請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101395完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡明哲 | zh_TW |
| dc.contributor.advisor | Ming-Jer Tsai | en |
| dc.contributor.author | 江上筠 | zh_TW |
| dc.contributor.author | Shang-yun Chiang | en |
| dc.date.accessioned | 2026-01-27T16:30:24Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-19 | - |
| dc.identifier.citation | 1.中國哲學書電子化計劃 (n.d.)呂氏春秋。 取自https://ctext.org/lv-shi-chun-qiu/zh
2.中國哲學書電子化計劃 (n.d.)禮記。取自https://ctext.org/liji/sang-da-ji/zh 3.中國哲學書電子化計劃(n.d.)宋史。取自 https://ctext.org/wiki.pl?if=gbandres=975976 4.中國哲學書電子化計劃(n.d.)周禮。取自https://ctext.org/rites-of-zhou/dong-guan-kao-gong-ji/zh 5.中國哲學書電子化計劃(n.d.)唐律疏議。取自 https://ctext.org/wiki.pl?if=gbandres=549614 6.中國哲學書電子化計劃 (n.d.) 新語 道基。取自https://ctext.org/xinyu/daoji/zh 7.中國哲學書電子化計劃(n.d.)農政全書。取自 https://ctext.org/wiki.pl?if=gbandres=857063 8.內政部營建署(2024)木構造建築物設計及施工技術規範(修正版)。https://glrs.moi.gov.tw/LawContent.aspx?id=FL025530 9.文化部文化資產局(2013)大木作技術。取自https://nchdb.boch.gov.tw/assets/advanceSearch/ptp/20171031000001?preserverId=19570&utm_source=chatgpt.com 10.王松永、蔡明哲、塗三賢(2009)。木材利用對減緩二氧化碳排放之貢獻。全球變遷通訊雜誌(61):7-13。https://doi.org/10.6539/GCC.200906_(61).0002 11.王松永、羅盛峰(2016)。木質材料生命週期之二氧化碳排出量及碳足跡評估。《林產工業》,35(2),67–80 https://doi.org/10.6561/FPI.2016.35(2).2 12.王義仲(2009)國產木材產銷分析研究,行政院農業委員會林務局委託研究計畫。 13.行政院公報(2016)文化部公告。取自 https://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg022063/ch05/type3/gov46/num14/Eg.pdf?utm_source=chatgpt.com 14.行政院國家永續發展委員會(2022)臺灣2050淨零排放路徑。 https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path 15.行政院國家永續發展委員會(2025)臺灣永續發展目標。https://ncsd.ndc.gov.tw/Fore/SDGList 16.吳俊賢、吳孟珊(2021)。民眾對森林驗證及相關綠色標章的認知。《林業研究專訊》,28(1),49–51 17.吳俊賢、林俊成、王培蓉、陳溢宏、吳孟珊(2014)。台灣綠色消費產業之探討-消費者對森林驗證衛生紙願付價格溢價之研究。林業研究季刊,36(1),17-27。 18.李明賢、王松永(2016)建立國產木竹材產地證明及其產銷履歷。台灣林業42(5):3-6。 19.李乾朗(2003)。台灣古建築圖解事典。台北市:遠流出版公司。 20.卓志隆(2018)國產材供需與利用之問題現況。林產工業37(2):121-126。 21.卓志隆、張凱琳(2003)台灣地區傳統木結構建築物使用木材種類之調查。宜蘭大學學報(1):1-9。 22.林志憲、塗三賢、陳盈全(2023)。國產材應用於直交集成板的生產。林業研究專訊30(3):30-33 23.林俊成、林柏亨、陳溢宏、詹為巽(2018)。臺灣製材業原料選擇與產業面臨困境調查分析。台灣林業科學, 33(1), 63–76 24.林俊成、陳溢宏、王培蓉、陳幸君、吳孟珊(2017)。臺灣主要實木產品進口運輸之碳排放量估算。台灣林業科學32(3),191–201。 25.林姿汶(2022)臺灣民眾的環境態度與國產木材開採的價值觀對國產材政策訊息的涉入度與支持度之影響。慈濟大學教育傳播學院傳播學系碩士論文,花蓮。 26.林野庁(2025)森林環境税及び森林環境譲与税。上網日期:2025年6月23日。https://www.forest.gov.tw/0003244 27.林華慶(2020)「後盜伐時代」的新思維:建立國產材驗證制度,讓山老鼠退出山林。豐年雜誌70(4):18-21 28.林會承(2023)。臺灣文化資產保存史綱。台北:遠流 29.財團法人台灣建築中心(n.d)台灣木材標章(含林產物產銷履歷)。取自https://www.tabc.org.tw/tw/ (上網日期2025年9月10日) 30.張惠頤(2021)國際木材合法性管理機制納入臺灣木材相關業者執法可行性之探討。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文,臺北。 31.莊雯淑(2004)大眾對於人工造林木利用之認知調查。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文,臺北。 32.陳智文(2024)國人對於國產材利用的永續發展面向之認知。國立屏東科技大學木材科學與設計系碩士論文,屏東。 33.陳麗琴、林俊成、吳俊賢、黃進睦、陳溢宏(2012)。台灣地區木質材料需求量之現況分析。林業研究季刊 34(4), 287–296 34.楊凱成(2024)。「為什麼他們不想成為師傅?」—大木作修復工匠養成及其職場軌跡。博物館學季刊,38(2),5–35。 35.楊裕富、董皇志、許峰旗(2012)。中國傳統建築木構架的構造技術討論。國立台灣大學建築與城鄉研究學報(20):25–44。 36.詹為巽、吳孟珊、林俊成(2024)你愛用國產材嗎?國人木材產品消費偏好調查。林業研究專訊,31(4):74-78。 37.農業部林業及自然保育署 (n.d.) 臺灣林產品生產追溯系統. https://qrc.forest.gov.tw 38.農業部林業及自然保育署(2018)什麼,跟林務局買木頭也要做產銷履歷嗎?上網日期:2025年6月23日。https://www.forest.gov.tw/0000014/0062834 39.農業部林業及自然保育署(2021)。台灣木材標章使用管理規範。取自https://www.forest.gov.tw/law/0000751 40.農業部林業及自然保育署(2022a)常用國產材應用於公共工程參考手冊。取自https://www.forest.gov.tw/0004221 41.農業部林業及自然保育署(2022b)「林產品驗證費用補助方式」公告施行提升國產負碳木竹產品品質與供應量產業與消費雙贏。 取自https://www.forest.gov.tw/0000014/0070446 42.農業部林業及自然保育署(2022c)規格材CAS驗證、應用指南出版加持國產材進軍建材市場。取自https://www.forest.gov.tw/0000014/0069712 43.農業部林業及自然保育署(2022d) 臺灣林業白皮書(草案)初稿。臺北市:農業部林業及自然保育署。 44.農業部林業及自然保育署(2023a)森林淨零排放路徑。取自https://www.forest.gov.tw/0004563 45.農業部林業及自然保育署(2023b)標章介紹。取自https://www.forest.gov.tw/0003244 46.劉翠溶(1999)。中國歷史上關於山林川澤的觀念和制度。曹添旺、賴景昌、楊建成(主編),《經濟成長、所得分配與制度演化》(頁 1–42)。中央研究院中山人文社會科學研究所專書(46)。台北:中央研究院。 47.蔣亦麟(2009)日治時期臺灣木材的供給、銷售與統制。國立臺灣師範大學歷史學系碩士論文,台北。 48.賴鴻慶(2009)消費者對產銷履歷農產品認知、態度及購買意願之研究。國立屏東科技大學農企業管理系碩士論文,屏東。 49.羅盛峰(2018)。國產木竹材驗證制度介紹。農業推廣季刊81。行政院農業委員會。 50.국가건축정책위원회 뉴스레더 (2021) 건축정책동항. 출처 https://pcap.go.kr/_themes/default/upload/newsletter/62/sub07.html 51.산림청(2021)내화구조 표준 인정으로 대형 목조건축시대 날개 달았다. 출처 https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardArticle.do;jsessionid=fQM4hm4IahYvx8RKkhiiRrh0cTguIA5zPDcGfcPN59b309fMJauzaXeKlhGDWpli.frswas02_servlet_engine5?nttId=3153591&bbsId=BBSMSTR_1036&pageUnit=10&pageIndex=18&mn=NKFS_04_02_01&orgId= 52.아주경제(2024)경기주택도시공사-산림청, 국산 목재 이용 및 목조 건축 활성화 위한 상호 업무협약. 출처 https://www.ajunews.com/view/20241101152854441 53.Aguilar, F. X. and Cai, Z. (2010). Conjoint effect of environmental labeling, disclosure of forest of origin and price on consumer preferences for wood products in the US and UK. Ecological Economics, 70(2), 308–316. https://doi.org/10.1016/j.ecolecon.2010.09.002 54.Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T 55.Akerlof, G. A. (1970). The market for “lemons”: Quality uncertainty and the market mechanism. The Quarterly Journal of Economics, 84(3), 488–500. https://doi.org/10.2307/1879431 56.Akita, N. and Ohe, Y. (2021). Sustainable forest management evaluation using carbon credits: From production to environmental forests. Forests, 12(8), 1016. 57.Alvarez, S., Tobarra, M.A. and Zafrilla, J.E.(2019) Corporate and Product Carbon Footprint under Compound Hybrid Analysis: Application to a Spanish Timber Company. Journal of industrial ecology.23(2), 496-507 58.Andersson, J. J. (2019). Carbon taxes and CO₂ emissions: Sweden as a case study. American Economic Journal: Economic Policy, 11(4), 1–30. https://doi.org/10.1257/pol.20170144 59.Angelsen, A., Martius, C., Sy,V.D., Duchelle, A. E., Larson, A. M. and Thuy, P. T.(2018). Transforming REDD+: Lessons and new directions. CIFOR. 60.Architecture for REDD+Transactions (2025) Using Carbon Markets to Protect Forests at Risk: A Case Study of Jurisdictional REDD+ in Guyana. 取自https://artredd.org/using-carbon-markets-to-protect-forests-at-risk-a-case-study-of-jurisdictional-redd-in-guyana/ 61.Arts, B., Brockhaus, M., Giessen, L. and McDermott, C. L. (2024). The performance of global forest governance: Three contrasting perspectives. Forest Policy and Economics, 161, 103165. 62.Auld, G., Gulbrandsen, L. H. and McDermott, C. L. (2008). Certification schemes and the impacts on forests and forestry. Annual Review of Environment and Resources, 33, 187–211. https://doi.org/10.1146/annurev.environ.33.013007.103754 63.Blue Forest. (n.d.). Forest Resilience Bond (FRB). 取自https://www.blueforest.org/finance/forest-resilience-bond 64.Bösch, M. (2025). What explains the uneven uptake of forest certification at the global level? New evidence from a panel-data analysis. World Development, 188, 106890. 65.Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa 66.Cai, Z. and Aguilar, F. X. (2013). Meta-analysis of consumers’ willingness-to-pay premiums for certified wood products. Journal of Forest Economics, 19(1), 15–31. 67.Carmona, M. (2011). Eco-labels as signals: The role of credibility and reputation. Innovative Marketing, 7(3), 122–127 68.Cashore, B. and Stone, M. W. (2012). Can legality verification rescue global forest governance? Analyzing the potential of public and private policy intersection to ameliorate forest challenges in Southeast Asia. Forest Policy and Economics, 18, 13–22. 69.Castrén and Snellman (2024). Building Act brings new climate requirements for construction. 取自https://www.castren.fi/building-act-brings-new-climate-requirements-for-construction 70.Chang, Y. S., Kim, S., Kim, K. M., Yeo, H. and Shim, K. B. (2018). Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit. Journal of Korean Wood Science and Technology, 46(2), 202–210. https://doi.org/10.5658/WOOD.2018.46.2.202 71.Chen, C.X., Pierobon, F., Jones, S., Maples, I., Gong, Y. and Ganguly, I. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14, 144. https://doi.org/10.3390/su14010144 72.Chen, P. C., Chen, C. J. and Kuo, S. T. (2023). Carbon footprint life cycle assessment of modular wooden construction. WIT Transactions on Ecology and the Environment, 261, 325–337. https://doi.org/10.2495/esus230281 73.Creswell, J. W. and Plano Clark, V. L. (2017). Designing and conducting mixed methods research (3rd ed.). SAGE Publications, Inc. 74.Darnall, N., Ji, H. and Vázquez-Brust, D. A. (2018). Institutional design of ecolabels: Sponsorship signals rule strength. Journal of Business Ethics, 150(4), 953–969. 75.Denzin, N. K. (1978). Triangulation: A Case for Methodological Evaluation and Combination. Sociological Methods 76.Elvin, M. (2004). The retreat of the elephants: An environmental history of China. New Haven, CT: Yale University Press 77.Engel, S., Pagiola, S. and Wunder, S. (2008). Designing payments for environmental services in theory and practice: An overview of the issues. Ecological Economics, 65(4), 663–674. 78.European Union. (2023). Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism. 取自 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R0956 79.FAO. (2015) Sustainable financing for forest and landscape restoration: Opportunities, challenges and the way forward. Rome: Food and Agriculture Organization of the United Nations. 80.FAO. (2020). Global forest resources assessment 2020: Main report. https://doi.org/10.4060/ca9825en 81.FAO. (2022) The state of the world’s forests 2022:Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb9360en 82.Field, A. (2018). Discovering statistics using IBM SPSS Statistics (5th ed.). SAGE Publications, Inc. 83.Finnish Government (2023). Parliament adopted acts that will reduce emissions from building and promote digitalisation. https://valtioneuvosto.fi/en/-/1410903/parliament-adopted-acts-that-will-reduce-emissions-from-building-and-promote-digitalisation 84.Forest Stewardship Council(FSC). (n.d.). FSC Standards. https://fsc.org/en/standards 85.Fry, I. (2008). Reducing emissions from deforestation and forest degradation: Opportunities and pitfalls in developing a new legal regime. Review of European Community and International Environmental Law, 17(2), 166–182. https://doi.org/10.1111/j.1467-9388.2008.00597.x 86.FSC(2023)Unveiling FSC's Global Consumer Recognition Study。上網日期:2025年6月23日。https://fsc.org/en/fsc-global-consumer-recognition-study 87.Garvey, J., Grigoriadis, V., Flannery, D., Knapp, E., Gold, E., Hutchinson, G., Frewer, L. J., Brereton, P. and Byrne, K. A. (2025). Designing financial instruments for land-based ecological restoration: A review and future research agenda. Cleaner Production Letters, 8, 100089. 88.Geng, A., Chen, J. and Yang, H. (2019). Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products Substitution in China. Environmental Science and Technology, 53(4), 1732-1740. https://doi.org/10.1021/acs.est.8b06510 89.Gori, Y., Stradiotti, A. and Camin, F. (2018). Timber isoscapes: A case study in a mountain area in the Italian Alps. PLOS ONE, 13(2), e0192970. 90.Gorton, M., Tocco, B., Yeh, C.-H. and Hartmann, M. (2021). What determines consumers' use of eco-labels? Taking a close look at label trust. Ecological Economics, 189, 107173 91.Gulbrandsen, L. H. (2005). Explaining different approaches to voluntary standards: A study of forest certification choices in Norway and Sweden. Journal of Environmental Policy and Planning, 7(1), 43–59. https://doi.org/10.1080/15239080500251874 92.Gutierrez Garzon, A. R., Bettinger, P., Siry, J., Abrams, J., Cieszewski, C., Boston, K., Mei, B., Zengin, H. and Yeşil, A. (2020). A comparative analysis of five forest certification programs. Forests, 11(8), 863. 93.Hemmati, M., Messadi, T. and Gu, H. (2024b). Life cycle assessment of the construction process in a mass timber structure. Sustainability, 16(1), 262. https://doi.org/10.3390/su16010262 94.Hemmati, M., Messadi, T., Gu, H., Seddelmeyer, J. and Hemmati, M. (2024a). Comparison of Embodied Carbon Footprint of a Mass Timber Building Structure with a Steel Equivalent. Buildings, 14(5), 1276. https://doi.org/10.3390/buildings14051276 95.Hildebrandt, J., Hagemann, N. and Thrän, D. (2017). The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society. 96.Hsieh, C. N., Chau, T. N. M., Syu, S. J., Hsu, C. C. and Tsai, M. T. (2024). Case study and comparison of embodied carbon and construction cost by adopting alternative timber-based hybrid structure system.Journal of Science and Technology – University of Danang, 22(11B), 28–33. https://doi.org/10.31130/ud-jst.2024.516E 97.Huang, M. T., Chiou, S. C. Hsu, T. W. and Su, P.C. (2015) Study on establishment of Body of Knowledge of Taiwan's traditional wooden structure technology. 25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan 98.Intergovernmental Panel on Climate Change (IPCC) (2022). Climate change 2022: Mitigation of climate change. Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157926 99.Jackson, R. (2023). Recent Developments in Timber Design and Its Impact on Carbon Emissions. Spectra Undergraduate Research Journal, 3(1), 33–40 . https://doi.org/10.9741/2766-7227.1026 100.Jegede, F. O. and Enwonwu, C. M. (2025). User perception of the benefits of neo-vernacular architecture in selected art and cultural centres in Lagos. Frontiers in Built Environment, 11, 1634880. https://doi.org/10.3389/fbuil.2025.1634880 101.Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly, 24(4), 602–611. 102.Kohsaka, R. and Uchiyama, Y. (2022). Status and trends in forest environment transfer tax and information interface between prefectures and municipalities: Multi-level governance of forest management in 47 Japanese prefectures. Sustainability, 14(3), 1791. 103.Kuittinen, M. and Häkkinen, T. (2020). Reduced carbon footprints of buildings: New Finnish standards and assessments. Buildings and Cities, 1(1), 182–197 https://doi.org/10.5334/bc.30 104.Lee, C. T., Ng, C. H., Tnah, L. H., Ng, K. K. S., Diway, B., Khoo, E. and Lee, S. L. (2025). DNA profile database of Koompassia malaccensis in Malaysia and its application in forensic investigation. Scientific Reports, 15, 24504. https://doi.org/10.1038/s41598-025-09566-y 105.Lee, S. L., Ng, C. H., Zakaria, N.-F., Lee, C. T. and Tnah, L. H. (2022). DNA databases of a CITES-listed species Aquilaria malaccensis (Thymelaeaceae) as tracking tools for forensic identification and chain-of-custody certification. Forensic Science International: Genetics, 57, 102658. https://doi.org/10.1016/j.fsigen.2021.102658 106.Lee, T.-Y. and Liu, W.-Y. (2025). Causal factors contributing to Taiwan’s unusually low timber self-sufficiency rate. International Forestry Review, 27(1), 56–71. https://doi.org/10.1505/146554825839764940 107.Lewin, A., Mo, K., Scheyvens, H. and Gabai, S. (2019). Forest Certification: More Than a Market-Based Tool, Experiences from the Asia Pacific Region. Sustainability, 11(9), 2600. https://doi.org/10.3390/su11092600 108.Li, J. and Chen, S. (2015) Empirical Analysis on the Practical Feasibility of Timber Legality Verification Work in China. Open Journal of Political Science. 5:167-179 https://doi.org/10.4236/ojps.2015.53018 109.Li, S.-H. and Altan, H. (2011). Environmental impacts of building structures in Taiwan. Procedia Engineering, 21, 291–297. https://doi.org/10.1016/j.proeng.2011.11.2017 110.Liang, S., Gu, H., Bergman, R. and Kelley, S. S. (2020). Comparative Life-Cycle Assessment of a Mass Timber Building and Concrete Alternative. Wood and Fiber Science, 52(2), 217-229. 111.Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 1–55. 112.Lin, C. L., Chiang, W. H., Weng, Y. S. and Wu, H. P. (2023). Assessing the anthropogenic carbon emission of wooden construction: An LCA study. Building Research & Information, 51(2), 138–157. https://doi.org/10.1080/09613218.2022.2087171 113.Lindblad, F. (2020). Växjö Municipality’s Planning Strategy to Increase the Construction of Wooden Multi Family Buildings. Sustainability, 12(12), 4915. https://doi.org/10.3390/su12124915 114.Lowe, A. J., Dormontt, E. E., Bowie, M. J., Degen, B., Gardner, S., Thomas, D., Clarke, C., Rimbawanto, A., Wiedenhoeft, A., Yin, Y., Sasaki, N., Lee, S. L., Koskela, J., Vinson, C. and Graudal, L. (2016). Opportunities for improved transparency in the timber trade through scientific verification. BioScience, 66(11), 990–998. https://doi.org/10.1093/biosci/biw129 115.Mahesha, V. and Rekha K. M. (2024). Green influence: Exploring the impact of eco-labels on consumer decision-making. Journal of Management and Entrepreneurship Research, 18(2), 86–92. 116.Malek, E. J. and Abdul Rahim, A. R. (2022). A thematic review of forest certification publications from 2017 to 2021: Analysis of pattern and trends for future studies. Trees, Forests and People, 10, 100331. https://doi.org/10.1016/j.tfp.2022.100331 117.Marks, R. B. (2017). China: An environmental history (2nd ed., revised printing). Rowman & Littlefield. 118.Muqoffa, M., Himawan, K., Juwana, W. E., Rachmanto, R. A. and Suyitno. (2024). Multifaceted role of construction materials in Javanese vernacular houses. ISVS e-journal, 11(6), 68–103. https://doi.org/10.61275/ISVSej-2024-11-06-05 119.Nakano, K., Koide, M., Yamada, Y., Ogawa, T. and Hattori, N. (2024). Environmental impacts of structural lumber production in Japan. Journal of Wood Science, 70, Article 4. 120.Nature-based Solutions Initiative (n.d.). Case study platform: Dryland forest protection and carbon credit project through community land use planning. https://casestudies.naturebasedsolutionsinitiative.org/casestudy/dryland-forest-protection-and-carbon-credit-project-through-community-land-use-planning/ 121.Ng, C. H., Ng, K. K. S., Lee, S. L., Zakaria, N.-F., Lee, C. T. and Tnah, L. H. (2022). DNA databases of an important tropical timber tree species Shorea leprosula (Dipterocarpaceae) for forensic timber identification. Scientific Reports, 12, 9546. https://doi.org/10.1038/s41598-022-13697-x 122.Onoda, I., Fuchigami, Y. and Nakai, T. (2024). Quantitative Evaluation of GHG Emissions from Hardwood Furniture in Japan and the Effect of Using Domestic Hardwoods. Buildings, 14, 1130. https://doi.org/10.3390/buildings14041130 123.Ota, I., Kamakura, M. and Konoshima, M. (2022). Price premiums for certified wood products in Japan: A case study on cutting boards made of Japanese Cypress (Chamaecyparis obtusa). Small-scale Forestry, 21, 647–660. 124.Overdevest, C. (2010). Comparing forest certification schemes: The case of ratcheting standards in the forest sector. Socio Economic Review, 8(1), 47–76. https://doi.org/10.1093/ser/mwp028 125.Overdevest, C. and Zeitlin, J. (2014). Assembling an experimentalist regime: Transnational governance interactions in the forest sector. Regulation & Governance, 8(1), 22–48. 126.Overdevest, C. and Zeitlin, J. (2018). Experimentalism in transnational forest governance: Implementing European Union Forest Law Enforcement, Governance and Trade (FLEGT) Voluntary Partnership Agreements in Indonesia and Ghana. Regulation & Governance, 12(1), 64–87. 127.Pan, J., Cross, J. L., Zou, X. and Zhang, B. (2024). To tax or to trade? A global review of carbon emissions reduction strategies. Energy Strategy Reviews, 55, 101508. https://doi.org/10.1016/j.esr.2024.101508 128.Panico, T., Caracciolo, F. and Furno, M. (2022). Analysing the consumer purchasing behaviour for certified wood products in Italy. Forest Policy and Economics, 136, 102670. 129.Panopoulos, A., Poulis, A., Theodoridis, P. and Kalampakas, A. (2023). Influencing green purchase intention through eco labels and user-generated content. Sustainability, 15(1), 764. https://doi.org/10.3390/su15010764 130.PEFC. (n.d.) Standards and Guides. https://www.pefc.org/standards-implementation/standards-and-guides 131.Profft, I., Mund, M., Weber, G.-E., Weller, E. and Schulze, E.-D. (2009). Forest management and carbon sequestration in wood products. European Journal of Forest Research, 128(4), 399–413. https://doi.org/10.1007/s10342-009-0283-5 132.Puettmann, M., Pierobon, F., Ganguly, I., Gu, H., Chen, C., Liang, S., Jones, S., Maples, I. and Wishnie, M. (2021). Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration. Sustainability, 13(24), 13987. https://doi.org/10.3390/su132413987 133.Rametsteiner, E. and Simula, M. (2003). Forest certification—an instrument to promote sustainable forest management? Journal of Environmental Management, 67(1), 87–98. https://doi.org/10.1016/S0301-4797(02)00191-3 134.Riskos, K., Dekoulou, P., Mylonas, N. and Tsourvakas, G. (2021). Ecolabels and the Attitude–Behavior Relationship towards Green Product Purchase: A Multiple Mediation Model. Sustainability, 13(12), Article 6867. 135.Saosee, P., Sajjakulnukit, B. and Gheewala, S. H. (2020). Life cycle assessment of wood pellet production in Thailand. Sustainability, 12(17), 6996. 136.Sasaki, N., Asner, G. P., Pan, Y., Knorr, W., Durst, P. B., Ma, H. O., Abe, I., Lowe, A. J., Koh, L. P. and Putz, F. E. (2016). Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Frontiers in Environmental Science, 4(50). https://doi.org/10.3389/fenvs.2016.00050 137.Skog, K. E. (2008). Sequestration of carbon in harvested wood products for the United States. Forest Products Journal, 58(6), 56–72. 138.Skogsstyrelsen. (2018). Sweden’s national forest program. Swedish Forest Agency. https://www.ksla.se/wp-content/uploads/2018/10/Bjorn-Merkell.pdf 139.Sotirov, M., Pokorny, B., Kleinschmit, D. and Kanowski, P. (2020). International forest governance and policy: Institutional architecture and pathways of influence in global sustainability. Sustainability, 12(17), 7010. 140.Sun, Y., Yen, C. C. and Chen, T. L. (2023). Designing “forest” into daily lives for sustainability: A case study of Taiwanese wooden furniture design. Sustainability, 15(9), 7311. https://doi.org/10.3390/su15097311 141.Sustainable Forestry Initiative(SFI). (n.d.). Full Sfi 2022 Standards And Rules. https://forests.org/new-sfi-2022-standards-updates/?utm_source=chatgpt.com 142.Suzuki, Y., Uchiyama, Y., Tachibana, S., Miwa, K. and Kohsaka, R. (2024). Analysis of forest environment transfer tax and prefectural policies: Typology of prefectural support to municipalities in the initial phase from 2019 to 2021 in Japan. Journal of Forest Research, 29(4), 246–259. 143.Swedish Wood. (2019). The CLT Handbook: CLT structures – facts and planning. Swedish Forest Industries Federation. https://www.swedishwood.com/siteassets/5-publikationer/pdfer/clt-handbook-2019-eng-m-svensk-standard-2019.pdf 144.Thøgersen, J. (2000). Psychological determinants of paying attention to eco-labels in purchase decisions: Model development and multinational validation. Journal of Consumer Policy, 23(3), 285–313 145.Thøgersen, J. (2002). Promoting green consumer behavior with eco-labels. In T. Dietz and P. C. Stern (Eds.), New tools for environmental protection: Education, information, and voluntary measures (pp. 83–104). Washington, DC: National Academies Press 146.Tonouéwa, J.F.M.F., Biaou, S.S.H., Assèdé, E.S.P., Agossou, H. and Balagueman, R.O. (2024) Timber traceability, determining effective methods to combat illegal logging in Africa: A review. Trees, Forests and People 18:1-12. https://doi.org/10.1016/j.tfp.2024.100709 147.Tsai, M T. and Hsu, C. C. (2024). Assessment of structural performance, materials efficiency, and environmental impact of multi-story hybrid timber structures in high seismic zone. Case Studies in Construction Materials, 21, e03695. https://doi.org/10.1016/j.cscm.2024.e03695 148.Tsai, W. T. (2021). Carbon-negative policies by reusing waste wood as material and energy resources for mitigating greenhouse gas emissions in Taiwan. Atmosphere, 12(9), 1220. https://doi.org/10.3390/atmos12091220 149.Tsai, W. T. and Tsai, C. H. (2022). Interactive analysis of green building materials promotion with relevance to energy consumption and greenhouse gas emissions from Taiwan’s building sector. Energy and Buildings, 261, 111959. https://doi.org/10.1016/j.enbuild.2022.111959 150.United Nations. (2015) Transforming our world: The 2030 agenda for sustainable development. 取自https://sdgs.un.org/2030agenda 151.Watkinson, C. J., Rees, G. O., Gwenael, M. C., Gasson, P., Hofem, S., Michely, L. and Boner, M. (2022a). Stable isotope ratio analysis for the comparison of timber from two forest concessions in Gabon. Frontiers in Forests and Global Change, 4, 650257 152.Watkinson, C. J., Rees, G. O., Hofem, S., Michely, L., Gasson, P. and Boner, M. (2022b). A case study to establish a basis for evaluating geographic origin claims of timber from the Solomon Islands using stable isotope ratio analysis. Frontiers in Forests and Global Change, 4, 645222. 153.Werner, F. and Richter, K. (2007). Wooden building products in comparative LCA: A literature review. International Journal of Life Cycle Assessment, 12(7), 470–479. 154.Winchester, N. and Reilly, J. M. (2020). The economic and emissions benefits of engineered wood products in a low-carbon future. Energy Economics, 85, 104596. https://doi.org/10.1016/j.eneco.2019.104596 155.Wolff, S. and Schweinle, J. (2022). Effectiveness and economic viability of forest certification: A systematic review. Forests, 13(5), 798. https://doi.org/10.3390/f13050798 156.Wunder, S. (2005). Payments for environmental services: Some nuts and bolts. CIFOR Occasional Paper No. 42. Center for International Forestry Research (CIFOR) 157.Ympäristöministeriö Miljöministeriet Ministry of the Environment. (n.d.). Low-carbon built environment programme. 取自https://ym.fi/en/low-carbon-built-environment 158.zu Ermgassen, S. O. S. E. and Löfqvist, S. (2024). Financing ecosystem restoration. Current Biology, 34(9), R412–R417. 159.Zubizarreta, M., Arana-Landín, G., Siguenza, W. and Cuadrado, J. (2024). Forest certification and its impact on business management and market performance: The key role of motivations. Forest Policy and Economics, 166, 103266. https://doi.org/10.1016/j.forpol.2024.103266 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101395 | - |
| dc.description.abstract | 木材被視為低碳轉型的重要材料。然而在市場流通過程中,常因來源合法性、品質穩定性與永續效益不易辨識,導致資訊不對稱與信任不足。臺灣森林覆蓋率高,但國產材自給率長期偏低,使其在淨零政策下的環境與產業潛力,尚未透過制度化機制充分發揮。
自 2018 年起,政府推動國產材標章制度,期望建立市場信任並引導永續消費行為。本研究旨在探討消費者對國產材標章的認知、制度信任及環境態度,檢視其對永續消費意向與購買行為的影響,說明標章在市場端促進永續消費的可能機制。 本研究採混合方法設計,結合量化問卷、質性訪視與政策文件分析,並以三角檢證提升可信度。量化部分回收 304 份有效問卷,建構「標章理解度」、「國產材信任」、「環境態度」、「政策支持」與「標章購買意願」等構面,進行描述性統計、信度分析、迴歸分析及購買因素差異檢定;質性資料採主題分析法,歸納制度、產業與市場層面的實務觀察,並與量化結果進行整合分析。 整合結果顯示,消費者對永續消費與環境議題抱持正向態度,並支持政府推動國產材相關政策,顯示永續價值已具備社會認同基礎。然而,國產材標章在市場端尚未形成清楚且具辨識度的制度訊號,難以成為實際採購時的主要判斷依據。環境效益雖可提升多數構面評價,但價格主要影響購買意願,顯示永續偏好仍受價格敏感度制約。此外,在制度與產業層面,多軌標章並行、行政負擔偏高及原料供應不足,加上產業端資源與技術能力差異及誘因不足,導致品質穩定性不易維持,進而影響制度落實與市場供給,使整體市場呈現「態度正向、採用有限」的轉換落差。 綜合而言,國產材標章制度已建立追溯與信任的基礎架構,但尚未成為明確的市場驅動訊號。未來應著重制度整合與簡化,強化公共採購與政策誘因,提升制度訊號力;同時提升產業端品質標準化、供應穩定性與技術能力,以降低採用障礙。若能將碳儲存或碳足跡等永續效益納入制度化資訊揭露,將有助凸顯國產材在低碳轉型中的策略價值,使國產材標章從追溯工具進一步成為支撐永續發展與碳中和治理的重要政策機制。 | zh_TW |
| dc.description.abstract | Timber has increasingly been recognized as a key material for low-carbon transitions due to its carbon storage and substitution potential. However, in market circulation, timber products often suffer from information asymmetry related to legal sourcing, quality consistency, and sustainability performance, resulting in limited consumer trust. Although Taiwan has a high forest coverage rate, its domestic timber self-sufficiency remains persistently low, constraining the environmental and industrial potential of domestic timber under net-zero policy goals.
Since 2018, the Taiwanese government has promoted a domestic timber labeling system to enhance market transparency, build institutional trust, and encourage sustainable consumption. This study examines consumer understanding of domestic timber labels, institutional trust, environmental attitudes, and policy support, and evaluates how these factors influence sustainable consumption intentions and purchasing behavior. The research aims to clarify the mechanisms through which timber labeling functions as a market-based governance tool. A mixed-methods research design was adopted, integrating quantitative surveys, qualitative interviews, and policy document analysis, with triangulation employed to enhance analytical validity. A total of 304 valid questionnaires were collected, measuring constructs including label understanding, trust in domestic timber, environmental attitudes, policy support, and purchase intention. Quantitative analyses included descriptive statistics, reliability testing, regression analysis, and group difference tests based on purchasing considerations. Qualitative data were analyzed using thematic analysis to capture institutional, industrial, and market-level perspectives, and were subsequently integrated with quantitative findings. The integrated results indicate that consumers generally hold positive attitudes toward environmental sustainability and support government policies related to domestic timber, suggesting a broad social foundation for sustainable values. However, domestic timber labels have not yet formed a clear and easily recognizable market signal, limiting their influence on actual purchasing decisions. While perceived environmental benefits positively affect several evaluative dimensions, price remains the dominant determinant of purchase intention, indicating that sustainability preferences are still constrained by price sensitivity. At the institutional and industrial levels, challenges such as parallel labeling schemes, high administrative burdens, insufficient raw material supply, uneven technical capacity, and limited policy incentives undermine quality stability and supply reliability, resulting in a persistent gap between favorable attitudes and actual adoption. Overall, while the domestic timber labeling system has established a foundational framework for traceability and trust, it has yet to function as a strong market-driving signal. Future efforts should prioritize institutional integration and simplification, strengthen public procurement and policy incentives, and enhance industrial capacity for quality standardization and stable supply. Incorporating quantified sustainability information—such as carbon storage or carbon footprint indicators—into labeling systems may further strengthen the strategic role of domestic timber in low-carbon transitions and position timber labels as an effective governance mechanism supporting sustainable development and carbon neutrality. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:30:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:30:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv 目次 vi 圖次 ix 表次 x 第一章 緒論 1 1.1 研究背景與動機 1 1.1.1 木材在歷史中的文化與社會價值 3 1.1.2 早期的環境保護與資源管理智慧 5 1.1.3 當代木材的環境價值與減碳功能 7 1.1.4 台灣國產材的現狀與挑戰 9 1.2 研究目的 11 第二章 文獻探討 13 2.1 國產材標章的發展、影響與碳中和定位 13 2.1.1 確保木材來源合法及可追溯性,維護森林碳匯 15 2.1.2 推動國產材利用與碳中和角色(碳儲存、替代效益) 19 2.1.3 提升國產材產品價值與低碳技術創新 25 2.1.4 標章制度的理論與政策基礎 29 2.1.5 國產材標章設計與制度架構 34 2.1.6 國產材標章的實施現況與挑戰 40 2.2 國產材標章與國際永續發展目標的連結 44 2.2.1 國產材標章與環境永續目標(SDG 13、15) 46 2.2.2 國產材標章促進社會永續與地方社區發展(SDG 11、12) 49 2.2.3 國產材標章在經濟永續與產業轉型中的角色(SDG 8、9) 53 2.2.4 國產材標章與地方永續治理的國際接軌(SDG 17) 57 2.2.5 國產材標章推動永續發展的制度創新與全球實踐(跨 SDGs) 59 2.3 前人研究整合與研究架構發展 64 第三章 研究方法 67 3.1 研究範圍與流程 67 3.1.1 研究範圍 67 3.1.2 研究流程 68 3.2 研究架構與假設 69 3.2.1 概念架構 69 3.2.2 理論依據 71 3.2.3 研究假設 72 3.3 研究設計(混合方法、量化與質化並行) 73 3.3.1 研究設計理念 73 3.3.2 研究對象與抽樣 74 3.3.3 研究工具與資料來源 75 3.4 資料分析方法 76 3.4.1 量化資料分析 77 3.4.2 質性資料分析 78 3.4.3 資料整合 79 3.5 研究限制 80 第四章 研究結果與分析 82 4.1 量化資料分析 82 4.1.1 樣本背景分析 82 4.1.2 描述統計分析 88 4.1.3 信度分析(Cronbach’s α) 91 4.1.4 主要變項之量化分析 92 4.1.5 假設檢驗 94 4.1.6 不同購買因素之構面差異分析 96 4.1.7 國產材推廣面向之量化分析補充 99 4.2 質性資料分析結果 106 4.2.1 資料整理與初步編碼 106 4.2.2 主題歸納與概念整合 107 4.2.3 質性結果與量化資料的對照 109 4.3 質量整合分析 112 第五章 結論與建議 115 5.1 研究結論 115 5.1.1 制度面:政策方向明確,落實仍有落差 115 5.1.2 市場面:永續意識成熟,標章行為驅動不足 116 5.1.3 產業面:制度升級期待高,實質誘因不足 116 5.1.4 永續面:低碳潛力明確,資訊制度化不足 116 5.2 研究建議 117 5.2.1 制度面建議:提升制度清晰度與操作可行性 117 5.2.2 市場面建議:提升標章價值與市場認知 118 5.2.3 產業面建議:提升產業能量與供應鏈能力 119 5.2.4 永續與碳中和面建議:強化永續資訊揭露與低碳定位 120 參考文獻 122 附錄 137 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 國產材標章 | - |
| dc.subject | 森林認證 | - |
| dc.subject | 消費者認知 | - |
| dc.subject | 制度信任 | - |
| dc.subject | 永續消費 | - |
| dc.subject | Domestic Timber Labeling | - |
| dc.subject | Forest Certification | - |
| dc.subject | Consumer Perception | - |
| dc.subject | Institutional Trust | - |
| dc.subject | Sustainable Consumption | - |
| dc.title | 臺灣國產材標章之認知、信任與永續消費意向研究 | zh_TW |
| dc.title | A Study on Awareness, Trust, and Sustainable Consumption Intention toward Taiwan Domestic Timber Certification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 卓志隆;羅盛峰;楊德新 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Lung Cho;Sheng-Fong Lo;Te-Hsin Yang | en |
| dc.subject.keyword | 國產材標章,森林認證消費者認知制度信任永續消費 | zh_TW |
| dc.subject.keyword | Domestic Timber Labeling,Forest CertificationConsumer PerceptionInstitutional TrustSustainable Consumption | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202600125 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2026-01-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2026-01-28 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
