Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡曜陽zh_TW
dc.contributor.advisorYao-Yang Tsaien
dc.contributor.author王煜程zh_TW
dc.contributor.authorYu-Cheng Wangen
dc.date.accessioned2026-02-03T16:08:56Z-
dc.date.available2026-02-04-
dc.date.copyright2026-02-03-
dc.date.issued2026-
dc.date.submitted2026-01-27-
dc.identifier.citation[1] V. Sharma, D. S. Patel, V. K. Jain, and J. Ramkumar, "Wire electrochemical micromachining: An overview," International Journal of Machine Tools and Manufacture, vol. 155, 2020, doi: 10.1016/j.ijmachtools.2020.103579.
[2] Y. B. Zeng, Q. Yu, X. L. Fang, K. Xu, H. S. Li, and N. S. Qu, "Wire electrochemical machining with monodirectional traveling wire," (in English), International Journal of Advanced Manufacturing Technology, vol. 78, no. 5-8, pp. 1251-1257, May 2015, doi: 10.1007/s00170-014-6745-z.
[3] N. Besekar and B. Bhattacharyya, "Wire electrode insulation method for stray current and overcut reduction during WECM-a novel approach," (in English), International Journal of Advanced Manufacturing Technology, vol. 123, no. 11-12, pp. 3917-3942, Dec 2022, doi: 10.1007/s00170-022-10381-2.
[4] Y. B. Zeng, Q. Yu, S. H. Wang, and D. Zhu, "Enhancement of mass transport in micro wire electrochemical machining," (in English), CIRP Ann-Manuf. Technol., vol. 61, no. 1, pp. 195-198, 2012, doi: 10.1016/j.cirp.2012.03.082.
[5] N. S. Qu, H. J. Ji, and Y. B. Zeng, "Wire electrochemical machining using reciprocated traveling wire," The International Journal of Advanced Manufacturing Technology, vol. 72, no. 5-8, pp. 677-683, 2014, doi: 10.1007/s00170-014-5704-z.
[6] N. S. Qu, X. L. Fang, W. Li, Y. B. Zeng, and D. Zhu, "Wire electrochemical machining with axial electrolyte flushing for titanium alloy," (in English), Chinese Journal of Aeronautics, vol. 26, no. 1, pp. 224-229, Feb 2013, doi: 10.1016/j.cja.2012.12.026.
[7] S. H. Wang, Y. B. Zeng, Y. Liu, and D. Zhu, "Micro wire electrochemical machining with an axial electrolyte flow," (in English), International Journal of Advanced Manufacturing Technology, vol. 63, no. 1-4, pp. 25-32, Nov 2012, doi: 10.1007/s00170-011-3858-5.
[8] V. Sharma, I. Srivastava, V. K. Jain, and J. Ramkumar, "Modelling of Wire Electrochemical Micromachining (Wire-ECMM) process for anode shape prediction using finite element method," (in English), Electrochim. Acta, ; Proceedings Paper vol. 312, pp. 329-341, Jul 20 2019, doi: 10.1016/j.electacta.2019.04.165.
[9] Z. Q. Zhou, X. L. Fang, Y. B. Zeng, and D. Zhu, "Research on Machining Gap Distribution in Wire Electrochemical Micromachining," (in English), J. Electrochem. Soc., vol. 168, no. 4, p. 10, Apr 1 2021, Art no. 043503, doi: 10.1149/1945-7111/abf79c.
[10] R. D. Zhang, X. C. Tang, Y. Li, T. Yang, and Y. B. Zeng, "Research on wire electrochemical micromachining with a unidirectional traveling wire and horizontal electrolyte flushing," (in English), Measurement, vol. 242, p. 12, Jan 2025, Art no. 115964, doi: 10.1016/j.measurement.2024.115964.
[11] X. L. Fang, P. F. Zhang, Y. B. Zeng, N. S. Qu, and D. Zhu, "Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode," (in English), J. Mater. Process. Technol., vol. 227, pp. 129-137, Jan 2016, doi: 10.1016/j.jmatprotec.2015.08.014.
[12] L. Jakob, F. D. Heinz, E. Nezam, B. Butschke, I. Krossing, and J. Bartsch, "In-situ evidence for the existence of surface films in electrochemical machining of copper in nitrate electrolytes," (in English), Electrochim. Acta, vol. 493, p. 7, Jul 20 2024, Art no. 144391, doi: 10.1016/j.electacta.2024.144391.
[13] Y. Zeng, H. Ji, X. Fang, Y. Wang, and N. Qu, "Analysis and Reduction of Stray-Current Attack in Reciprocated Traveling Wire Electrochemical Machining," Adv. Mech. Eng., vol. 6, 2015, doi: 10.1155/2014/505932.
[14] L. Jakob, J. Bartsch, and I. Krossing, "Reaction Mechanisms of High-Rate Copper Electrochemical Machining in Nitrate Electrolytes," (in English), Angew. Chem.-Int. Edit., vol. 63, no. 45, p. 11, Nov 2024, Art no. e202412876, doi: 10.1002/anie.202412876.
[15] F. Klocke, T. Herrig, M. Zeis, and A. Klink, "Experimental Investigations of Cutting Rates and Surface Integrity in Wire Electrochemical Machining with Rotating Electrode," Procedia CIRP, vol. 68, pp. 725-730, 2018, doi: 10.1016/j.procir.2017.12.145.
[16] X. Chen, Q. Liao, H. Zuo, and Q. Fu, "Study on Corrosion Behavior of Porous Pure Copper Based on Electrochemistry and Scanning Kelvin Probe," Materials (Basel), vol. 16, no. 23, Nov 27 2023, doi: 10.3390/ma16237370.
[17] D. S. Patel, V. Sharma, V. K. Jain, and J. Ramkumar, "Reducing overcut in electrochemical micromachining process by altering the energy of voltage pulse using sinusoidal and triangular waveform," (in English), Int. J. Mach. Tools Manuf., vol. 151, p. 19, Apr 2020, Art no. 103526, doi: 10.1016/j.ijmachtools.2020.103526.
[18] H. D. He, N. S. Qu, Y. B. Zeng, X. L. Fang, and Y. Y. Yao, "Machining accuracy in pulsed wire electrochemical machining of γ-TiAl alloy," (in English), International Journal of Advanced Manufacturing Technology, vol. 86, no. 5-8, pp. 2353-2359, Sep 2016, doi: 10.1007/s00170-016-8402-1.
[19] A. Tyagi, V. Sharma, V. K. Jain, and J. Ramkumar, "Investigations into side gap in wire electrochemical micromachining (wire-ECMM)," (in English), International Journal of Advanced Manufacturing Technology, ; Proceedings Paper vol. 94, no. 9-12, pp. 4469-4478, Feb 2018, doi: 10.1007/s00170-017-1150-z.
[20] A. Nawaz and S. Rani, "Fabrication methods and property analysis of metal foams - a technical overview," (in English), Mater. Sci. Technol., Review vol. 39, no. 15, pp. 1877-1902, Oct 13 2023, doi: 10.1080/02670836.2023.2186068.
[21] Z. Pandilov, "Application of Electro Chemical Machining for materials used in extreme conditions," IOP Conference Series: Materials Science and Engineering, vol. 329, no. 1, p. 012014, 2018/03/01 2018, doi: 10.1088/1757-899X/329/1/012014.
[22] 楊宗儫, "探討陶瓷基鋁碳化矽於電化學加工反應層之研究," 碩士, 機械工程學系, 國立臺灣大學, 台北市, 2023. [Online]. Available: https://hdl.handle.net/11296/s87xcc
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101420-
dc.description.abstract線電化學加工(Wire Electrochemical Machining,WECM)在加工多孔隙銅的過程中,孔隙結構容易滯留電解液與反應產物,造成加工間隙內電場與質量傳輸條件不均勻,進而加劇雜散電流(stray current)影響與過切(overcut)現象,使加工切口寬度與切口輪廓一致性難以控制。
為了提升線電化學加工多孔隙銅之加工穩定性與切口輪廓精度,本研究採用直徑0.18 mm鉬線作為線電極、NaNO3水溶液為電解液,首先比較側向供應、軸向供應與浸沒式供應三種電解液供應方式,來選定後續實驗之電解液供應方式。接著以多孔隙銅與實心銅(厚度8mm)為實驗對象來進行切槽實驗,並以三因子三水準全因子設計系統性探討加工電壓(5/10/15V)、進給速度(0.06/0.18/0.3mm/min)與電解液濃度(5/10/15wt%)對加工結果之影響。加工品質以加工切口寬度及其沿加工深度方向的輪廓變化為主要評估指標,透過多點量測結果計算相鄰量測位置寬度之差值(例如D2−D1、D3−D2、D4−D3、D5−D4), 並以此相鄰位置差值建立輪廓穩定性之量化指標,將加工結果分類為三類輪廓型態,以客觀描述不同條件下切口輪廓由入口至深部的變化趨勢。
實驗結果顯示,軸向電解液供應方式相較於側向供應與浸沒式供應能夠有效更新加工區域內之電解液並去除反應產物,整體加工穩定性最佳。在多孔隙銅加工中,進給速度對切口入口處寬度與切口輪廓穩定性影響最為顯著,輪廓分類結果顯示在低進給速度之下較容易落入輪廓變動劇烈之類型,因為低進給容易使反應時間過長而造成側向反應過度與切口入口處寬度過大;提高進給則有助於抑制過度反應並改善輪廓穩定性。相較之下,實心銅在相同的分類架構下多呈現較小的輪廓變動量,顯示其輪廓控制相對穩定,然而在部分參數組合下仍會出現由切口入口處至切口內部逐步收縮或不均勻變化的輪廓型態。在材料結構驗證方面,藉由光學顯微鏡觀察多孔隙銅經線電化學加工過後之孔隙結構,確認經線電化學加工過後孔隙結構仍可維持,顯示線電化學能在不破壞孔隙結構的前提下,具備加工多孔隙材料的可行性。
zh_TW
dc.description.abstractDuring the Wire Electrochemical Machining (WECM) of porous copper, the inherent pore structures tend to entrap electrolyte and reaction byproducts. This accumulation results in non-uniform electric field distribution and poor mass transfer within the machining gap, which exacerbates stray current effects and overcut phenomena, making it challenging to control slit width and profile consistency.
To enhance machining stability and profile accuracy, this study employed a 0.18 mm diameter molybdenum wire as the tool electrode and a sodium nitrate (NaNO3) aqueous solution as the electrolyte. The research first compared three electrolyte delivery methods—lateral, axial, and immersion—to determine the optimal supply configuration. Subsequently, slotting experiments were conducted on both porous copper and solid copper workpieces (8 mm thickness). A three-factor, three-level full factorial design was utilized to systematically investigate the effects of machining voltage (5, 10, 15 V), feed rate (0.06, 0.18, 0.3 mm/min), and electrolyte concentration (5, 10, 15 wt%) on the machining outcomes. The primary evaluation metrics included slit width and its profile variation along the machining depth. A quantitative stability index was established by calculating the width differences between adjacent measurement points (e.g.,D2−D1 , D3−D2,…). Based on these indices, the results were categorized into three distinct profile types to objectively characterize the evolution of the slit profile from the entry to the depth under various conditions.
Experimental results indicate that the axial electrolyte supply method outperforms lateral and immersion methods in terms of electrolyte renewal and byproduct removal, yielding the highest overall machining stability. In the machining of porous copper, the feed rate emerged as the most significant factor influencing entry width and profile stability. The classification results revealed that low feed rates frequently led to severe profile fluctuations; the prolonged reaction time at low feed rates caused excessive lateral dissolution, resulting in oversized entry widths. Conversely, increasing the feed rate helped suppress over-reaction and improved profile consistency. In comparison, solid copper exhibited smaller profile variations under the same analytical framework, indicating superior profile control, although tapering or non-uniform variations from the entry to the interior were still observed under specific parameter combinations. Regarding material integrity, optical microscopy (OM) confirmed that the pore structure of the porous copper remained intact after WECM. These findings demonstrate the feasibility of WECM for processing porous materials without compromising their structural characteristics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-02-03T16:08:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-02-03T16:08:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目次 vi
圖次 viii
表次 x
第 1 章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 7
1.4 論文大綱 9
第2章 基礎理論 10
2.1 孔隙材料 10
2.2 電化學理論 11
2.2.1 電化學加工 11
2.2.2 氧化還原反應 12
2.2.3 法拉第電解定律 12
2.2.4 阿瑞尼斯解離說 13
2.2.5 極化 14
2.3 線電化學加工理論 16
第3章 實驗規劃與設備 17
3.1 實驗設備與儀器 17
3.1.1 線電化學加工機 17
3.1.2 電源供應器 19
3.1.3 酸鹼度計 20
3.1.4 示波器 21
3.1.5 電流放大器及電流槍 22
3.1.6 光學顯微鏡 23
3.1.7 表面3D輪廓量測儀 24
3.1.8 線切割鉬絲線 26
3.1.9 工件材料 27
3.2 實驗規劃 31
3.2.1 電解液供應方式之選擇 31
3.2.2 線電化學加工多孔隙銅與實心銅 32
3.3 實驗架構 34
第4章 實驗結果與討論 35
4.1 電解液供應方式之選擇 35
4.2 線電化學加工多孔隙銅其加工參數與加工結果之關聯 39
4.2.1 電壓與切口寬度之關聯 48
4.2.2 進給速度與切口寬度之關聯 50
4.2.3 電解液濃度與切口寬度之關聯 52
4.2.4 多孔隙銅輪廓穩定性分類 54
4.2.5 線電化學加工後多孔隙銅之多孔隙結構驗證 60
4.3 線電化學加工實心銅其加工參數與加工結果之關聯 64
4.3.1 實心銅輪廓穩定性分類 71
4.4 多孔隙銅及實心銅在線電化學加工上之差異 77
4.4.1 輪廓類型分布比較 77
4.4.2 輪廓穩定型行為之差異 78
4.4.3 輪廓收縮的主因差異 78
4.4.4 製程控制重點整理 79
第5章 結論與未來展望 80
5.1 結論 80
5.2 未來展望 83
參考文獻 84
-
dc.language.isozh_TW-
dc.subject多孔隙銅-
dc.subject實心銅-
dc.subject切口寬度-
dc.subject輪廓穩定性-
dc.subject線電化學加工-
dc.subjectPorous Copper-
dc.subjectSolid Copper-
dc.subjectSlit width-
dc.subjectProfile stability-
dc.subjectWECM-
dc.title線電化學加工多孔隙銅金屬之特性分析zh_TW
dc.titleAnalysis of the Machining Characteristics of Porous Copper in Wire Electrochemical Machiningen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭憶中;洪榮洲;許文政zh_TW
dc.contributor.oralexamcommitteeI-Chung Cheng;Jung-Chou Hung;Wen-Jeng Hsueen
dc.subject.keyword多孔隙銅,實心銅切口寬度輪廓穩定性線電化學加工zh_TW
dc.subject.keywordPorous Copper,Solid CopperSlit widthProfile stabilityWECMen
dc.relation.page85-
dc.identifier.doi10.6342/NTU202600319-
dc.rights.note未授權-
dc.date.accepted2026-01-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
8.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved