Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101496
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤zh_TW
dc.contributor.advisorFar-Ching Linen
dc.contributor.author林均嶸zh_TW
dc.contributor.authorJun-Rong Linen
dc.date.accessioned2026-02-04T16:15:07Z-
dc.date.available2026-02-05-
dc.date.copyright2026-02-04-
dc.date.issued2026-
dc.date.submitted2026-01-29-
dc.identifier.citation王松永、莊鴻濱(1992)柳杉與杉木單板層積材之基本性質研究。林產工業 11(3):1-17。doi:10.6561/FPI.1992.11(3).1
王松永(2018)木材物理學(增訂版):物理性質篇。一版。臺北市:新學林。
王松永(2018)木材物理學(增訂版):強度性質篇。一版。臺北市:新學林。
Ab Ghani, A.F., Ali, M.B., DharMalingam, S., & Mahmud, J. (2016) Digital Image Correlation (DIC) Technique in Measuring Strain Using Opensource Platform Ncorr. Journal of Advanced Research in Applied Mechanics 26(1): 10–21.
Bernardo, L.F.A., & Lopes, S.M.R. (2004) Neutral axis depth versus flexural ductility in high-strength concrete beams. Journal of Structural Engineering (ASCE) 130(3): 452–459. doi:10.1061/(ASCE)0733-9445(2004)130:3(452)
Betts, S.C., Miller, T.H., & Gupta, R. (2010) Location of the neutral axis in wood beams: A preliminary study. Wood Material Science and Engineering 5(3–4): 173–180. doi:10.1080/17480272.2010.500060
Bruck, H.A., McNeill, S.R., Sutton, M.A., & Peters, W.H. (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Experimental Mechanics 29(3): 261–267. doi:10.1007/BF02321405
Dauletbek, A., Li, H., & Lorenzo, R. (2022) A Review of Basic Mechanical Behavior of Laminated Bamboo Lumber. Journal of Renewable Materials 10(2): 273–300. doi:10.32604/jrm.2022.017805
Dixon, P.G., & Gibson, L.J. (2014) The structure and mechanics of Moso bamboo material. Journal of the Royal Society Interface 11: 20140321. doi:10.1098/rsif.2014.0321
Effendi, M.K., & Awaludin, A. (2022) Nonlinear Finite Element Analysis of Flexural Laminated Veneer Lumber (LVL) Sengon Slender Beam. Civil Engineering Dimension 24(2): 85–92. doi:10.9744/ced.24.2.85-92
Forest Products Laboratory (2021) Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 543 p.
Huang, Y.-S., & Hsu, F.-L. (2020) Analyses of cracking failure in curved laminated lumber due to transverse stress under a curvature-decreasing moment. Results in Engineering 8: 100174. doi:10.1016/j.rineng.2020.100174
Khoo, P.S., Chin, K.L., H’ng, P.S., Bakar, E.S., Lee, C.L., Go, W.Z., & Dahali, R. (2019) Physical properties and bonding quality of laminated veneer lumber produced with veneers peeled from small-diameter rubberwood logs. Royal Society Open Science 6(12): 191763. doi:10.1098/rsos.191763
Kollmann, F.F.P., & Côté, W.A. (1968) Principles of Wood Science and Technology. Vol. 1: Solid Wood. Berlin: Springer-Verlag. doi:10.1007/978-3-642-87928-9
Li, Y., Zhu, R., Lu, C., Chen, S., & Xian, D. (2024) Gradient Variation of Location Distribution, Cross-Section Area, and Mechanical Properties of Moso Bamboo Vascular Bundles along the Radial Direction. Forests 15(6): 1023. doi:10.3390/f15061023
Mahdavi, M., Clouston, P.L., & Arwade, S.R. (2011) Development of Laminated Bamboo Lumber: Review of Processing, Performance, and Economical Considerations. Journal of Materials in Civil Engineering 23(7): 1036–1042. doi:10.1061/(ASCE)MT.1943-5533.0000253
Moaveni, S.(2020)Finite Element Analysis: Theory and Application with ANSYS. 5th ed. Pearson Education, Inc. ISBN: 9780135213537
Pan, B., Xie, H.-M., Xu, B.-Q., & Dai, F.-L. (2006) Performance of sub-pixel registration algorithms in digital image correlation. Measurement Science and Technology 17(6): 1615–1621. doi:10.1088/0957-0233/17/6/045
Pan, B., Qian, K., Xie, H., & Asundi, A. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology 20(6): 062001. doi:10.1088/0957-0233/20/6/062001
Pan, B., Li, K., & Tong, W. (2013) Fast, robust and accurate digital image correlation calculation without redundant computations. Experimental Mechanics 53: 1277–1289. doi:10.1007/s11340-013-9717-6
Peters, W.H., Ranson, W.F., Sutton, M.A., Chu, T.C., & Anderson, J. (1983) Application of digital correlation methods to rigid body mechanics. Optical Engineering 22(6): 738–742. doi:10.1117/12.7973231
Romero, D., & Odenbreit, C. (2023) Experimental Investigation on Strength and Stiffness Properties of Laminated Veneer Lumber (LVL). Materials 16(22): 7194. doi:10.3390/ma16227194
Sewar, Y., Amran, M., Avudaiappan, S., Gamil, Y., & Rashid, R.S.M. (2024) Bonding strength performance of bamboo-based composite materials: An in-depth insight for sustainable construction applications. Heliyon 10(13): e32155. doi:10.1016/j.heliyon.2024.e32155
Shukla, S.R., & Kamdem, D.P. (2008) Properties of laminated veneer lumber (LVL) made with low density hardwood species: Effect of the pressure duration. Holz als Roh- und Werkstoff 66: 119–127. doi:10.1007/s00107-007-0209-1
Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., & McNeill, S.R. (1983) Determination of displacements using an improved digital correlation method. Image and Vision Computing 1(3): 133–139. doi:10.1016/0262-8856(83)90064-1
Tenorio, C., Moya, R., & Muñoz, F. (2011) Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees. Journal of Wood Science 57(2): 134–139. doi:10.1007/s10086-010-1149-7
Timoshenko, S.P. (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41(245): 744–746. doi:10.1080/14786442108636264
Timoshenko, S.P. (1922) On the transverse vibrations of bars of uniform cross-section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43(253): 125–131. doi:10.1080/14786442208633855
Ukyo, S., K. Shindo and A. Miyatake (2019) Evaluation of rolling shear modulus and strength of Japanese cedar cross-laminated timber (CLT) laminae. Journal of Wood Science 65: 31. doi:10.1186/s10086-019-1810-8
Wu, Q., & Furuno, T. (1999) Transverse tensile strength and fracture of LVL made from Sugi. Journal of Wood Science 45: 134–142. doi:10.1007/BF01192330
Yang, T.-C., & Yang, H.-Y. (2021) Strain analysis of Moso bamboo (Phyllostachys pubescens) subjected to longitudinal tensile force. Materials Today Communications 28: 102491. doi:10.1016/j.mtcomm.2021.102491
Yang, X., Chen, X., & Xi, J. (2018) Comparative Analysis of Warp Function for Digital Image Correlation-Based Accurate Single-Shot 3D Shape Measurement. Sensors 18(4): 1208. doi:10.3390/s18041208
Zhou, H., Wang, G., Chen, L., Yu, Z., Smith, L.M., & Chen, F. (2019) Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites. Materials 12(9): 1450. doi:10.3390/ma12091450
Zhou, H., Wei, X., Smith, L.M., Wang, G., & Chen, F. (2019) Evaluation of Uniformity of Bamboo Bundle Veneer and Bamboo Bundle Laminated Veneer Lumber (BLVL). Forests 10(10): 921. doi:10.3390/f10100921
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101496-
dc.description.abstract本研究以柳杉、孟宗竹與桃花心木單板層積材(laminated veneer lumber, LVL)製作直梁與曲梁試體,探討曲率與材性對曲梁彎曲行為、中立軸位移及應力集中的影響,並兼顧膠合界面之耐久性與乾態膠合剪力表現。曲梁設計三種曲率半徑 R = 180、340、440 mm,於同一平面內施加端部集中力,使其承受典型曲梁彎曲(curved beam bending);試驗過程結合數位影像相關法(digital image correlation, DIC)量測截面應變分佈與中立軸位置,同時建立有限元素模型(finite element method, FEM)進行比對。直梁彎曲試驗結果顯示,三樹種之彈性模數與彎曲強度整體呈現孟宗竹 > 桃花心木 > 柳杉之排序,並作為曲梁分析之材料輸入。
DIC 應變場與 FEM 模擬結果顯示,曲梁截面中立軸明顯偏離幾何中心並偏向受壓側,且偏移量隨曲率增大與材料剛性提高而增加,使拉壓區有效高度呈現不對稱分佈。最大拉應變及拉應力主要集中於內弧跨中附近與端部載重作用區的層間界面;外弧壓縮側則於曲率變化及靠近端部之位置出現局部壓縮集中。當曲率愈大時,中立軸向內弧側的偏移量隨之增加,內弧拉側最大應力與名義彎曲應力之比值亦同步升高,顯示中立軸位移與拉側應力集中程度之間具有明顯正相關關係,且與裂縫起始位置及破壞路徑高度一致。整體而言,DIC 換算之最大彎曲應力與 FEM 預測結果在量值與趨勢上具有良好一致性,而未考慮異向性的曲梁理論則普遍低估最大應力。
綜合彎曲行為、應變場與中立軸位移分析以及界面試驗結果,可知孟宗竹 LVL 在本研究條件下兼具較高彎曲承載力、較小拉側應力集中與穩定膠合強度,為高曲率 LVL 曲梁較具應用潛力之選項;柳杉與桃花心木系統則分別提供偏重耐水性與偏重強度之兩端設計參考。本研究針對曲梁之分析,可作為未來工程木構件曲率配置、膠合系統選擇與耐久性評估之實務依據。
zh_TW
dc.description.abstractThis study used laminated veneer lumber (LVL) made from Japanese cedar (Cryptomeria japonica), moso bamboo (Phyllostachys edulis), and Japanese zelkova (Swietenia macrophylla) to fabricate straight and curved beam specimens, in order to investigate the effects of curvature and material properties on bending behavior, neutral axis shift, and stress concentration in curved beams, together with the durability and dry-state shear performance of glued joints. Curved beams with three radii of curvature (R = 180, 340, and 440 mm) were loaded by in-plane end forces to generate typical curved-beam bending. Digital image correlation (DIC) was employed to obtain full-field strain distributions and neutral-axis positions, and a finite element model (FEM) was established for comparison. Static bending tests on straight beams showed that the elastic modulus and bending strength of the three LVL species followed a consistent order of moso bamboo > Japanese zelkova > Japanese cedar; these properties were used as input parameters for the curved-beam analyses.
DIC strain fields and FEM simulations revealed that the neutral axis of curved LVL sections was clearly displaced from the geometric centroid toward the compression side, and that the magnitude of this shift increased with increasing curvature and material stiffness, leading to a pronounced asymmetry between tensile and compressive zones. The maximum tensile strain and stress were concentrated along the inner arc near mid-span and in the interlayer regions around the loaded ends, while the outer arc exhibited local compressive stress concentrations near curvature changes and supports. As curvature increased, both the neutral-axis shift toward the inner arc and the ratio of maximum inner-tension stress to nominal bending stress increased, indicating a clear positive correlation between neutral-axis displacement and tensile-side stress concentration, consistent with observed crack initiation and failure paths. Overall, the maximum bending stresses converted from DIC agreed well in magnitude and trend with FEM predictions, whereas classical curved-beam theory without material anisotropy tended to underestimate peak stresses.
Considering bending behavior, strain fields, neutral-axis shift, and interface test results together, moso bamboo LVL under the present conditions combines high bending load-carrying capacity, reduced tensile-side stress concentration, and stable dry-state glued joint strength, and thus represents a promising option for high-curvature LVL curved beams. The Japanese cedar and Japanese zelkova systems provide two design bounds that emphasize, respectively, better wet-durability performance and higher strength. The curved-beam analysis framework developed in this study—integrating LVL bending tests, DIC–FEM evaluation, and both water-soak delamination and dry glued joint shear tests—offers practical guidance for curvature configuration, adhesive system selection, and durability assessment in future engineered timber components.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:15:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-04T16:15:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目次 V
圖次 VIII
List of figure X
表次 XIII
List of table XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與流程 3
第二章 文獻回顧 4
2.1 單板層積材介紹 4
2.2 LVL分析與中立軸位移探討 6
2.3 有限元素法簡介 10
2.4 影像量測 11
2.5 影像座標轉換與相機校正 13
2.6 DIC之圖樣識別(Pattern recognition) 15
2.7 搜尋演算法 17
第三章 材料與方法 20
3.1 研究材料 20
3.1.1 材料來源與規格 20
3.1.2 密度量測 23
3.1.3 浸水剝離試驗 24
3.1.4 膠合剪力試驗 26
3.2 試驗設備與軟體 27
3.2.1 數位影像相關法設備與軟體 27
3.2.2 分析中立軸位移 32
3.2.3 有限元素法分析軟體 35
3.2.4 破壞模式判定與損傷事件辨識 39
3.2.5 數據處理與統計方法 42
第四章 結果與討論 44
4.1 直梁LVL基本性質 44
4.1.1 MOE 與 MOR 44
4.1.2 密度 46
4.1.3 浸水剝離試驗 48
4.1.4 膠合剪力試驗 49
4.2 曲梁最大荷重 52
4.3 極限彎矩 56
4.4 破壞模式與損傷機制 60
4.4.1 曲梁應力狀態與損傷起始的基本概念 61
4.4.2 Type I:孔洞/缺陷誘發破壞 63
4.4.3 Type II:內側受壓區壓縮損傷主導破壞 64
4.4.4 Type III:膠線/層間剝離主導破壞 65
4.4.5 曲率半徑、材料與破壞模式的關聯 66
4.4.6 Type III載重瞬降事件分析 67
4.5 勁度 72
4.6 應變分析 75
4.6.1 DIC 斑點檢測 75
4.6.2 應變剖面分析 77
4.7 中立軸位移 86
4.8 最大應變 88
4.8.1 FEM 與 DIC 表面等效最大彎曲應力比較 88
4.8.2 Timoshenko曲梁理論之比較 92
4.8.3 FEM與DIC差異之影響因子分析 93
4.8.4 小結 99
第五章 結論 101
參考資料 103
附錄 107
7.1 直梁LVL相關數據表格 107
7.2 曲梁相關數據表格 109
7.3 黑點特徵與黑白對比度分析表格 121
7.4 瞬降事件標註之載重與時間曲線圖集 124
7.5 曲梁應變剖面圖 130
7.6 中立軸位移過程 151
-
dc.language.isozh_TW-
dc.subject單板層積材-
dc.subject曲梁-
dc.subject數位影像相關法-
dc.subject中立軸位移-
dc.subject有限元素分析-
dc.subjectlaminated veneer lumber (LVL)-
dc.subjectcurved beam-
dc.subjectdigital image correlation (DIC)-
dc.subjectneutral axis shift-
dc.subjectfinite element method (FEM)-
dc.title數位影像相關法之曲型單板層積材彎曲破壞行為分析zh_TW
dc.titleAnalysis of Flexural Failure Behavior of Curved Laminated Veneer Lumber Using Digital Image Correlationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;黃彥三;劉亮君zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Yan-San Huang;Liang-Chun Liuen
dc.subject.keyword單板層積材,曲梁數位影像相關法中立軸位移有限元素分析zh_TW
dc.subject.keywordlaminated veneer lumber (LVL),curved beamdigital image correlation (DIC)neutral axis shiftfinite element method (FEM)en
dc.relation.page171-
dc.identifier.doi10.6342/NTU202600323-
dc.rights.note未授權-
dc.date.accepted2026-02-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-liftN/A-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
8.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved