請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101491完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥向 | zh_TW |
| dc.contributor.advisor | Yen-Hsiang Chen | en |
| dc.contributor.author | 黃浩哲 | zh_TW |
| dc.contributor.author | Hao-Che Huang | en |
| dc.date.accessioned | 2026-02-04T16:12:39Z | - |
| dc.date.available | 2026-02-05 | - |
| dc.date.copyright | 2026-02-04 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-28 | - |
| dc.identifier.citation | 高雄市政府交通局(2022),111年易肇事路口改善委託研究案,創奕工程顧問股份有限公司執行
C.R.O.W. (2009). Road Safety Manual. Zheng, L., K., Ismail, and X. Meng. Traffic conflict techniques for road safety analysis: open questions and some insights. Canadian journal of civil engineering, Vol. 41, No. 7, 2014, pp.6 633-641 Hunter, W. W., Pein, W. E., & Stutts, J. C. (1995). Bicycle-motor vehicle crash types: The early1990s. Transportation Research Record, 1502, 65–74. Jannat, M., Tapiro, H., Monsere, C., & Hurwitz, D. S. (2020). Right-hook crash scenario: Effects of environmental factors on driver’s visual attention and crash risk. Journal of Transportation Engineering, Part A: Systems, 146(5), 04020026. Hsu, T. P., & Wen, K. L. (2019). Effect of novel divergence markings on conflict prevention regarding motorcycle-involved right turn accidents of mixed traffic flow. Journal of Safety Research, 69, 167–176. Deliali, K., Christofa, E., & Knodler Jr, M. (2021). The role of protected intersections in improving bicycle safety and driver right-turning behavior. Accident Analysis & Prevention, 159, 106295. Chen, A. Y., Chiu, Y. L., Hsieh, M. H., Lin, P. W., & Angah, O. (2020). Conflict analytics through the vehicle safety space in mixed traffic flows using UAV image sequences. Transportation Research Part C: Emerging Technologies, 119, 102744. Saunier, N., & Sayed, T. (2010). Surrogate safety analysis. Polytechnique Montréal. Laureshyn, A., & Várhelyi, A. (2018). The Swedish Traffic Conflict Technique: Observer's Manual. Jannat, M., Hurwitz, D. S., Monsere, C., & Funk II, K. H. (2018). The role of driver’s situational awareness on right-hook bicycle-motor vehicle crashes. Safety Science, 110, 92–101. Perkins, S. R., & Harris, J. L. (1968). Traffic conflict characteristics – accident potential at intersections. Highway Research Record, 225. Parker, M. R., & Zegeer, C. V. (1989). Traffic conflict techniques for safety and operations: Observers manual. Technical Report FHWA-IP-88-027, Federal Highway Administration. Amundsen, F., & Hydén, C. (1977). Proceedings of the First Workshop on Traffic Conflicts: Oslo 77. Hydén, C. (1987). The development of a method for traffic safety evaluation: The Swedish Traffic Conflicts Technique (Doctoral dissertation). Lund University of Technology. Bulletin 70 Sacchi, E., Sayed, T., & Deleur, P. (2013). A comparison of collision-based and conflict-based safety evaluations: The case of right-turn smart channels. Accident Analysis & Prevention, 59, 260–266. Tarko, A. P. (2009). Modeling drivers’ speed selection as a trade-off behavior. Hayward, J. C. (1968). Initial experiments with the cross-impact matrix method of forecasting. In: T. J. Gordon & H. Hayward (Eds.) Allen, B. L., Shin, B. T., & Cooper, P. J. (1977). Analysis of traffic conflicts and collisions. Department of Civil Engineering, McMaster University. Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation. Accident Analysis & Prevention, 42(6), 1637–1646. Minderhoud, M. M., & Bovy, P. H. L. (2001). Extended time-to-collision measures for road traffic safety assessment. Accident Analysis & Prevention, 33(1), 89–97. Gettman, D., & Head, L. (2003). Surrogate safety measures from traffic simulation models. Transportation Research Record, 1840, 104–115. Spicer, B. R. (1971). A pilot study of traffic conflicts at a rural dual carriageway intersection. Hydén, C. (1975). Relations between serious conflicts and traffic accidents. Huang, Y. L., Chen, Y. H., & Chang, G. L. (2023). Estimating intersections’ near-crash conflicts with the drone-based image-recording data (DIRD). ICTCT Conference Proceedings. Glauz, W. D., Bauer, K. M., & Migletz, D. J. (1985). Expected traffic conflict rates and their use in predicting accidents. Transportation Research Record, 1026, 1–12. FHWA (1996). Measuring the Goodness-of-Fit of Accident Prediction Models. Report No. FHWA-RD-96-040, Federal Highway Administration, McLean, VA. Miaou, S. P. (1996). Measuring the goodness-of-fit of accident prediction models. FHWA Report No. FHWA-RD-96-040, McLean, VA. Zheng, L., Sayed, T., & Essa, M. (2019). Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators. Accident Analysis & Prevention, 131, 139–148. 陳春龍、胡守任(2024)。〈混合車流下號誌化路口行人與車輛之交通衝突分析〉。中華民國運輸學會 113 年學術論文研討會。 Chiu, Y. L., Chen, A. Y., & Hsieh, M. H. (2020). Vision-based traffic conflict analytics of mixed traffic flow. Tarko, A. (2019). Measuring Road Safety with Surrogate Events. Elsevier. Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. 陳彥向、蔡欣澐、黃浩哲、黃允(2024)。《號誌化路口左轉穿越側撞與右轉側撞之安全代理量度研究》。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101491 | - |
| dc.description.abstract | 在諸多事故型態之中,右轉側撞為高嚴重程度之碰撞,因其碰撞之角度接近90度,若事故發生時通常發生於較脆弱面。而我國由於混流之複雜特性,直右共用車道常見於各地,若汽車或大型車輛右轉時,可能因車流阻擋或車體大小差異等因素導致未察覺後方直行機車,此類碰撞結果殊為嚴重。故本研究聚焦於號誌化路口右轉側撞相關之事故分析,以建立相關量化評估模式。我國常見之交通安全改善方法為事故法,亦即透過數年之事故肇事資料進行路口改善方案研擬,然蒐集耗時長、效益難以快速評估、依賴警方紀錄,且越多事故資料越容易進行安全評估之手段,有違交通安全之零願景考量。可行之先發法如交通安全技法(Traffic Conflict Technique, TCT)評估路口風險,可規避前述缺點與疑慮:其使用「安全代理量度(Surrogate measures of safety, SMoS)」藉由其他可觀察到之資料作為衡量安全依據。路側攝影即為交通安全技法中常見的潛在風險事件之蒐集工具,其鉅集之資料庫除有助於車流管理外,眾多文獻亦以之進行安全評估。然路側攝影易受陰影遮罩與側面投影產生之座標誤差干擾,故以無人機進行空拍獲取路口影像。本研究聚焦於號誌化路口「右轉側撞」與「同向擦撞」此類同向直行車與右轉車的碰撞型態。而蒐集右轉側撞事件資料時,發現此類衝突與同向擦撞可能為相同起迄方向,其衝突當下判定為潛在右轉側撞或同向擦撞,其區別可能僅係微小速度差或加減速之駕駛決策,故本研究提出「共同風險」之概念,以描述此類觀點。至此,將較警方提供之事故資料知曉更多資訊。後以三種子方法如考量共同風險之細部分類:將右轉側撞與同向擦撞分開配對,Pearson相關係數與Spearman排序係數可達0.7463與0.4696;以總和分類考量共同風險:將右轉側撞與同向擦撞之資料合併視為一類,Pearson相關係數與Spearman排序係數可達0.7882與0.6301;與不考量共同風險之純右轉側撞:亦即原始觀點不考慮同向擦撞,Pearson相關係數與Spearman排序係數篩選下為0.7889與0.6025。可見使用無人機進行安全代理量度資料蒐集判別之潛在風險事件,確實可以對應到事故數據。另外,本研究亦建立一模式整合子方法,以期僅使用觀察之事件數,預測可能之事故頻次,量化風險。以一例展現應用價值推估具改善前後影像資料之路口,在佈設直、右轉彎指向線分開之標線改善措施,其路口風險有所下降,推測其安全有所改善。 | zh_TW |
| dc.description.abstract | Among various collision types, right-hook turn collisions are recognized as highly severe due to their near-perpendicular impact angle, often involving the more vulnerable side of the vehicle. In Taiwan, the prevalence of shared lanes for through and right-turning vehicles—a result of mixed traffic conditions—significantly increases the risk of such collisions. When cars or heavy vehicles make right turns, they may fail to detect motorcycles traveling straight ahead due to traffic obstructions or differences in vehicle size, often resulting in severe outcomes. This study focuses on analyzing right-hook turn collisions at signalized intersections to establish a quantitative evaluation model. In Taiwan, the commonly adopted crash record-based approach to traffic safety improvements relies on multi-year crash data to propose intersection modifications. However, such methods are time-consuming, difficult to evaluate promptly, dependent on police records, and paradoxically require more accident data for effective analysis—contrary to the Vision Zero goal of eliminating traffic fatalities. As a proactive alternative, the Traffic Conflict Technique (TCT) provides a method for assessing intersection risk using Surrogate Measures of Safety (SMoS), which rely on observable non-crash events as indicators of safety performance. Roadside video surveillance is often used to collect potential conflict events for TCT applications and has been widely adopted in traffic flow management and safety assessment. However, it is subject to coordinate errors caused by shadowing and side-angle projections. To overcome these limitations, this study utilizes Unmanned Aerial Vehicles (UAVs) to capture overhead footage of intersections. This research concentrates on two types of same-direction crashes: right-hook turn collisions and same-direction sideswipe collisions. During data collection, it was observed that these events often share similar trajectories and directional paths. The distinction between the two often hinges on minor speed differences or the driver’s decisions regarding acceleration and deceleration. Thus, this study introduces the concept of “shared risk” to capture this overlap better, providing more nuanced insight than what is typically available from police crash reports. Three analytical sub-methods were employed: (1) a disaggregated shared-risk classification that separates right-hook and sideswipe conflicts, achieving a Pearson correlation of 0.7463 and Spearman rank correlation of 0.4696; (2) an aggregated shared-risk classification that treats both as one category, yielding the highest correlation values (Pearson = 0.7882; Spearman = 0.6301); and (3) a non-shared-risk classification that includes only right-hook collisions, which also produced relatively strong correlations (Pearson = 0.7889; Spearman = 0.6025). The results demonstrate that UAV-based collection of SMoS data can reliably correspond to actual crash records. A prediction model was further developed to integrate these sub-methods, enabling the estimation of crash frequencies based solely on observed conflict events for the purpose of quantifying intersection and approach-level risk. A case application at an intersection with UAV footage captured before and after the implementation of directional lane markings separating through and right-turn movements—showed a reduction in estimated risk, indicating improved safety outcomes after the intervention. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-04T16:12:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-02-04T16:12:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 II
中文摘要 III ABSTRACT V 目次 VII 圖次 IX 表次 XI 一、緒論 1 1.1研究背景與動機 1 1.2研究目標與範圍 3 1.3研究流程 3 二、文獻回顧 5 2.1衝突與事故法 5 2.2右轉側撞 6 2.3交通衝突技法 6 2.4安全代理量度 8 2.4.1碰撞倒數時間(TTC) 8 2.4.2後侵佔時間(PET) 8 2.4.3 Time Exposed Time-to-collision(TET) 9 2.4.4 Time Integrated Time-to-collision(TIT) 10 2.4.5 Deceleration rate to avoid a crash(DRAC) 11 2.5碰撞與風險驗證 11 2.6無人機空拍 12 2.7小結 13 三、研究方法 14 3.1衝突事件資料搜集 14 3.1.1空拍影像資料處理 14 3.1.2時間相依之代理量度 16 3.2碰撞事故資料處理 19 3.2.1碰撞構圖 19 3.2.2統計分類 20 3.3碰撞特性與風險判斷 21 3.3.1右轉側撞之碰撞特性 21 3.3.2共同風險之判斷與紀錄 22 3.4風險分類方法 23 3.4.1細部分類 23 3.4.2總和分類 23 3.4.3純右轉 24 3.4.4小結 24 3.5數據匹配檢核 24 四、案例分析 26 4.1樣本背景資訊 26 4.2事故資料 26 4.3事件偵測 35 4.4閾值校估 48 4.5結果分析 49 4.5.1細部分類 50 4.5.2總和分類 53 4.5.3純右轉 57 4.6事故預測模式聚合 59 4.7評量改善案之事後風險 64 4.8與曝光量之檢驗 66 五、結論與建議 69 5.1總結 69 5.2未來方向 70 參考文獻 72 附錄 75 A1 子方法1細部分類閾值1.5秒總表 75 A2 TTC驗證取樣 77 B1 意見回覆表 78 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 路口衝突 | - |
| dc.subject | 右轉側撞 | - |
| dc.subject | 號誌化路口 | - |
| dc.subject | 共同風險 | - |
| dc.subject | 風險模式 | - |
| dc.subject | intersection conflicts | - |
| dc.subject | right-hook turn collisions | - |
| dc.subject | signalized intersections | - |
| dc.subject | shared risk | - |
| dc.subject | risk modeling | - |
| dc.title | 使用安全代理量度評估號誌化路口右轉側撞風險程度 | zh_TW |
| dc.title | Assessing Right-Hook Crash Risk at Signalized Intersections Using Surrogate Safety Measures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡守任;陳柏華 | zh_TW |
| dc.contributor.oralexamcommittee | Shou-Ren Hu;Albert Y. Chen | en |
| dc.subject.keyword | 路口衝突,右轉側撞號誌化路口共同風險風險模式 | zh_TW |
| dc.subject.keyword | intersection conflicts,right-hook turn collisionssignalized intersectionsshared riskrisk modeling | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202600376 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-02-05 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 13.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
