Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭隆瀚zh_TW
dc.contributor.advisorLung-Han Pengen
dc.contributor.author張凱勛zh_TW
dc.contributor.authorKai-Hsun Changen
dc.date.accessioned2026-02-03T16:21:33Z-
dc.date.available2026-02-04-
dc.date.copyright2026-02-03-
dc.date.issued2025-
dc.date.submitted2026-01-23-
dc.identifier.citation1. T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature 187, 493 (1960).
2. P. A. Franken, A. E. Hill, C. W. Peters, et al., "Generation of Optical Harmonics," Physical Review Letters 7, 118 (1961).
3. J. A. Armstrong, N. Bloembergen, J. Ducuing, et al., "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review 127, 1918 (1962).
4. C. Li, Nonlinear Optics Principles and Applications (Springer Singapore, 2017).
5. E. Garmire, "Nonlinear optics in daily life," Opt. Express 21, 30532 (2013).
6. M. V. Hobden, "Phase‐Matched Second‐Harmonic Generation in Biaxial Crystals," Journal of Applied Physics 38, 4365 (1967).
7. M. M. Fejer, G. A. Magel, D. H. Jundt, et al., "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE Journal of Quantum Electronics 28, 2631 (1992).
8. M. S. Ferreira and N. U. Wetter, "Diode-side-pumped, intracavity Nd:YLF/KGW/LBO Raman laser at 573  nm for retinal photocoagulation," Opt. Lett. 46, 508 (2021).
9. Q. Bian, Y. Bo, J. Zuo, et al., "Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class pulsed laser for adaptive optical telescope applications," Scientific Reports 8, 9222 (2018).
10. X. Shen, L. Wang, Y. Guo, et al., "Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy," The Journal of Physical Chemistry Letters 16, 596 (2025).
11. S. Fujita, H. Tanaka, and F. Kannari, "Intracavity second-harmonic pulse generation at 261 and 320 nm with a Pr3+:YLF laser Q-switched by a Co2+:MgAl2O4 spinel saturable absorber," Opt. Express 27, 38134 (2019).
12. T. Sugiyama and T. Ueda, "In-situ Measurement for Gas Concentrations using Tunable Lasers," IEEJ Transactions on Sensors and Micromachines 126, 464 (2006).
13. T. Töpfer, K. P. Petrov, Y. Mine, et al., "Room-temperature mid-infrared laser sensor for trace gas detection," Appl. Opt. 36, 8042 (1997).
14. H. Linnenbank, T. Steinle, F. Mörz, et al., "Robust and rapidly tunable light source for SRS/CARS microscopy with low-intensity noise," Advanced Photonics 1, 055001 (2019).
15. R. Bohdan, A. Bercha, W. Trzeciakowski, et al., "Yellow AlGaInP/InGaP laser diodes achieved by pressure and temperature tuning," Journal of Applied Physics 104(2008).
16. N. N. Ledentsov, V. A. Shchukin, Y. M. Shernyakov, et al., "Room temperature yellow InGaAlP quantum dot laser," Solid-State Electronics 155, 129 (2019).
17. P. W. Metz, F. Reichert, F. Moglia, et al., "High-power red, orange, and green Pr3+:LiYF4 lasers," Opt. Lett. 39, 3193 (2014).
18. Y. Han, K. Guo, Y. Zhu, et al., "Watt-level all-solid-state single-frequency Pr:LiYF4 ring laser in the orange spectral region with wavelength tunability," Chin. Opt. Lett. 23, 031405 (2025).
19. G. Bolognesi, D. Parisi, D. Calonico, et al., "Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4," Opt. Lett. 39, 6628 (2014).
20. D.-T. Marzahl, P. W. Metz, C. Kränkel, et al., "Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19)," Opt. Express 23, 21118 (2015).
21. J. Demaimay, P. Loiko, E. Kifle, et al., "Diode-pumped orange Sm:LiYF4 lasers emitting at 605 nm," Opt. Express 33, 9412 (2025).
22. E. Castellano-Hernández, S. Kalusniak, P. W. Metz, et al., "Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range," Laser & Photonics Reviews 14, 1900229 (2020).
23. M. Corato-Zanarella, X. Ji, A. L. Gaeta, et al., "Simultaneous on-chip generation of violet, blue, cyan, green, yellow, orange, and red light from an octave-spanning infrared frequency comb," Opt. Express 33, 14581 (2025).
24. X. Lin, H. Ren, Z. Wang, et al., "Yellow-orange and ultraviolet laser generation based on stimulated Raman scattering of barium nitrate crystal," Optics & Laser Technology 186, 112697 (2025).
25. P. Hajireza, A. Forbrich, and R. Zemp, "In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source," Biomed. Opt. Express 5, 539 (2014).
26. Y. Duan, Y. Li, C. Xu, et al., "Generation of 589 nm Emission via Frequency Doubling of a Composite c-Cut Nd:YVO4 Self-Raman Laser," IEEE Photonics Technology Letters 34, 831 (2022).
27. P. Chen, Z. Xiao, Y. Nan, et al., "Acousto-optically Q-switched Nd:YLF/KGW/LBO Raman yellow laser operating at 578 nm," Opt. Lett. 50, 1621 (2025).
28. B. Li, J. Q. Yao, X. Ding, et al., "A novel CW yellow light generated by a diode-end-pumped intra-cavity frequency mixed Nd:YVO4 laser," Optics & Laser Technology 56, 99 (2014).
29. H.-J. Huang, X.-W. Chang, C.-L. Hsieh, et al., "Compact efficient high-power continuous-wave Nd:YVO4/KGW/LBO Raman lasers for selectable wavelengths within 559-603 nm," Opt. Express 32, 14133 (2024).
30. Y. Cheng, F. Liang, J. Feng, et al., "Multiphonon-coupling yellow laser in Yb:La2CaB10O19 crystal," Opt. Express 32, 20316 (2024).
31. D. K. Choge, H.-X. Chen, L. Guo, et al., "Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO:PPLN crystal," Opt. Mater. Express 9, 837 (2019).
32. D. K. Choge, H.-X. Chen, B.-L. Tian, et al., "Multi-peak tunable CW orange laser based on single-pass sum frequency generation in step-chirped MgO: PPLN," Optical and Quantum Electronics 50, 226 (2018).
33. H. Chen, H. Huang, J. Cheng, et al., "Broadband yellow-orange light generation based on a step-chirped PPMgLN ridge waveguide," Opt. Express 30, 32110 (2022).
34. Y. Wu, J. Wei, C. Zeng, et al., "Efficient sum-frequency generation of a yellow laser in a thin-film lithium niobate waveguide," Opt. Lett. 49, 2833 (2024).
35. A. F. Carmelo Rosales-Guzmán, How to Shape Light with Spatial Light Modulators, 1st ed. (SPIE Press, 2017).
36. A. Rubano, F. Cardano, B. Piccirillo, et al., "Q-plate technology: a progress review [Invited]," J. Opt. Soc. Am. B 36, D70 (2019).
37. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, et al., "Production and characterization of spiral phase plates for optical wavelengths," Appl. Opt. 43, 688 (2004).
38. N. Yu, P. Genevet, M. A. Kats, et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science 334, 333 (2011).
39. L. L. Nguyen Thi, K.-F. Tsai, and S.-C. Chu, "Generating Optical Vortex Array Laser Beams of Superimposing Hermite–Gaussian Beams with a Dual–Phase Modulation Digital Laser System," Photonics 11, 563 (2024).
40. A. Ringne, N. Kumar, S. Karmakar, et al., "Generation of complex beams using flattening of binary gratings," J. Opt. Soc. Am. B 41, 1364 (2024).
41. A. Ringne, S. Karmakar, and A. Krishnan, "On-axis structured beams generation via moiré and Mie resonant metallo-dielectric moiré gratings," Scientific Reports 15, 16544 (2025).
42. Y.-F. Hui, L. Zhou, Y.-F. Liu, et al., "Tunable Vector Vortex Beam Vertical Cavity Surface Emitting Laser," Advanced Functional Materials 35, 2425931 (2025).
43. M. D. Shafqat, K. H. Ibnaouf, N. Mahmood, et al., "Flat miniaturized surfaces to structure light to Hermite-Gaussian beams," Opt. Mater. Express 15, 3200 (2025).
44. W. Ding, M. Tang, F. Jiang, et al., "High-efficiency elliptical perfect vortex beam generation based on 3D nanoprinted spiral ellipse-type lens," Opt. Express 33, 37095 (2025).
45. A. Kumari, V. Dev, T. M. Hayward, et al., "Generating optical vortex needle beams with a flat diffractive lens," Journal of Applied Physics 136(2024).
46. S. Lin, Y. Zheng, L. Guo, et al., "Achievement of tunable vortex beams with dual index by intra-cavity multi-surface construction modulation," Optics Communications 558, 130355 (2024).
47. H. Laabs and B. Ozygus, "Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping," Optics & Laser Technology 28, 213 (1996).
48. X. Cao, Y. Huang, Y. Lin, et al., "Off-axis pumped broad 1.5–1.6 μm wavelength-tunable Er:Yb:YAl3(BO3)4 vortex laser," Optics & Laser Technology 193, 114235 (2026).
49. M. Xu, M. Hu, X. Wang, et al., "Effect of mirror reflectivity on the symmetry of high-order HG and LG modes in off-axis pumped Nd: YVO4 laser," Journal of Optics 27, 095501 (2025).
50. C.-Y. Cho, Y.-P. Huang, and L.-H. Tsai, "Low-threshold CW eye-safe vortex generation from an intracavity pump-wave off-axis pumped OPO," Opt. Lett. 49, 6189 (2024).
51. J. Xu, S. Zhang, X. Yang, et al., "Femtosecond vortex generation via Mode-Locked High-Order Hermite-Gaussian modes," Optics & Laser Technology 193, 114374 (2026).
52. J. Hao, K. Dai, H. Liu, et al., "Generation of tunable high-order vortex beams from a Hermite-Gaussian thin-disk laser," Opt. Express 33, 2631 (2025).
53. W. Wang, L. Zhou, J. Dou, et al., "Controlled generation of OAM-switchable vortex beams at 639 nm from a Pr3+: YLF laser," Optics Communications 563, 130576 (2024).
54. Z. Lu, Z. Liu, J. Tang, et al., "Generation of high-order Hermite–Gaussian modes and optical vortices by manipulating off-axis displacement of an intracavity lens," Opt. Lett. 50, 6421 (2025).
55. G. Xiong, A. Tang, B. Lan, et al., "Position Mapping Relationship for Converting Laguerre-Gaussian Beam Array into Hermite-Gaussian Beam Array Based on a Tilted Lens," Laser & Optoelectronics Progress 61, 0507001 (2024).
56. Z. Xiao, Z. Zhu, Q. Wang, et al., "Intracavity Light Field Shaping by Micro-Optics Integrated Inside Fabry-Pérot Microlasers," Laser & Photonics Reviews n/a, e01907.
57. X. Zhu, J. Yang, Y. Chen, et al., "High-order Hermite-Gaussian modes and optical vortices generated in an efficient Yb:YAG microchip laser by manipulating gain distribution," Optics & Laser Technology 180, 111584 (2025).
58. Y. Zhang, S. Liu, J. Yang, et al., "Structured Light Fields with 2D Tunable Indices Generated in a Raman Microchip Laser," Advanced Physics Research 4, 2400167 (2025).
59. H. Tong, Y. Shi, H. Wang, et al., "Generation of gigahertz-repetition-rate femtosecond vortex beams by an optical parametric oscillator," Opt. Lett. 50, 7420 (2025).
60. J. Hao, Q. Wang, K. Dai, et al., "Femtosecond vortices generated from a self-started Kerr-lens mode-locked Hermite–Gaussian thin-disk oscillator with a defective mirror," Opt. Lett. 49, 7020 (2024).
61. A. Aadhi, G. K. Samanta, S. Chaitanya Kumar, et al., "Controlled switching of orbital angular momentum in an optical parametric oscillator," Optica 4, 349 (2017).
62. A. Karnieli, S. Trajtenberg-Mills, G. Di Domenico, et al., "Experimental observation of the geometric phase in nonlinear frequency conversion," Optica 6, 1401 (2019).
63. S. Trajtenebrg-Mills and A. Arie, "Shaping light beams in nonlinear processes using structured light and patterned crystals," Opt. Mater. Express 7, 2928 (2017).
64. Y. Wang, Y. Sheng, S. Liu, et al., "Wavelength-dependent nonlinear wavefront shaping in 3D nonlinear photonic crystal," Chin. Opt. Lett. 22, 071901 (2024).
65. L. Zhang, R. Pajković, M. Gagino, et al., "Monolithic integration of a tunable laser with a millimeter-scale surface emitting grating enabling high-resolution line-shaped beam steering," Opt. Express 33, 33655 (2025).
66. B. Zhou, S. Zhang, Y. Ma, et al., "On-chip wide tuning of high-power quantum cascade laser based on a vertical-integrated heater," APL Photonics 10(2025).
67. B. Han, Y. Ma, Q. Cheng, et al., "Tunable Broadband Multi-Wavelength Brillouin-Raman Random Fiber Laser Based on High-Order Raman Pump," J. Lightwave Technol. 43, 1394 (2025).
68. A. Goswami, S. Padmanabhan, S. Dash, et al., "Pulsed cascaded Raman fiber laser widely tunable in the second near-infrared and visible window for hyperspectral photoacoustic imaging," Opt. Lett. 50, 2223 (2025).
69. L. Chen, Y. Li, H. Liang, et al., "A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber," Photonics 11, 247 (2024).
70. H. Ahmad, L. Lohano, B. Nizamani, et al., "Widely Tunable Narrow Linewidth Dual-Wavelength Fiber Laser Using In-Line Six-Mode Fiber Filter With a Double-Ring Compound Cavity (DRCC)," IEEE Journal of Quantum Electronics 61, 1 (2025).
71. M. Ma, L. Guo, Y. Chen, et al., "High-repetition-rate, 1011.5–1091.6 nm consecutively tunable mode-locked picosecond Yb: Fiber laser," Optics Communications 559, 130398 (2024).
72. D. Zhao, X. Zhu, J. Wang, et al., "∼100 nm wavelength tunable noise-like pulse based on two-dimensional parameter optimization of Tm-doped fiber laser," Infrared Physics & Technology 145, 105678 (2025).
73. C. Li, F. Ye, X. Liu, et al., "Widely wavelength-tunable femtosecond soliton in the C + L band using an intracavity birefringence-induced filtering effect," Opt. Lett. 50, 4794 (2025).
74. Y. Xue, W. Yuan, C. Jiang, et al., "LD-pumped high-power tunable green Pr3+:YLF lasers," Journal of Luminescence 273, 120666 (2024).
75. Y. Neustadter, G. Horovitz, R. Nahear, et al., "High peak power passive Q-switched widely tunable Tm:YAP laser," Optics & Laser Technology 181, 112062 (2025).
76. L. Zhao, X. Zhou, C. Zhang, et al., "Wavelength-tunable ultrafast vortex Yb:KGW laser," Optics & Laser Technology 184, 112428 (2025).
77. P. Rajala, P. Tatar-Mathes, H.-M. Phung, et al., "Multitype Quantum Well Semiconductor Membrane External-Cavity Surface-Emitting Lasers for Widely Tunable Continuous Wave Operation," ACS Photonics 11, 3492 (2024).
78. L. Jiang, R. Yan, Y. Gan, et al., "A Compact High-Power Narrow-Linewidth 509 nm Single-Frequency Laser With a Wide Tuning Range," J. Lightwave Technol. 43, 734 (2025).
79. H. Gong, Y. Wang, and H. Luo, "Widely and Continuously Tunable Nanosecond Pulsed Laser Source Around 3 μm," J. Lightwave Technol. 42, 354 (2024).
80. Z. Fan, W. Liu, Z. Wu, et al., "High-power, widely wavelength-tunable, single-frequency pulsed fiber master oscillator power amplifier at 2.8 μm," High Power Laser Science and Engineering 13, e26 (2025).
81. S. Tang, S. Huang, J. Liu, et al., "Widely wavelength-tunable electro-optical Q-switched Er3+:ZBLAN fiber laser emitting near 2.8  µm," Appl. Opt. 64, 5060 (2025).
82. M. Corato-Zanarella, A. Gil-Molina, X. Ji, et al., "Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths," Nature Photonics 17, 157 (2023).
83. B. Pan, J. Bourderionnet, V. Billault, et al., "III-V-on-Si3N4 widely tunable narrow-linewidth laser based on micro-transfer printing," Photon. Res. 12, 2508 (2024).
84. Y. Liu, Y. Chen, L. Bogaert, et al., "Widely tunable narrow-linewidth lasers with booster amplification on silicon photonics," Opt. Express 33, 22078 (2025).
85. Y. Ren, B. Xiong, Y. Yu, et al., "Widely and fast tunable external cavity laser on the thin film lithium niobate platform," Optics Communications 559, 130415 (2024).
86. J. Wang, B. Chen, D. Ban, et al., "Widely Tunable Narrow-Linewidth Laser Based on a Multi-Period-Delayed Feedback Photonic Circuit," IEEE Photonics Technology Letters 36, 437 (2024).
87. C. Yang, Y. Li, Q. Cui, et al., "Narrow-linewidth, high-power, widely-tunable III-V/Si3N4 hybrid integrated external cavity laser," Optics & Laser Technology 186, 112627 (2025).
88. Y. Fang, J. Cheng, S. Wang, et al., "Wavelength tunable laser in blend dye solution based on DCM and PM597," Optics Communications 602, 132773 (2026).
89. Y. Fu, H. Zhu, C. C. Stoumpos, et al., "Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," ACS Nano 10, 7963 (2016).
90. Z. Wang, J. Meng, Q. Chen, et al., "Electro-absorption modulated 53 Gbps widely tunable laser based on half-wave V-coupled cavities," Opt. Lett. 49, 3798 (2024).
91. C. Yuan, R. Zhang, Z. Yu, et al., "Broadly tunable femtosecond optical parametric amplifiers in the mid-infrared waveband based on cascaded noncollinear-collinear KTiOAsO4 crystals," Optics Communications 569, 130805 (2024).
92. F. Wang, G. Zhao, J. Meng, et al., "Widely tunable narrow-linewidth ZGP optical parametric oscillator with injection of single frequency seed," Optics & Laser Technology 181, 111834 (2025).
93. H. Yu, Y. Yu, K. Li, et al., "Development of a single-resonant optical parametric oscillator with tunable output from 218 nm to 322 nm," Applied Physics B 131, 57 (2025).
94. F. Li, K. Zhong, J. Chi, et al., "Ultra-widely tunable high-power terahertz parametric generation based on synchronized sub-nanosecond pump and nanosecond seeder," Optica 12, 1391 (2025).
95. Z. Yan, Q. Yi, Q. Li, et al., "Broadband continuous-wave mid-infrared wavelength conversion in high-Q silicon microring resonators," Photon. Res. 12, 2257 (2024).
96. D. Xia, J. Zhao, H. Cheng, et al., "Energy Dissipation Engineering for Widely Tunable (1.2–2.1 µm) Optical Parametric Oscillation in Integrated Chalcogenide Microresonators," Laser & Photonics Reviews 18, 2301098 (2024).
97. M. Timmerkamp, M. Gao, and C. Fallnich, "Widely tunable dual-wavelength waveguide-based optical parametric oscillator," Opt. Express 33, 8545 (2025).
98. Z. Yan, S. Zheng, Q. Yi, et al., "Ultra-Broadband Continuous-Wave Mid-Infrared Wavelength Conversion in Germanium-on-Silicon Waveguides," Laser & Photonics Reviews n/a, e01350.
99. K. Chen, D. Xu, J. Li, et al., "Widely independent tunable dual-color mid-infrared optical parametric oscillator based on BaGa4Se7 crystals," Optics & Laser Technology 167, 109750 (2023).
100. Z. Hu, X. Gu, J. Yao, et al., "BaGa4Se7-based 7−15 µm tunable broadband optical parametric amplifier pumped around 2 µm," Opt. Lett. 50, 916 (2025).
101. Y. Liu, Z. Li, J. Yao, et al., "High-peak-power long-wave infrared BaGa4Se7 optical parametric oscillator with 6.7–13.9 µm widely tunable range," Opt. Lett. 49, 3255 (2024).
102. R. Zhang, Z. Yu, and Z. Zhang, "Highly Efficient, Widely Tunable Femtosecond Optical Parametric Amplifiers Based on BaGa4Se7 Crystal," IEEE Photonics Technology Letters 36, 1017 (2024).
103. J. Zhang, F. Yang, W. Li, et al., "Widely Tunable BaGa2GeSe6 Optical Parametric Amplifier Pumped by a Mode-Locked Nd: YAG Laser," IEEE Photonics Technology Letters 36, 1229 (2024).
104. E. Y. Erushin, S. E. Sere, M. V. Vostrikova, et al., "Widely tunable mid-infrared BaGa2GeS6 optical parametric oscillator pumped at 1064 nm by Nd:YAG laser," Optical Materials 169, 117610 (2026).
105. C. P. Bauer, Z. A. Bejm, M. K. Bollier, et al., "High-sensitivity dual-comb and cross-comb spectroscopy across the infrared using a widely tunable and free-running optical parametric oscillator," Nature Communications 15, 7211 (2024).
106. M. Aihemaiti, D. Jashaner, X. Yang, et al., "Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser," Applied Sciences 14, 2383 (2024).
107. M.-Y. Gao, Y.-W. Song, R.-H. Chen, et al., "Widely tunable cavity-enhanced backward difference-frequency generation," Applied Physics Letters 127(2025).
108. T. Yu, J. Fang, K. Huang, et al., "Widely tunable mid-infrared fiber-feedback optical parametric oscillator," Photon. Res. 12, 2123 (2024).
109. Z.-L. Li, A.-N. Zhang, Y.-P. Wang, et al., "High brightness widely tunable, hundred picosecond mid-IR MgO:PPLN optical parametric oscillator with short cavity," Laser Physics 34, 055402 (2024).
110. L. Ledezma, A. Roy, L. Costa, et al., "Octave-spanning tunable infrared parametric oscillators in nanophotonics," Science Advances 9, eadf9711 (2023).
111. H.-C. Liu and A. H. Kung, "Substantial gain enhancement for optical parametric amplification and oscillation in two-dimensional χ(2) nonlinear photonic crystals," Opt. Express 16, 9714 (2008).
112. H. Chikh-Touami, R. Kremer, H. J. Lee, et al., "Shared optical parametric generation interactions in square lattice nonlinear photonic crystals," Applied Physics B 123, 113 (2017).
113. V. Kemlin, D. Jegouso, J. Debray, et al., "Widely tunable optical parametric oscillator in a 5 mm thick 5% MgO:PPLN partial cylinder," Opt. Lett. 38, 860 (2013).
114. V. Kemlin, D. Jegouso, J. Debray, et al., "Dual-wavelength source from 5%MgO:PPLN cylinders for the characterization of nonlinear infrared crystals," Opt. Express 21, 28886 (2013).
115. D. Lu, A. Peña, P. Segonds, et al., "Validation of the angular quasi-phase-matching theory for the biaxial optical class using PPRKTP," Opt. Lett. 43, 4276 (2018).
116. Y. Petit, A. Peña, P. Segonds, et al., "Development and experimental demonstration of negative first-order quasi-phase matching in a periodically poled Rb-doped KTiOPO4 crystal," Opt. Lett. 45, 6026 (2020).
117. R. W. Boyd and D. Prato, Nonlinear Optics (Elsevier Science, 2008).
118. W. Koechner, Solid-State Laser Engineering (Springer New York, 2007).
119. J. Kiessling, R. Sowade, I. Breunig, et al., "Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals," Opt. Express 17, 87 (2009).
120. M. Vaidyanathan, R. C. Eckardt, V. Dominic, et al., "Cascaded optical parametric oscillations," Opt. Express 1, 49 (1997).
121. G. Porat, H. Suchowski, Y. Silberberg, et al., "Tunable upconverted optical parametric oscillator with intracavity adiabatic sum-frequency generation," Opt. Lett. 35, 1590 (2010).
122. C. M. Lai, I. N. Hu, Y. Y. Lai, et al., "Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator," Opt. Lett. 35, 160 (2010).
123. W. R. Bosenberg, J. I. Alexander, L. E. Myers, et al., "2.5-W, continuous-wave, 629-nm solid-state laser source," Opt. Lett. 23, 207 (1998).
124. J. A. Giordmaine and R. C. Miller, "Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies," Physical Review Letters 14, 973 (1965).
125. S. E. Harris, "Tunable optical parametric oscillators," Proceedings of the IEEE 57, 2096 (1969).
126. R. L. Byer, "Optical Parametric Oscillator," in Quantum Electronics: a treatise vol: I, Nonlinear Optics, Part B, H. Robin and C. L. Tang, eds. (Academic Press, 1975).
127. J. Bjorkholm, "Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators," IEEE Journal of Quantum Electronics 7, 109 (1971).
128. S. Brosnan and R. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE Journal of Quantum Electronics 15, 415 (1979).
129. A. V. Smith, W. J. Alford, T. D. Raymond, et al., "Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator," J. Opt. Soc. Am. B 12, 2253 (1995).
130. A. V. Smith, Crystal Nonlinear Optics: With SNLO Examples (AS-Photonics, 2018).
131. A. V. Smith, R. J. Gehr, and M. S. Bowers, "Numerical models of broad-bandwidth nanosecond optical parametric oscillators," J. Opt. Soc. Am. B 16, 609 (1999).
132. A. Godard and E. Rosencher, "Energy yield of pulsed optical parametric oscillators: a rate-equation analysis," IEEE Journal of Quantum Electronics 40, 784 (2004).
133. A. Fix and R. Wallenstein, "Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis," J. Opt. Soc. Am. B 13, 2484 (1996).
134. H. Huang, S. Wang, X. Liu, et al., "Simultaneous dual-wavelength nanosecond mid-infrared optical parametric oscillator," Infrared Physics & Technology 93, 91 (2018).
135. V. Ramaiah-Badarla, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Fiber-laser-pumped, dual-wavelength, picosecond optical parametric oscillator," Opt. Lett. 39, 2739 (2014).
136. G. Bi, J. Fan, Y. Chu, et al., "Orthogonally polarized tunable dual-wavelength femtosecond optical parametric oscillator," Appl. Opt. 59, 10887 (2020).
137. J. Zhao, J. Fan, H. Tian, et al., "Dual-mode and two-signal-wavelength femtosecond optical parametric oscillator based on LiB3O5," Opt. Lett. 45, 3985 (2020).
138. P. Liu, S. Wang, P. He, et al., "Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources," Opt. Lett. 43, 2217 (2018).
139. K. Kawase, T. Hatanaka, H. Takahashi, et al., "Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate," Opt. Lett. 25, 1714 (2000).
140. G. Walter, D. Descloux, J.-B. Dherbecourt, et al., "Picosecond synchronously pumped optical parametric oscillator based on chirped quasi-phase matching," J. Opt. Soc. Am. B 37, 552 (2020).
141. Z. Zhang, H. Liu, Y. Wang, et al., "Theoretical and experimental study on gain competition adjustment of intracavity pumped dual-wavelength optical parametric oscillator using an aperiodically poled lithium niobate at approximately 3.30 and 3.84 μm," Infrared Physics & Technology 123, 104167 (2022).
142. C.-Y. Hu and Z.-Y. Li, "An effective nonlinear susceptibility model for general three-wave mixing in quasi-phase-matching structure," Journal of Applied Physics 121(2017).
143. A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Optical and Quantum Electronics 39, 361 (2007).
144. T. Umeki, M. Asobe, T. Yanagawa, et al., "Broadband wavelength conversion based on apodized χ(2) grating," J. Opt. Soc. Am. B 26, 2315 (2009).
145. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, "Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas," J. Opt. Soc. Am. B 25, 463 (2008).
146. J.-Y. Lai, C.-W. Hsu, N. Hsu, et al., "Hyperfine aperiodic optical superlattice optimized by iterative domino algorithm for phase-matching engineering," Opt. Lett. 37, 1184 (2012).
147. J.-Y. Lai, Y.-J. Liu, H.-Y. Wu, et al., "Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm," Opt. Express 18, 5328 (2010).
148. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer New York, 2006).
149. L.-H. Peng, Y.-P. Tseng, K.-L. Lin, et al., "Depolarization field mitigated domain engineering in nickel diffused lithium tentalate," Applied Physics Letters 92, 092903 (2008).
150. J. Y. Han, "Vertically Spatial Modulation of Quasi-Phase-Matching Structures on Periodically-Poled Lithium Tantalate Using Nickel-Diffused Process," (National Taiwan University, 2018).
151. L.-H. Peng, Y.-J. Shih, and Y.-C. Zhang, "Restrictive domain motion in polarization switching of lithium niobate," Applied Physics Letters 81, 1666 (2002).
152. J. P. Meyn and M. M. Fejer, "Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate," Opt. Lett. 22, 1214 (1997).
153. Y. S. Kim and R. T. Smith, "Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals," Journal of Applied Physics 40, 4637 (1969).
154. E. e. Granot, S. Pearl, and M. M. Tilleman, "Analytical solution for a lossy singly resonant optical parametric oscillator," J. Opt. Soc. Am. B 17, 381 (2000).
155. J. Burghoff, S. Nolte, and A. Tünnermann, "Origins of waveguiding in femtosecond laser-structured LiNbO3," Applied Physics A 89, 127 (2007).
156. F. Gao, J. Xu, B. Yan, et al., "Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3," Applied Physics Letters 87(2005).
157. L. M. González, M. Cywiak, and D. Cywiak, "Theoretical and experimental study of optical diffractometry based on Fresnel diffraction from a transmission phase step," Appl. Opt. 62, 6593 (2023).
158. R. Baumgartner and R. Byer, "Optical parametric amplification," IEEE Journal of Quantum Electronics 15, 432 (1979).
159. T. M. J. Kendall, W. A. Clarkson, P. J. Hardman, et al., "Multiline optical parametric oscillators based on periodically poled lithium niobate," in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optica Publishing Group, 2000), CMC2.
160. K.-H. Chang, C.-C. Fan, T.-F. Pan, et al., "Nonlinear beam conversion with multi-spectral components," Opt. Lett. 50, 1313 (2025).
161. Y. Yang, Z. Wang, H. Liu, et al., "Mid-infrared dual-wavelength power regulation and linewidth narrowing using an F-P etalon in a multi-optical parametric oscillator based on MgO: APLN," Infrared Physics & Technology 134, 104889 (2023).
162. Sukeert, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Green-pumped optical parametric oscillator based on fan-out grating periodically-poled MgO-doped congruent LiTaO3," Opt. Lett. 44, 5796 (2019).
163. P. Brand, "Study of 5%MgO:PPLN and CdSiP2 for infrared parametric generation," (Université de Grenoble, 2010).
164. P. Segonds, S. Joly, B. Boulanger, et al., "Laser and self-doubling properties of a Nd:YCOB crystal cut as a sphere and inserted in a cavity," J. Opt. Soc. Am. B 26, 750 (2009).
165. B. Boulanger, J. P. Fève, G. Marnier, et al., "Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere," J. Opt. Soc. Am. B 14, 1380 (1997).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101447-
dc.description.abstract本論文之研究包括於空間頻譜分布之雙光學參量振盪器及橘黃光雷射與寬波段波長可調之雷射,其中雙光學參量震盪器及橘黃光雷射是由增益調變週期性極化反轉鉭酸鈮晶體(periodically poled lithium tantalate)所研製,此樣品之設計分為兩部分:雙光學參量部分及上轉換部分,雙光學參量部分包含並聯雙週期(parallel bi-grating)與未極化反轉之空白區(spacer),而上轉換部分則由三週期串聯所組成。由於並聯結構之設計,雙光學參量部分能夠產生於空間上頻譜分布之雙旁波瓣(dual sidelobes)之參量震盪器,其雙旁波瓣各自對應到之信號光與閒置光波長為(980,1164)與(965,1186)奈米。此外,藉由和頻(sum frequency generation)所產生之585 nm黃光雷射,驗證了雙光學參量震盪器之空間模態重疊現象。最後,經由調控未極化反轉之空白區之寬度,雙光參震盪器與三色橘黃光之空間頻譜分布能夠被調變。
本論文之第二項研究為於碟形二維週期性極化反轉鉭酸鈮晶體(2D PPLT)上研製寬波段波長可調之雷射。此碟型樣品成功去除司乃耳定律(Snell’s law)與菲涅耳方程式(the Fresnel equations)於長方形樣品之可旋轉角度之限制。藉由倒晶格向量(reciprocal lattice vector)G1,0,此樣品所產生之信號光波長可於0度到42度之旋轉角度內從787調變至620奈米。由於光譜儀之限制,其所量測到之閒置光波長僅由1648至1680奈米。本實驗所量測之頻譜數據與理論模型之計算結果一致。
zh_TW
dc.description.abstractThis dissertation presents two research topics. The first investigates spatially-spectrally distributed dual optical parametric oscillations (OPOs) and a tricolor yellow-orange laser based on a gain-modulated periodically poled lithium tantalate (PPLT). This PPLT comprised a parallel bi-grating separated by a spacer and was further cascaded with a tri-quasi phase matching (QPM) segment. This configuration enabled simultaneous oscillation of dual OPOs at different sidelobes, with each sidelobe having a (signal, idler) pair at (980, 1164) nm or (965, 1186) nm. Additionally, the sum frequency generated yellow beam at 585 nm, centered between the dual-OPO sidelobes, suggests spatial overlap between the dual OPOs owing to wave continuity. Finally, the experimental spatial-spectral modes of both the dual OPOs and the tricolor yellow-orange beams for different spacer widths confirmed the configurability of the parallel bi-grating structure and the spacer.
The second explores a widely wavelength-tunable laser implemented on a disk-shaped two-dimensional (2D) square-lattice patterned PPLT crystal with a periodicity of 8.52 um. This cylindrically polished crystal removed constraints imposed from Snell’s law and the Fresnel equations, and enabled the signal wavelength, associated with G1,0 reciprocal lattice vector, being tunable from 787 nm to 620 nm over an angular interval of [0°, 42°]. However, owing to the limited detection range of the optical spectrum analyzer, the corresponding idler wavelength could only be observed from 1648 nm to 1680 nm. The measured signal and idler spectra are consistent with the theoretical calculation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:21:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-03T16:21:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
摘要 ii
Abstract iii
Résumé iv
Contents v
List of Figures vii
List of Tables xiii
General introduction 1
Chapter 1 Introduction 3
1.1 State of the art in yellow-orange lasers 5
1.2 State of the art in structured beam techniques 10
1.3 State of the art in widely wavelength-tunable laser approaches 13
1.4 Research topics in this dissertation 19
1.5 Derivation of nonlinear driven equation 21
1.6 Nonlinear interaction of three waves mixing 23
1.7 Introduction of optical parametric oscillations 26
1.7.1 Review of CW OPOs 26
1.7.2 Theoretical studies of pulsed OPOs 29
1.7.3 Recent studies of dual OPOs 31
1.8 QPM condition and the corresponding effective nonlinear coefficient 33
1.9 General properties of three commercial nonlinear crystals 38
1.10 Fabrication process of periodically poled lithium tantalates 39
Chapter 2 Theoretical study of 1D and 2D QPM structures 41
2.1 Introduction 41
2.2 Phase matching diagrams 42
2.2.1 Phase matching diagram for multi-wavelength yellow-orange laser 42
2.2.2 Phase matching diagram for two dimensional PPLT 44
2.3 Output power calculation for intra-cavity dual OPOs 50
2.4 Mode shaping of input pump by the spacer 54
2.5 Mode simulation of optical parametric generation from parallel bi-grating structures 57
2.6 Numerical calculation of sum frequency generation and second harmonic generation on QPM structures 59
Chapter 3 Experimental results of dual optical parametric oscillations and yellow-orange lasers 63
3.1 The mode shaping of input pump 63
3.2 The experimental characterization of the dual OPOs 69
3.3 The experimental results of dual OPOs with a cascaded upconverter 76
3.4 The experimental results of dual OPOs cascaded with a tri-QPM segment 80
3.5 Conclusion and future works 88
Chapter 4 Experimental results of widely wavelength-tunable laser on disk-shaped 2D periodically poled lithium tantalate 89
4.1 The characteristics of disk shape samples 89
4.2 Experimental results of a disk-shaped 2D PPLT 93
4.3 Conclusion and future works 100
General conclusion 101
Appendix A: Mode assumption for the parallel bi-grating structure 102
Supplementary materials 105
S.1 MATLAB code for calculating output power of dual OPOs: 105
S.2 MATLAB code for calculating mode profiles of dual OPOs: 112
Reference 116
List of Publication 129
Summary 132
-
dc.language.isoen-
dc.subject準相位匹配-
dc.subject雙光學參量震盪器-
dc.subject橘黃光雷射-
dc.subject空間頻譜分布-
dc.subject寬波段波長可調之雷射-
dc.subjectQuasi phase matching-
dc.subjectdual OPOs-
dc.subjectyellow-orange laser-
dc.subjectspatial-spectral distribution-
dc.subjectwidely wavelength-tunable laser-
dc.title於空間頻譜分布之雙光學參量振盪器及橘黃光雷射與寬波段波長可調雷射於週期性極化反轉鉭酸鈮之研究zh_TW
dc.titleStudy of Spatially-Spectrally Distributed Dual Optical Parametric Oscillations with Upconverted Yellow-orange Beams and Widely Wavelength-tunable Laser on Periodically Poled Lithium Tantalatesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommitteeAzzedine Boudrioua;Patricia Segonds;賴聰賢;Arnaud Mussot;蔡宛卲zh_TW
dc.contributor.oralexamcommitteeAzzedine Boudrioua;Patricia Segonds;Tsong-Sheng Lay;Arnaud Mussot;Wan-Shao Tsaien
dc.subject.keyword準相位匹配,雙光學參量震盪器橘黃光雷射空間頻譜分布寬波段波長可調之雷射zh_TW
dc.subject.keywordQuasi phase matching,dual OPOsyellow-orange laserspatial-spectral distributionwidely wavelength-tunable laseren
dc.relation.page133-
dc.identifier.doi10.6342/NTU202600126-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2026-01-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2026-02-04-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved