 XRD 進行材料孔隙結構及表面性質分析。其中以 450 W 微波熱解製得的生物炭在 Pb(II) 吸附上展現最佳效果,在吸附劑用量為2-g L-1、初始濃度50 mg L-1 的條件下達到可於24小時內達到濃度平衡,其去除率可達99.9%。吸附行為符合 Langmuir 等溫模式(qm 可達 89 mg g-1;R2 = 0.98),動力學則符合準二階反應(R2 = 1.00),顯示化學吸附為主要機制,其表面配位與靜電作用亦有相似結論。
此外,450 W 生物炭進一步以 CaCO3 與 CaCO3/TiO2 進行改質,形成 BC-CaCO3 與 BC-CaCO3/TiO2,並以 Box-Behnken RSM 設計對三種吸附劑進行最佳化。結果顯示投藥量、pH與接觸時間為關鍵因子,其BC、BC-CaCO3及BC-CaCO3/TiO2對Pb(II) 最大去除率分別為:40.65%、86.01%、74.83%,模型擬合相似度高(R2 > 0.98)。MLP 模型亦以良好準確性(R2 可達 0.997)驗證其預測結果。最佳化過程中,各生物炭的吸附均符合 Langmuir 模式,而動力學則呈現差異:BC 符合 Elovich 模式,而改質生物炭符合準二階反應,顯示化學吸附、表面不均質性、陽離子交換、碳酸鹽共沉澱以及 TiO2 強化鍵結等多重機制共同發生。熱力學分析結果證實所有最佳化系統的吸附過程皆具自發性、可行性且為放熱反應。應用於實際AMD時,BC-CaCO3/TiO2 對所有目標金屬均展現良好去除效率,在24小時內達到 97.15–99.99% 的去除率,依據其效益排序分別為為 Fe(III) > Zn(II) > Cu(II) > Mn(II) > Pb(II),證實其適用於複雜 AMD 水質。 進一步的研究將 BC-CaCO3/TiO2 應用於人工濕地系統,包括控制組(C-CW)、僅含生物炭的人工濕地(BC-CW)以及結合生物炭與植物的人工濕地(BC/T-CW)。其中,BC-CW 改善pH 穩定性並提升 Cu、Pb 與 Zn 的固定能力,而 BC/T-CW 則展現最可靠的整體改良效果,包含維持良好氧化還原條件及更強的 Fe 與 Mn 固定能力。總體基因定序結果顯示,BC/T-CW 可促進具有植物關聯性的微生物群,並富含污染物降解相關的菌群與功能途徑,突顯工程化生物炭與香蒲(Typha latifolia)結合後在 AMD 濕地處理中的疊加效益。 總而言之,本研究證明當廢棄物來源的生物炭經過合理設計與改質,再結合生物系統後,可提供一種務實且具韌性的 AMD 處理方式。透過材料分析、吸附測試、統計最佳化、實際 AMD 驗證及人工濕地應用等整合結果皆顯示,BC-CaCO3/TiO2 無論作為單獨吸附劑或濕地系統中的原料之一時,均展現最穩定且最優越的效能。本研究強調工程材料與人工濕地生態結合,可提供一種具成本效益、循環再利用且效果良好的解決方案,用於處理富含金屬的酸性水體。 | zh_TW |
| dc.description.abstract | Acid mine drainage (AMD) remains a major concern due to its acidity and heavy metal load, and this work explores a circular approach that repurposes waste bamboo chopsticks into high-value biochars for its treatment. Eleven biochars were produced through both conventional and microwave-assisted pyrolysis and characterised using BET, CHN/O, SEM–EDS, FTIR and XRD to understand their structural and surface properties. Among these, the microwave-derived biochar produced at 450 W consistently showed the strongest Pb(II) adsorption, reaching 99.9% removal at a dose of 2 g L-1 and 50 mg L-1 initial concentration, with equilibrium achieved within 24 hours. The adsorption process followed Langmuir behaviour (qm up to 89 mg g⁻¹; R2 = 0.98) and matched pseudo-second-order kinetics (R2 = 1.00), confirming chemisorption as the primary mechanism which is supported by surface complexation and electrostatic interaction.
Furthermore, the BC produced at 450 W was further modified with CaCO3 and CaCO3/TiO2 to form BC-CaCO3 and BC-CaCO3/TiO2, and all three adsorbents were optimised using a Box–Behnken RSM design. Dose, pH and contact time emerged as key factors, yielding maximum Pb(II) removals of 40.65% for BC, 86.01% for BC-CaCO3 and 74.83% for BC-CaCO3/TiO2, with strong model fits (R2 > 0.98). MLP modelling confirmed these predictions with high accuracy (R2 up to 0.997). During optimisation, adsorption fitted the Langmuir model across all biochar, while kinetics differed; ranging from Elovich behaviour for BC and pseudo-second-order kinetics for both modified biochar which highlighted a combination of chemisorption, surface heterogeneity, cation exchange, carbonate-assisted precipitation and TiO2-enhanced binding. Thermodynamic results showed that adsorption across all optimised systems was spontaneous, favourable and endothermic. When applied to real AMD, BC-CaCO3/TiO2 demonstrated high removal of all targeted metals, achieving 97.15 - 99.99% extraction within 24 h, with a trend of Fe(III) > Zn(II) > Cu(II) > Mn(II) > Pb(II), confirming its suitability for complex AMD matrices. BC-CaCO3/TiO2, was subsequently applied to further studies which involved constructed wetlands. These wetlands included a control system (C-CW), a biochar-only wetland (BC-CW) and a combined biochar–plant wetland (BC/T-CW). While BC-CW improved pH stability and enhanced Cu, Pb and Zn retention, the BC/T-CW system delivered the most reliable improvements, maintaining favourable redox conditions and stronger Fe and Mn immobilisation. Metagenomic analysis further demonstrated that BC/T-CW supported a specialised, plant-associated microbial community enriched in pollutant-degrading taxa and functional pathways, highlighting the synergistic benefits of combining engineered biochar with Typha latifolia in wetland-based AMD treatment. In essence, this work shows that waste-derived biochar, when purposefully modified and paired with a biological system, can offer a practical and robust way to address AMD. The combination of detailed material characterisation, adsorption testing, statistical optimisation, real AMD trials, and wetland-scale application demonstrated that BC-CaCO3/TiO2 consistently delivered the strongest performance, both as a standalone adsorbent and within a functioning treatment system. The study highlights how combining engineered materials with wetland ecology can provide an affordable, circular and effective approach for mitigating metal-rich acidic waters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:27:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-04T16:27:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Doctoral Dissertation Acceptance Certificate ii
Acknowledgements iii Dedication v 摘要 vi Abstract viii Table of Contents x List of Figures xiv List of Tables xviii List of Abbreviations and Acronyms xxi Declaration of Publications xxiii Chapter 1. Introduction 1 1.1 Rationale of the Study 1 1.2 Research Aim and Objectives 2 Chapter 2. Literature Review 4 Overview 4 2.1 Introduction 5 2.2 Methods of Remediating AMD 10 2.3 Biochar 11 2.3.1 Biomass for biochar production 12 2.3.2 Biochar production: conventional pyrolysis vs microwave assisted pyrolysis 13 2.3.3 Bamboo chopsticks as biomass, biochar and for application 14 2.4 Modification of biochar 15 2.4.1 Modification using CaCO3 17 2.4.2 Modification using nanotechnology 18 2.4.3 Dual or multiple modification 20 2.5 Adsorption Experimental Factors and Mathematical Modelling 22 2.5.1 Adsorption Kinetics 23 2.5.2 Adsorption Isotherms 24 2.6 Adsorption Mechanisms 26 2.7 Process and Statistical Optimisation 28 2.8 Removal of Pb (II) and other competitive heavy metals from AMD Using Constructed Wetlands 31 2.9 Summary 34 Chapter 3. Materials and Methods 35 3.1 Research Workflow 35 3.2 Comparative Assessment of Conventional and Microwave Pyrolysis Biochars for Pb(II) Removal from Synthetic Wastewater 37 3.2.1 Biomass Composition 37 3.2.2 Biochar Preparation 37 3.2.2.1 Conventional Pyrolysis 37 3.2.2.2 Microwave-Assisted Pyrolysis 38 3.2.3 Characterization of Bamboo Chopstick Biochar 39 3.2.4 Adsorption isotherm and kinetic studies 39 3.2.5 Statistical Analyses 41 3.3. Optimisation of Pb(II) Removal Using BC, BC-CaCO3 and BC-CaCO3/TiO2 Biochar via RSM and MLP, with Application to Real Acid Mine Drainage 41 3.3.1 Preparation of Adsorbents 42 3.3.2 Characterization of Adsorbents 43 3.3.3 Determination of point of zero charge 43 3.3.4 Experimental Design and Prediction for BC, BC-CaCO3, and BC-CaCO3/TiO2 Using Response Surface Methodology 44 3.3.5 Machine Learning Prediction: Multilayer Perceptron Framework 45 3.3.6 Batch Adsorption Studies 47 3.3.7 Adsorption Experiments 47 3.3.8 Acid Mine Drainage Application 48 3.3.9 Error Analysis 48 3.4 Comparison of Constructed Wetlands for Acid Mine Drainage Treatment: Control, Biochar, and Biochar-Plant Systems 49 3.4.1 Experimental setup of constructed wetland systems 49 3.4.2 Preparation of Synthetic Acid Mine Drainage and Wetland Operation 50 3.4.3. Analytical Methods 51 3.4.3.1 Water Sampling and Analysis 51 3.4.3.2 Wetland Plant and Soil Analyses 51 3.4.3.3 Biochar 52 3.4.4. Metagenomic Studies 53 3.4.5. Statistical Analysis 54 Chapter 4. Results and Discussion 55 Overview 55 4.1. Comparative Assessment of Conventional and Microwave Pyrolysis Biochars for Pb(II) Removal from Synthetic Wastewater 56 4.1.1 Characterization of the Biochars Produced 56 4.1.1.1 Proximate Analysis 56 4.1.1.2 Temperature Profiling of Microwave-Assisted Pyrolyzed Biochar 57 4.1.1.3 Elemental Analysis 58 4.1.1.4 Surface Area and Pore Analysis 62 4.1.1.5 SEM Surface Analysis 63 4.1.1.6 FTIR of the Biochar Before Batch Adsorption 64 4.1.2 Evaluation of Batch Adsorption 66 4.1.2.1 Effect of the adsorbent dose 66 4.1.2.2 Effect of the initial Pb(II) concentration 67 4.1.2.3 Effect of Contact Time 69 4.1.2.4 Effect of Ionic Strength 70 4.1.3 Adsorption Isotherm Models 71 4.1.4 Adsorption Kinetics Models 75 4.1.5 Adsorption Mechanism Analysis 80 4.1.6 Comparison to Other Adsorbents 82 4.2 Optimisation of Pb(II) Removal Using BC, BC-CaCO3 and BC-CaCO3/TiO2 Biochar via RSM and MLP, with Application to Real Acid Mine Drainage 84 4.2.1 Characterization outcomes of BC, BC-CaCO3, and BC-CaCO3/TiO2 composites 84 4.2.2 Point of Zero Charge (pHpzc) 89 4.2.3 RSM for Pb(II) Adsorption 92 4.2.3.1 Analysis of Variance (ANOVA) Studies 96 4.2.3.2 Three-Dimensional RSM Plots 97 4.2.3.2.1 Effect of Adsorbent Dose and Time 97 4.2.3.2.2 Effect of Adsorbent Dose and pH 98 4.2.3.2.3 Effect of pH and Time 98 4.2.3.2.4 RSM Evaluation and Verification of Optimised Models 98 4.2.4 Optimisation Using Machine Learning Prediction: MLP Framework 99 4.2.5 Effect of Adsorbent Dose 106 4.2.6 Effect of pH 107 4.2.7 Adsorption Isotherm Studies 108 4.2.8 Adsorption Kinetic Studies 112 4.2.9 Thermodynamics 115 4.2.10 Adsorption Mechanism 118 4.2.11 Real Acid Mine Drainage Application Findings 124 4.3 Comparison of Constructed Wetlands for Acid Mine Drainage Treatment: Control, Biochar, and Biochar-Plant Systems 127 4.3.1 Operational Performance of CW: pH, Redox Potential and Temperature 127 4.3.2 Biochar, Plant and Soil Analysis 128 4.3.2.1 Analysis of Biochar 128 4.3.2.2 Plant and Soil Analysis 131 4.3.2.3. Bioaccumulation and Translocation Behaviour under BC/T-CW Treatment 138 4.3.3 Effect of pH on the treatment of synthetic AMD 141 4.3.4 Metagenomics 144 Chapter 5. Conclusion and Recommendations 148 5.1 Conclusion 148 5.2 Recommendations for Future Studies 150 References 152 Appendix 182 | - |
| dc.language.iso | en | - |
| dc.subject | 酸性礦業排水(AMD) | - |
| dc.subject | 竹筷生物炭 | - |
| dc.subject | 微波輔助熱解 (MAP) | - |
| dc.subject | 碳酸鈣 (CaCO3) | - |
| dc.subject | 二氧化鈦(TiO2) | - |
| dc.subject | 反應曲面法(RSM) | - |
| dc.subject | 多層感知器(MLP) | - |
| dc.subject | 人工濕地 | - |
| dc.subject | AMD | - |
| dc.subject | Bamboo Chopsticks Biochar | - |
| dc.subject | Microwave-assisted pyrolysis (MAP) | - |
| dc.subject | CaCO3 | - |
| dc.subject | TiO2 | - |
| dc.subject | Response surface methodology (RSM) | - |
| dc.subject | Multilayer perceptron (MLP) | - |
| dc.subject | Constructed wetlands | - |
| dc.title | 以蛋殼-TiO2 改質的永續竹筷生物炭用於酸礦排水中 Pb(II) 與多金屬去除之綜合解決方案 | zh_TW |
| dc.title | Sustainable Bamboo Chopstick Biochar Solutions for Pb(II) and Multi-Metal Removal from Acid Mine Drainage using Eggshell-TiO2 Modification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林逸彬;童心欣;林耀東;胡景堯 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Pin Lin;Hsin-Hsin Tung;Yao-Tung Lin;Ching-Yao Hu | en |
| dc.subject.keyword | 酸性礦業排水(AMD),竹筷生物炭微波輔助熱解 (MAP)碳酸鈣 (CaCO3)二氧化鈦(TiO2)反應曲面法(RSM)多層感知器(MLP)人工濕地 | zh_TW |
| dc.subject.keyword | AMD,Bamboo Chopsticks BiocharMicrowave-assisted pyrolysis (MAP)CaCO3TiO2Response surface methodology (RSM)Multilayer perceptron (MLP)Constructed wetlands | en |
| dc.relation.page | 186 | - |
| dc.identifier.doi | 10.6342/NTU202600121 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2026-02-05 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 7.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
