請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何傳愷 | zh_TW |
| dc.contributor.advisor | Chuan-Kai Ho | en |
| dc.contributor.author | 林暐鈞 | zh_TW |
| dc.contributor.author | Wei-Jiun Lin | en |
| dc.date.accessioned | 2026-02-04T16:14:38Z | - |
| dc.date.available | 2026-02-05 | - |
| dc.date.copyright | 2026-02-04 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-29 | - |
| dc.identifier.citation | 1. Abdul Qayyum, M., Bilal, H., Ali, H., Raza, H., & Wajid, M. (2021). Factors affecting the epizootics of entomopathogenic fungi-A review. Journal of Bioresource Management, 8(4), 5.
2. Adamo, S. A., & Lovett, M. M. (2011). Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. Journal of Experimental Biology, 214(12), 1997-2004. 3. Andama, J. B., Mujiono, K., Hojo, Y., Shinya, T., & Galis, I. (2020). Nonglandular silicified trichomes are essential for rice defense against chewing herbivores. Plant, Cell & Environment, 43(9), 2019-2032. 4. Banschbach, V., Levit, N., & Herbers, J. (1997). Nest temperatures and thermal preferences of a forest ant species: is seasonal polydomy a thermoregulatory mechanism? Insectes Sociaux, 44(2), 109-122. 5. Barson, G., Renn, N., & Bywater, A. F. (1994). Laboratory evaluation of six species of entomopathogenic fungi for the control of the house fly (Musca domestica L.), a pest of intensive animal units. Journal of Invertebrate Pathology, 64(2), 107-113. 6. Barton, D., & Meth-Cohn, O. (1999). Comprehensive natural products chemistry. Newnes. 7. Ben-Yakir, D., & Fereres, A. (2016). The effects of UV radiation on arthropods: a review of recent publications (2010-2015). VIII International Symposium on Light in Horticulture 1134, 8. Budhkar, Y., Bankar, S., & Singhal, R. (2014). Milk and milk products: microbiology of cream and butter. In Encyclopedia of Food Microbiology: Second Edition (pp. 728-737). Elsevier. 9. Bulmer, M. (1971). The effect of selection on genetic variability. The American Naturalist, 105(943), 201-211. 10. Burc, E., Girard-Tercieux, C., Metz, M., Cazaux, E., Baur, J., Koppik, M., Rêgo, A., Hart, A. F., & Berger, D. (2025). Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nature Communications, 16(1), 827. 11. Butt, T. M., Jackson, C., & Magan, N. (2001). Introduction-fungal biological control agents: progress, problems and potential. In Fungi as biocontrol agents: progress, problems and potential (pp. 1-8). CABI publishing Wallingford UK. 12. Buzhdygan, O. Y., & Petermann, J. S. (2023). Multitrophic biodiversity enhances ecosystem functions, services and ecological intensification in agriculture. Journal of Plant Ecology, 16(6), rtad019. 13. Calabrese, E. J., & Edwards, L. J. (1976). Light and gravity in leaf-side selection by the green peach aphid, Myzus persicae. Annals of the Entomological Society of America, 69(6), 1145-1146. 14. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67. 15. Catalán, T. P., Wozniak, A., Niemeyer, H. M., Kalergis, A. M., & Bozinovic, F. (2012). Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. Journal of Insect Physiology, 58(3), 310-317. 16. Chang, M. M., Hsu, P.-S., Yang, E.-C., Sun, S.-J., & Ho, C.-K. (2024). Warming induces short-term phenological shifts in pollinator-plant interactions that enhance larval development in honey bee. PLoS One, 19(12), e0314791. 17. Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., & Hobbie, S. E. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242. 18. Charudattan, R. (2001). Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl, 46, 229-260. 19. Chen, J. T.-C., Chung, F.-Y., Fang, Y.-T., Hsu, F.-C., Lin, C.-C., & Tseng, S.-P. (2024). Trophic-egg transfer in the black cocoa ant Dolichoderus thoracicus (Hymenoptera: Formicidae) and other dolichoderine ants in Taiwan. Myrmecological News, 34, 105-117. 20. Chouvenc, T., Efstathion, C. A., Elliott, M. L., & Su, N.-Y. (2012). Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften, 99(11), 949-958. 21. Commission, E. (2019). The European green deal. Eur. Comm., 53, 24. 22. Cuff, J. P., Labonte, D., & Windsor, F. M. (2024). Understanding trophic interactions in a warming world by bridging foraging ecology and biomechanics with network science. Integrative and Comparative Biology, 64(2), 306-321. 23. Currie, C. R., & Stuart, A. E. (2001). Weeding and grooming of pathogens in agriculture by ants. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1471), 1033-1039. 24. Dai, H., Wang, Y., Du, Y., & Ding, J. (2010). Effects of plant trichomes on herbivores and predators on soybeans. Insect Science, 17(5), 406-413. 25. de Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256. 26. Devi, K. U., Sridevi, V., Mohan, C. M., & Padmavathi, J. (2005). Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Journal of invertebrate pathology, 88(3), 181-189. 27. Dijoux, S., Smalås, A., Primicerio, R., & Boukal, D. (2024). Tri-trophic community responses to temperature-dependent vital rates, thermal niche mismatches and temperature-size rule. ESS Open Archive eprints, 668, 66869214. 28. Dimbi, S., Maniania, N. K., Lux, S. A., & Mueke, J. M. (2004). Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. BioControl, 49, 83-94. 29. Ekesi, S., Maniania, N., & Ampong-Nyarko, K. (1999). Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Science and Technology, 9(2), 177-185. 30. Fan, Y., Borovsky, D., Hawkings, C., Ortiz-Urquiza, A., & Keyhani, N. O. (2012). Exploiting host molecules to augment mycoinsecticide virulence. Nature biotechnology, 30(1), 35. 31. Fargues, J., & Luz, C. (2000). Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus. Journal of Invertebrate Pathology, 75(3), 202-211. 32. Faria, M., & Wraight, S. P. (2001). Biological control of Bemisia tabaci with fungi. Crop protection, 20(9), 767-778. 33. Fennah, R. (1963). Nutritional factors associated with seasonal population increase of cacao thrips, Selenothrips rubrocinctus (Giard)(Thysanoptera), on cashew, Anacardium occidentale. Bulletin of Entomological Research, 53(4), 681-713. 34. Fiene, J., Kalns, L., Nansen, C., Bernal, J., Harris, M., & Sword, G. A. (2013). Foraging on individual leaves by an intracellular feeding insect is not associated with leaf biomechanical properties or leaf orientation. PLoS One, 8(11), e80911. 35. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., & West, P. C. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. 36. Foucaud, J., Rey, O., Robert, S., Crespin, L., Orivel, J., Facon, B., Loiseau, A., Jourdan, H., Kenne, M., & Masse, P. S. M. (2013). Thermotolerance adaptation to human‐modified habitats occurs in the native range of the invasive ant Wasmannia auropunctata before long‐distance dispersal. Evolutionary Applications, 6(4), 721-734. 37. Fravel, D. (2005). Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol., 43, 337-359. 38. Fuller, C. A., Postava-Davignon, M. A., West, A., & Rosengaus, R. B. (2011). Environmental conditions and their impact on immunocompetence and pathogen susceptibility of the Caribbean termite Nasutitermes acajutlae. Ecological Entomology, 36(4), 459-470. 39. Ge, X., Newman, J. A., & Griswold, C. K. (2024). Geographic variation in evolutionary rescue under climate change in a crop pest–predator system. Evolutionary Applications, 17(7), e13750. 40. Gunasekara, A. S., Truong, T., Goh, K. S., Spurlock, F., & Tjeerdema, R. S. (2007). Environmental fate and toxicology of fipronil. Journal of Pesticide Science, 0706180001-0706180001. 41. Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., & Hörren, T. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12(10), e0185809. 42. Halsch, C. A., Shapiro, A. M., Fordyce, J. A., Nice, C. C., Thorne, J. H., Waetjen, D. P., & Forister, M. L. (2021). Insects and recent climate change. Proceedings of the National Academy of Sciences, 118(2), e2002543117. 43. Hanley, M. E., Lamont, B. B., Fairbanks, M. M., & Rafferty, C. M. (2007). Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 157-178. 44. Harrington, R., Woiwod, I., & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology & Evolution, 14(4), 146-150. 45. Heinrich, B. (1979). Foraging strategies of caterpillars: leaf damage and possible predator avoidance strategies. Oecologia, 42, 325-337. 46. Hoddle, M. S. (2023). A new paradigm: proactive biological control of invasive insect pests. BioControl, 1-14. 47. Houde, M., Martin, J. W., Letcher, R. J., Solomon, K. R., & Muir, D. C. (2006). Biological monitoring of polyfluoroalkyl substances: a review. Environmental science & technology, 40(11), 3463-3473. 48. Hsu, F.-C., Tseng, S.-P., Po-Wei, H., Chia-Wei, L., Yang, C.-C. S., & Chung-Chi, L. (2022). Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania, 67(2). 49. Hsu, F. C., Hsu, G. C., Lee, C. C., Lin, C. C., Ho, C. K., & Yang, C. C. S. (2024). Free ride without raising a thumb: A citizen science project reveals the pattern of active ant hitchhiking on vehicles and its ecological implications. Ecological Entomology. 50. Hsu, G. C., Ou, J. A., Ni, M. H., Lin, Z. H., & Ho, C. K. (2025). Generalist predators function as pest specialists: Examining diet composition of spiders and ladybeetles across rice crop stages. Journal of Applied Ecology. 51. Huo, D., Tian, Z., Liu, D., Wu, C., Wang, L., & Liu, J. (2022). Adaptability of two soybean aphid species to high diurnal temperatures. Environmental entomology, 51(6), 1241-1248. 52. Inglis, G. D., Johnson, D. L., & Goettel, M. S. (1997). Effects of temperature and sunlight on mycosis (Beauveria bassiana)(Hyphomycetes: Sympodulosporae) of grasshoppers under field conditions. Environmental Entomology, 26(2), 400-409. 53. Jaber, S., Mercier, A., Knio, K., Brun, S., & Kambris, Z. (2016). Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasites & vectors, 9(1), 1-10. 54. Jackson, M., & Schisler, D. (2002). Selecting fungal biocontrol agents amenable to production by liquid culture fermentation. Proceedings of the 7th Biocontrol Working Group Meeting, Influence of A-Biotic and Biotic Factors on Biocontrol Agents, eds. Y. Elad, J. Kohl and D. Shtienberg, IOBC WPRS Bulletin, pp. 387Á391, 55. Jaronski, S. T. (2007). Soil ecology of the entomopathogenic ascomycetes: a critical examination of what we (think) we know. Use of entomopathogenic fungi in biological pest management, 91-144. 56. Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55(1), 159-185. 57. Kanzok, S. M., & Jacobs-Lorena, M. (2006). Entomopathogenic fungi as biological insecticides to control malaria. Trends in parasitology, 22(2), 49-51. 58. Kariyat, R. R., Smith, J. D., Stephenson, A. G., De Moraes, C. M., & Mescher, M. C. (2017). Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proceedings of the Royal Society B: Biological Sciences, 284(1849), 20162323. 59. Kesäniemi, J., Koskimäki, J. J., & Jurvansuu, J. (2019). Corpse management of the invasive Argentine ant inhibits growth of pathogenic fungi. Scientific reports, 9(1), 1-9. 60. Kopp, M., & Matuszewski, S. (2014). Rapid evolution of quantitative traits: theoretical perspectives. Evolutionary Applications, 7(1), 169-191. 61. Kraft, N. J., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592-599. 62. Lacey, L., Grzywacz, D., Shapiro-Ilan, D., Frutos, R., Brownbridge, M., & Goettel, M. (2015). Insect pathogens as biological control agents: Back to the future. Journal of invertebrate pathology, 132, 1-41. 63. Laws, A. N. (2017). Climate change effects on predator–prey interactions. Current Opinion in Insect Science, 23, 28-34. 64. Le Goff, G., Mailleux, A.-C., Detrain, C., Deneubourg, J.-L., Clotuche, G., & Hance, T. (2009). Spatial distribution and inbreeding in Tetranychus urticae. Comptes Rendus Biologies, 332(10), 927-933. 65. Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, S. D., Jepsen, J. U., Kalinkat, G., Neuvonen, S., Niemelä, P., & Terblanche, J. S. (2020). Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18(3), 141-150. 66. Lin, C.-C., Chang, T.-W., Chen, H.-W., Shih, C.-H., & Hsu, P.-C. (2017). Development of liquid bait with unique bait station for control of Dolichoderus thoracicus (Hymenoptera: Formicidae). Journal of economic entomology, 110(4), 1685-1692. 67. Lin, W.-J., Chiu, M.-C., Lin, C.-C., Chung, Y.-K., & Chou, J.-Y. (2021). Efficacy of Entomopathogenic fungus Aspergillus nomius against Dolichoderus thoracicus. BioControl, 66, 463-473. 68. Lin, Z.-H., Wu, C.-H., & Ho, C.-K. (2018). Warming neutralizes host-specific competitive advantages between a native and invasive herbivore. Scientific Reports, 8(1), 11130. 69. Liu, D., Wu, C., Wang, Q., Liu, D., Tian, Z., & Liu, J. (2023). Effects of heat wave on development, reproduction, and morph differentiation of Aphis glycines (Hemiptera: Aphididae). Environmental entomology, 52(5), 939-948. 70. Luz, C., & Fargues, J. (1997). Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia, 138, 117-125. 71. Ma, G., Hoffmann, A. A., & Ma, C.-S. (2021). Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? Journal of Thermal Biology, 98, 102936. 72. Merilä, J., & Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 7(1), 1-14. 73. Poulsen, M., Hughes, W. O. H., & Boomsma, J. J. (2006). Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus nomius. Insectes Sociaux, 53(3), 349-355. 74. Prescott, K., & Andow, D. (2016). Lady beetle (Coleoptera: Coccinellidae) communities in soybean and maize. Environmental entomology, 45(1), 74-82. 75. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980). Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual review of ecology and systematics, 11, 41-65. 76. Rauh, V., Arunajadai, S., Horton, M., Perera, F., Hoepner, L., Barr, D. B., & Whyatt, R. (2011). Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environmental health perspectives, 119(8), 1196-1201. 77. Reganold, J. P., Papendick, R. I., & Parr, J. F. (1990). Sustainable agriculture. Scientific American, 262(6), 112-121. 78. Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics, 49(1), 165-182. 79. Riddick, E. W., & Simmons, A. M. (2014). Do plant trichomes cause more harm than good to predatory insects? Pest management science, 70(11), 1655-1665. 80. Roberts, J., & Foster, J. (1983). Effect of leaf pubescence in wheat on the bird cherry oat aphid (Homoptera: Aphidae). Journal of economic entomology, 76(6), 1320-1322. 81. Rust, M. K., Haagsma, K., & Reierson, D. A. (1996). Barrier sprays to control Argentine ants (Hymenoptera: Formicidae). Journal of economic entomology, 89(1), 134-137. 82. Schoonhoven, L. M., Van Loon, J. J., & Dicke, M. (2005). Insect-plant biology. Oxford university press. 83. Shah, P., & Pell, J. (2003). Entomopathogenic fungi as biological control agents. Applied microbiology and biotechnology, 61(5-6), 413-423. 84. Shahmohamadloo, R. S., Febria, C. M., Fraser, E. D., & Sibley, P. K. (2022). The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integrated Environmental Assessment and Management, 18(5), 1199-1205. 85. Shama, L. N., Strobel, A., Mark, F. C., & Wegner, K. M. (2014). Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean. Functional Ecology, 28(6), 1482-1493. 86. Siddiqui, A., & Mishra, G. (2023). Optimising aphid biocontrol with the predator Propylea dissecta, based on experimental evolution of a predatory population. The Canadian Entomologist, 155, e11. 87. Silva, L., Silva, F. W. S., Demolin-Leite, G., Soares, M. A., Lemes, P., & Zanuncio, J. C. (2021). Distribution pattern of arthropods on the leaf surfaces of Acacia auriculiformis saplings. Brazilian Journal of Biology, 83, e243651. 88. Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D., Marshall, D. J., & Helmuth, B. S. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology letters, 19(11), 1372-1385. 89. Sinclair, B. J., Williams, C. M., & Terblanche, J. S. (2012). Variation in thermal performance among insect populations. Physiological and biochemical zoology, 85(6), 594-606. 90. Sivasankaran, P., Easwaramoorthy, S., & David, H. (1998). Influence of Temperature and Relative Humidity on the Growth, Sporulation and Pathogenicity of Beauverianrnr. bassiana. Journal of Biological Control, 71-75. 91. Slowik, A. R., Hesketh, H., Sait, S. M., & Licht, H. H. D. F. (2024). Thermal ecology shapes disease outcomes of entomopathogenic fungi infecting warm-adapted insects. Journal of invertebrate pathology, 204, 108106. 92. Sánchez-Bayo, F., & Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological conservation, 232, 8-27. 93. Southwood, S. R. (1986). Plant surfaces and insects-an overview. 94. Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson, K., Crumley, C., Crutzen, P., Folke, C., & Gordon, L. (2011). The Anthropocene: From global change to planetary stewardship. Ambio, 40(7), 739-761. 95. Styrsky, J. D., Kaplan, I., & Eubanks, M. D. (2006). Plant trichomes indirectly enhance tritrophic interactions involving a generalist predator, the red imported fire ant. Biological Control, 36(3), 375-384. 96. Sun, S.-J., Lee, X.-Y., Wang, Y.-J., Chuang, W.-P., Hwang, S.-Y., & Ho, C.-K. (2025). Understanding crop performance and pest control under climate change requires considering interactions among warming, elevated CO2, and trophic interactions. Scientific Reports, 15(1), 39519. 97. Szűcs, M., Vercken, E., Bitume, E. V., & Hufbauer, R. A. (2019). The implications of rapid eco‐evolutionary processes for biological control‐a review. Entomologia experimentalis et applicata, 167(7), 598-615. 98. Tam, E. W., Chen, J. H., Lau, E. C., Ngan, A. H., Fung, K. S., Lee, K.-C., Lam, C.-W., Yuen, K.-Y., Lau, S. K., & Woo, P. C. (2014). Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 52(4), 1153-1160. 99. R Core Team. (2021). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. (No Title). 100. Thakur, M. P., Künne, T., Griffin, J. N., & Eisenhauer, N. (2017). Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proceedings of the Royal Society B: Biological Sciences, 284(1851), 20162570. 101. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., & Hannah, L. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148. 102. Tian, D., Tooker, J., Peiffer, M., Chung, S. H., & Felton, G. W. (2012). Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053-1066. 103. Tingle, C. C., Rother, J. A., Dewhurst, C. F., Lauer, S., & King, W. J. (2003). Fipronil: environmental fate, ecotoxicology, and human health concerns. In Reviews of environmental contamination and toxicology (pp. 1-66). Springer. 104. Tseng, M., & O'Connor, M. (2015). Predators modify the evolutionary response of prey to temperature change. Biology letters, 11(12), 20150798. 105. Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology letters, 11(12), 1351-1363. 106. Van Mele, P., & Cuc, N. T. (2001). Farmers' perceptions and practices in use of Dolichoderus thoracicus (Smith)(Hymenoptera: Formicidae) for biological control of pests of sapodilla. Biological Control, 20(1), 23-29. 107. Voigt, D., Gorb, E., & Gorb, S. (2007). Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interactions, 1(4), 221-243. 108. Vucic‐Pestic, O., Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global change biology, 17(3), 1301-1310. 109. Wang, E., Hall, J. T., & Wagner, G. J. (2004). Transgenic Nicotiana tabacum L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field. Molecular Breeding, 13, 49-57. 110. Wang, X.-J., & Ma, C.-S. (2023). Can laboratory-reared aphid populations reflect the thermal performance of field populations in studies on pest science and climate change biology? Journal of Pest Science, 96(2), 509-522. 111. Wang, Y., Jaworski, C. C., Zi, H., Chen, J., Desneux, N., & Tan, X. (2024). Increased ladybird predation and metabolism do not counterbalance increased field aphid population growth under experimental warming. Functional Ecology, 38(5), 1134-1145. 112. Watts, S., & Kariyat, R. (2021). Picking sides: feeding on the abaxial leaf surface is costly for caterpillars. Planta, 253, 1-6. 113. Wraight, S., Jackson, M., & De Kock, S. (2001). 10 Production, Stabilization and Formulation of Fungal Biocontrol Agents. Fungi as biocontrol agents, 253. 114. Yamamichi, M., & Miner, B. E. (2015). Indirect evolutionary rescue: prey adapts, predator avoids extinction. Evolutionary Applications, 8(8), 787-795. 115. Yeo, H., Pell, J. K., Alderson, P. G., Clark, S. J., & Pye, B. J. (2003). Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Management Science: formerly Pesticide Science, 59(2), 156-165. 116. Zavala, J. A., Casteel, C. L., DeLucia, E. H., & Berenbaum, M. R. (2008). Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences, 105(13), 5129-5133. 117. Zehnder, G., Gurr, G. M., Kühne, S., Wade, M. R., Wratten, S. D., & Wyss, E. (2007). Arthropod pest management in organic crops. Annu. Rev. Entomol., 52(1), 57-80. 118. Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics, 64(2), 253-260. 119. Ziesche, T. M., Ordon, F., Schliephake, E., & Will, T. (2024). Long-term data in agricultural landscapes indicate that insect decline promotes pests well adapted to environmental changes. Journal of Pest Science, 97(3), 1281-1297. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101495 | - |
| dc.description.abstract | 在人類世(Anthropocene)中,人類活動已成為塑造地球生態系統的主導力量,驅動著空間與時間尺度上前所未有的環境變化。氣候快速暖化、降水模式改變及土地利用變化等因素,共同重塑了物種生存的非生物環境,產生新的選擇壓力並重組生物互動與生態群落。農業生態系統為受影響的重要系統之一,了解受影響下的植物-草食性昆蟲-天敵三營養層互動,對於理解生物防治和作物生產力具有關鍵意義。目前這些互動在快速、多維環境變化下的反應仍不清楚,因此本論文從三個部分探討環境快速變化對植物-昆蟲互動及生物防治的影響:
第一部分(第二章)研究植物葉片構造的物理防禦(毛狀體)對蚜蟲偏好及天敵捕食效率的影響。本研究透過同側葉片實驗,發現蚜蟲偏好葉片背面(65.3%)勝於正面(23.7%),主要受到葉片表面結構的影響,例如背面有較高的毛狀體密度;瓢蟲在正面葉片結構下捕食蚜蟲的效率較背面葉片結構下高出 84.5%,顯示高密度毛狀體會降低瓢蟲的捕食率。族群成長模型進一步證明,正面表面結構增強了瓢蟲對蚜蟲的抑制效果。以上結果證明植物結構特徵可影響三營養層互動,因此本研究建議未來的作物育種與害蟲管理策略應考量植物結構因素。 第二部分(第三章)採用長期演化實驗,檢視蚜蟲在長期暖化(+2°C)與捕食壓力下歷經 100 世代的演化反應。結果顯示「演化拯救」效應:初期暖化降低蚜蟲體重與存活率,但長期壓力下(第 60–100 世代)促成適應性演化,蚜蟲恢復族群成長並增強極端高溫耐受性。雖然捕食壓力在初期會加強對蚜蟲生物量的抑制,但在長期暖化歷史下,其控制效果顯著改變。本研究進一步測試長期適應下的蚜蟲潛在危害,發現適應暖化的蚜蟲對大豆植株可造成更嚴重損害,相較於短期暴露族群,可加劇產量、植株高度及總生物量的下降。此結果顯示害蟲可透過演化快速克服生理限制,暗示現行綜合害蟲管理策略(IPM)可能低估暖化情境下的蟲害威脅。 第三部分(第四章)探討溫度與濕度如何交互影響真菌生物防治效能。此研究以含昆蟲病原菌 Aspergillus nomius 的餌劑控制疣胸琉璃蟻 (Dolichoderus thoracicus),結果顯示菌絲生長率及分生孢子產生率會隨溫度升高而增加,而螞蟻死亡率亦隨溫度與濕度提高而增加,且真菌僅在較高溫度下發育,溫濕度升高可加速分生孢子成熟。空間分析顯示,高溫季節環境格點大多適合真菌感染,低溫季節則不利。此結果強調,理解氣候因子與生物防治效能的交互作用,對永續害蟲管理至關重要。 綜合而言,本論文揭示生物階層之間的互動與相關的生態系統服務(或損害)會隨植物構造、時間尺度與環境梯度而變化: 植物毛狀體雖能防禦大型草食動物,卻無意間為小型害蟲提供庇護;長期環境壓力下的蚜蟲展現快速演化能力,可對作物造成更大損害;微生物可用於防治入侵螞蟻,但其效能需與適當的環境條件匹配。將這些因素納入整合研究視角,不僅能更精準地理解物種如何應對人類世的快速變化,也為基礎的農業與害蟲管理策略提供指引。 | zh_TW |
| dc.description.abstract | In the Anthropocene, human activities have become a dominant force shaping Earth's ecosystems, driving unprecedented environmental changes across spatial and temporal scales. Rapid climate warming, altered precipitation patterns and land-use changes collectively reshape the abiotic environment of species interactions, generating novel selection pressures and reorganizing ecological communities. Agricultural ecosystems are particularly sensitive to these changes. Therefore, it is important to understand how trophic interactions among plants, herbivorous insects, and natural enemies in agroecosystems are affected, and how these changes influence biological control and crop productivity. Since the response of the trophic interactions to rapid, multifaceted environmental change remains poorly understood, this dissertation examines how rapid environmental changes affect plant-insect interactions and biological control from t the following three perspectives.
The first part (Chapter 2) investigates how plant leaf structure (e.g., physical defense such as trichomes) influences aphid preference and predator foraging efficiency. Using same-side leaf experiments, this study shows that aphid preference is primarily driven by leaf surface structure, favoring the abaxial side (65.3%) over the adaxial side (23.7%), consistent with higher trichome density on the abaxial surface. Ladybird predation on aphids was 84.5% higher on the adaxial side, indicating that dense trichomes reduce predator efficiency. Population growth models further demonstrate that adaxial leaf structure enhances ladybird suppression of aphids. These findings indicate that plant structural traits mediate trophic interactions and highlight the importance of incorporating such traits into crop breeding and pest management strategies. The second part (Chapter 3) employs a long-term evolution experiment to examine aphid responses under sustained warming (+2°C) and predation pressure over 100 generations. The results reveal an “evolutionary rescue” effect: initial warming reduced aphid body mass and survival, but long-term selection (generations 60–100) led to adaptive evolution, restoring aphid population growth and enhancing aphid tolerance to extreme heat. While predation initially exerted strong top-down control, its suppressive effect on aphid biomass and dynamics changed significantly under prolonged warming. Warming-adapted aphids inflicted more severe damage on soybean plants, causing greater reductions in yield, height, and total biomass than short-term exposure populations. These results demonstrate that pests can rapidly overcome physiological constraints through adaptation, suggesting that current integrated pest management (IPM) may underestimate pest threats in a warming world. The third part (Chapter 4) explores how temperature and humidity jointly affect the efficacy of fungal biological control. Using baits containing the entomopathogenic fungus Aspergillus nomius to target the ant pest Dolichoderus thoracicus, this study shows that fungal mycelial growth and conidial production increased with temperature. Ant mortality also increased with higher temperature and humidity, and fungal development occurred only at elevated temperatures, with higher temperature and humidity accelerating conidial maturation. Spatial analysis indicates that warm-season grids are mostly suitable for fungal infection, whereas cold-season grids are less favorable. These findings highlight that understanding the interaction between climatic factors and biocontrol efficacy is critical for sustainable pest management. Overall, this dissertation demonstrates that ecological interactions and related ecosystem service (or disservices) may vary with plant structure, temporal scales, and environmental gradients: Trichomes that deter large herbivores inadvertently provide shelter for small pests, reducing predator efficiency; aphids under long-term environmental stress exhibit rapid evolutionary responses that increase crop damage, contrasting with short-term responses; and microbial biocontrol efficacy depends on precise environmental matching. Integrating these dimensions into a comprehensive research framework will improve predictions of species responses to Anthropocene environmental changes and inform the development of resilient, evidence-based agricultural and pest management strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:14:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-04T16:14:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iv Table of Contents vii List of Figures x List of Tables xiii Chapter 1. General introduction 1 1.1. The Anthropocene: A New Era of Rapid Environmental Change 1 1.2. Plant-Herbivore-Natural Enemy Interactions: A Tri-trophic Perspective 2 1.3. Research Framework and Knowledge Gaps 3 1.4 Research Objectives and Thesis Structure 5 Chapter 2. Leaf surface structure shapes herbivore preferences and predation efficiency: leaf-mediated biocontrol effect in soybean agroecosystem 7 2.1 Abstract 7 2.2 Introduction 8 2.3 Materials and Methods 11 2.4 Results 16 2.5 Discussion 18 2.6 Conclusions 21 2.7 Table 22 2.8 Figure 26 2.9 Appendix 32 Chapter 3. Long-term aphid adaptation under abiotic and biotic stress cause increased damages to the agriculture system. 34 3.1 Abstract 34 3.2 Introduction 35 3.3 Materials and Methods 38 3.4 Results 45 3.5 Discussion 51 3.6 Conclusions 55 3.7 Table 56 3.8 Figure 65 3.9 Appendix 70 Chapter 4. Climate influences biocontrol effectiveness: Higher temperature and humidity enhance fungal infection in pest ants 75 4.1 Abstract 75 4.2 Introduction 77 4.3 Materials and Methods 80 4.4 Results 86 4.5 Discussion 89 4.6 Conclusions 94 4.7 Table 95 4.8 Figure 99 4.9 Appendix 104 Chapter 5. General conclusions 106 References 110 | - |
| dc.language.iso | en | - |
| dc.subject | 人類世 | - |
| dc.subject | 農業生態系統 | - |
| dc.subject | 三營養層互動 | - |
| dc.subject | 氣候暖化 | - |
| dc.subject | 生物防治 | - |
| dc.subject | 害蟲適應 | - |
| dc.subject | Anthropocene | - |
| dc.subject | Agroecosystems | - |
| dc.subject | Tri-trophic interaction | - |
| dc.subject | Climate warming | - |
| dc.subject | Biological control | - |
| dc.subject | Pest adaptation | - |
| dc.title | 人類世下的生態系損害、生物適應及生物防治 | zh_TW |
| dc.title | Ecosystem disservice of farming, pest adaptation, and biocontrol against exotic organisms in the Anthropocene | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李承叡;張智涵;林柏安;林宗岐 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Ruei Lee;Chih-Han Chang;Po-An Lin;Chung-Chi Lin | en |
| dc.subject.keyword | 人類世,農業生態系統三營養層互動氣候暖化生物防治害蟲適應 | zh_TW |
| dc.subject.keyword | Anthropocene,AgroecosystemsTri-trophic interactionClimate warmingBiological controlPest adaptation | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202504784 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2026-01-30 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 5.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
