請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101393完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊顯 | zh_TW |
| dc.contributor.advisor | Chun-hsien Chen | en |
| dc.contributor.author | 蔡承愿 | zh_TW |
| dc.contributor.author | Cheng-Yuan Tsai | en |
| dc.date.accessioned | 2026-01-27T16:29:22Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2026-01-16 | - |
| dc.identifier.citation | Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277-283.
Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252-254. Xu, B.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221-1223. Yanson, A. I.; Bollinger, G. R.; van den Brom, H. E.; Agraït, N.; van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 1998, 395, 783-785. Cuevas, J. C.; Scheer, E. Molecular electronics an introduction to theory and experiment; World Scientific Publishing Co. Pte. Ltd., 2010. Perrin, M. L.; Burzurí, E.; van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 2015, 44, 902-919. Li, Y.; Buerkle, M.; Li, G.; Rostamian, A.; Wang, H.; Wang, Z.; Bowler, D. R.; Miyazaki, T.; Xiang, L.; Asai, Y.; Zhou, G.; Tao, N. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357-363. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1957, 1, 223-231. Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207-6215. Peng, H. H.; Chen, C.-h. Charge transport in molecular junctions: General physical pictures, electrical measurement techniques, and their challenges. J. Chin. Chem. Soc. 2022, 69, 1174-1189. Bai, J.; Li, X.; Zhu, Z.; Zheng, Y.; Hong, W. Single-molecule electrochemical transistors. Adv. Mater. 2021, 33, 2005883. Migliore, A.; Nitzan, A. Nonlinear charge transport in redox molecular junctions: A marcus perspective. ACS Nano 2011, 5, 6669-6685. Kittel, C. Introduction to solid state physics; John Wiley & Sons, Inc, 2005. Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.; McEuen, P. L. Nanomechanical oscillations in a single-C60 transistor. Nature 2000, 407, 57-60. Kay, N. J.; Higgins, S. J.; Jeppesen, J. O.; Leary, E.; Lycoops, J.; Ulstrup, J.; Nichols, R. J. Single-molecule electrochemical gating in ionic liquids. J. Am. Chem. Soc. 2012, 134, 16817-16826. Li, X.; He, J.; Hihath, J.; Xu, B.; Lindsay, S. M.; Tao, N. Conductance of single alkanedithiols: conduction mechanism and effect of molecule−electrode contacts. J. Am. Chem. Soc. 2006, 128, 2135-2141. Fu, M.-D.; Chen, I.-W. P.; Lu, H.-C.; Kuo, C.-T.; Tseng, W.-H.; Chen, C.-h. Conductance of alkanediisothiocyanates: effect of headgroup−electrode contacts. J. Phys. Chem. C 2007, 111, 11450-11455. Inkpen, M. S.; Liu, Z. F.; Li, H.; Campos, L. M.; Neaton, J. B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351-358. Cheng, Z. L.; Skouta, R.; Vazquez, H.; Widawsky, J. R.; Schneebeli, S.; Chen, W.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 2011, 6, 353-357. Millar, D.; Venkataraman, L.; Doerrer, L. H. Efficacy of Au−Au contacts for scanning tunneling microscopy molecular conductance measurements. J. Phys. Chem. C 2007, 111, 17635-17639. Xie, Z.; Bâldea, I.; Smith, C. E.; Wu, Y.; Frisbie, C. D. Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 2015, 9, 8022-8036. 曹何嵩. 以閃爍雜訊分析金屬串錯合物之電子傳輸機制. 國立臺灣大學理學院化學系碩士論文 2021. Adak, O.; Rosenthal, E.; Meisner, J.; Andrade, E. F.; Pasupathy, A. N.; Nuckolls, C.; Hybertsen, M. S.; Venkataraman, L. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 2015, 15, 4143-4149. Li, X.; Wu, Q.; Bai, J.; Hou, S.; Jiang, W.; Tang, C.; Song, H.; Huang, X.; Zheng, J.; Yang, Y.; Liu, J.; Hu, Y.; Shi, J.; Liu, Z.; Lambert, C. J.; Zhang, D.; Hong, W. Structure-independent conductance of thiophene-based single-stacking junctions. Angew. Chem. Int. Ed. 2020, 59, 3280-3286. Batra, A.; Meisner, J. S.; Darancet, P.; Chen, Q.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Molecular diodes enabled by quantum interference. Faraday Discuss. 2014, 174, 79-89. Hurley, T. J.; Robinson, M. A. Nickel(II)-2, 2'-dipyridylamine system. I. Synthesis and stereochemistry of the complexes. Inorg. Chem. 1968, 7, 33-38. Aduldecha, S.; Hathaway, B. Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone (1/0.23/0.5). J. Chem. Soc., Dalton Trans. 1991, 993-998. Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M. Structure of a linear unsymmetrical trinuclear cobalt(II) complex with a localized CoII–CoII bond: dichlorotetrakis[µ3-bis(2-pyridyl)amido]tricobalt(II). J. Chem. Soc., Chem. Commun. 1994, 2377-2378. Cotton, F. A.; Daniels, L. M.; Jordan, G. T., IV Efficient preparation of a linear, symmetrical, metal–metal bonded tricobalt compound; should we believe there is a bond stretch isomer? Chem. Commun. 1997, 421-422. Cotton, F. A.; Daniels, L. M.; Jordan, G. T., IV; Murillo, C. A. Symmetrical and unsymmetrical compounds having a linear Co36+ chain ligated by a spiral set of dipyridyl anions. J. Am. Chem. Soc. 1997, 119, 10377-10381. Ismayilov, R. H.; Wang, W.-Z.; Lee, G.-H.; Yeh, C.-Y.; Hua, S.-A.; Song, Y.; Rohmer, M.-M.; Bénard, M.; Peng, S.-M. Two linear undecanickel mixed-valence complexes: Increasing the size and the scope of the electronic properties of nickel metal strings. Angew. Chem. Int. Ed. 2011, 50, 2045-2048. Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple bonds between metal atoms; Springer Science and Business Media, Inc., 2005. Srinivasan, A.; Wang, X.; Clérac, R.; Rouzières, M.; Falvello, L. R.; McGrady, J. E.; Hillard, E. A. Temperature dependence of the spin state and geometry in tricobalt paddlewheel complexes with halide axial ligands. Dalton Trans. 2018, 47, 16798-16806. Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M. Linear trinuclear three-centred metal–metal multiple bonds: Synthesis and crystal structure of [M3(dpa)4Cl2] [M = Ru or Rh, dpa = bis(2-pyridyl)amido anion]. Chem. Commun. 1996, 315-316. Huang, G.-C.; Liu, I. P.-C.; Kuo, J.-H.; Huang, Y.-L.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M. Further investigations of linear trirhodium complexes: Experimental and theoretical studies of [Rh3(dpa)4Cl2] and [Rh3(dpa)4Cl2](BF4) [dpa = bis(2-pyridyl)amido anion]. Dalton Trans. 2009, 2623-2629. McNair, R. J.; Nilsson, P. V.; Pignolet, L. H. Synthesis and X-ray structural characterization of a bimetallic rhodium-gold complex with bridging 2-[bis(diphenylphosphino)methyl]pyridine (PNP) ligands. Inorg. Chem. 1985, 24, 1935-1939. Esswein, A. J.; Dempsey, J. L.; Nocera, D. G. A RhII−AuII bimetallic core with a direct metal−metal bond. Inorg. Chem. 2007, 46, 2362-2364. Heyduk, A. F.; Macintosh, A. M.; Nocera, D. G. Four-electron photochemistry of dirhodium fluorophosphine compounds. J. Am. Chem. Soc. 1999, 121, 5023-5032. Cheng, M.-C.; Lee, G.-H.; Lin, T.-S.; Liu, Y.-C.; Chiang, M.-H.; Peng, S.-M. A new series of heteronuclear metal strings, MRhRh(dpa)4Cl2 and MRhRhM(dpa)4X2, from the reactions of Rh2(dpa)4 with metal ions of group 7 to group 12. Dalton Trans. 2021, 50, 520-534. Lin, S.-Y.; Chen, I.-W. P.; Chen, C.-h.; Hsieh, M.-H.; Yeh, C.-Y.; Lin, T.-W.; Chen, Y.-H.; Peng, S.-M. Effect of metal−metal interactions on electron transfer: an stm study of one-dimensional metal string complexes. J. Phys. Chem. B 2004, 108, 959-964. Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Conductance and stochastic switching of ligand-supported linear chains of metal atoms. Angew. Chem. Int. Ed. 2006, 45, 5814-5818. Ting, T.-C.; Hsu, L.-Y.; Huang, M.-J.; Horng, E.-C.; Lu, H.-C.; Hsu, C.-H.; Jiang, C.-H.; Jin, B.-Y.; Peng, S.-M.; Chen, C.-h. Energy-level alignment for single-molecule conductance of extended metal-atom chains. Angew. Chem. Int. Ed. 2015, 54, 15734-15738. 施玉嬋. 以電化學方法研究直線型三核銠金屬串錯合物之導電性質與電流阻斷效應. 國立臺灣大學理學院化學系碩士論文 2019. 柳順傑. 以電化學控制STM BJ研究[Co3(dpa)4(CN)2]多通道單分子導電. 國立臺灣大學理學院化學系碩士論文 2023. Lin, G.-M.; Lin, C.-H.; Peng, H. H.; Hsiao, H.; Wang, T.-H.; Ho, C.-H.; Hsu, H.-F.; Chen, C.-h. Effect of the chemical potentials of electrodes on charge transport across molecular junctions. J. Phys. Chem. C 2019, 123, 22009-22017. Lee, W.; Prindle, C. R.; Shi, W.; Louie, S.; Steigerwald, M. L.; Venkataraman, L. Formation of metallocene single-molecule junctions via metal–metal bonds. Nano Lett. 2025, 25, 3316-3322. Lee, W.; Li, L.; Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Roy, X.; Evers, F.; Inkpen, M. S.; Venkataraman, L. Photooxidation driven formation of Fe-Au linked ferrocene-based single-molecule junctions. Nat. Commun. 2024, 15, 1439. Sil, A.; Spano, C. E.; Chelli, Y.; Higgins, S. J.; Sangtarash, S.; Piccinini, G.; Graziano, M.; Nichols, R. J.; Sadeghi, H.; Vezzoli, A. Single-molecule mechanoresistivity by intermetallic bonding. Angew. Chem. Int. Ed. 2025, 64, e202418062. Lin, G.-M.; Cheng, M.-C.; Liou, S.-J.; Tsao, H.-S.; Lin, C.-H.; Lin, Y. R.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M. Revisit of trinickel metal string complexes [Ni3L4X2] (L = dipyridylamido, diazaphenoxazine; X = NCS, CN) for quantum transport. J. Chin. Chem. Soc. 2019, 66, 1157-1164. Cabosart, D.; El Abbassi, M.; Stefani, D.; Frisenda, R.; Calame, M.; van der Zant, H. S. J.; Perrin, M. L. A reference-free clustering method for the analysis of molecular break-junction measurements. Appl. Phys. Lett. 2019, 114, 143102. Neese, F. The ORCA program system. WIRES Comput. Molec. Sci. 2012, 2, 73-78. Neese, F. Software update: The ORCA program system—version 6.0. WIRES Comput. Molec. Sci. 2025, 15, e70019. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065. Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G.; Lee, M.-E.; Chill, S. T.; Rasmussen, F.; Penazzi, G.; Corsetti, F.; Ojanperä, A.; Jensen, K.; Palsgaard, M. L. N.; Martinez, U.; Blom, A.; Brandbyge, M.; Stokbro, K. Quantumatk: An integrated platform of electronic and atomic-scale modelling tools. J. Phys.:Condens. Matter 2020, 32, 015901. Foiles, S. M.; Baskes, M. I.; Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983-7991. Mugiraneza, S.; Hallas, A. M. Tutorial: A beginner’s guide to interpreting magnetic susceptibility data with the curie-weiss law. Commun. Phys. 2022, 5, 95. Boča, R. A handbook of magnetochemical formulae; Elsevier, 2012. Fan, X.; Myers, T. G.; Sukra, B. A. D.; Gabrielse, G. Measurement of the electron magnetic moment. Phys. Rev. Lett. 2023, 130, 071801. Bertini, I.; Turano, P.; Vila, A. J. Nuclear magnetic resonance of paramagnetic metalloproteins. Chem. Rev. 1993, 93, 2833-2932. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197-206. Earley, J. E.; Kallen, T. W. Aquoruthenium(II) catalysis of substitution on aquoruthenium(III). Inorg. Chem. 1971, 10, 1149-1151. Lim, H. S.; Barclay, D. J.; Anson, F. C. Formal potentials and cyclic voltammetry of some ruthenium-ammine complexes. Inorg. Chem. 1972, 11, 1460-1466. Cuevas, J. C.; Levy Yeyati, A.; Martín-Rodero, A.; Rubio-Bollinger, G.; Untiedt, C.; Agraït, N. Evolution of conducting channels in metallic atomic contacts under elastic deformation. Phys. Rev. Lett. 1998, 81, 2990-2993. Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006, 6, 458-462. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904-907. Kim, T.; Vázquez, H.; Hybertsen, M. S.; Venkataraman, L. Conductance of molecular junctions formed with silver electrodes. Nano Lett. 2013, 13, 3358-3364. 劉庭吟. 單分子電性的模擬研究:電極−分子軌域交互作用對單分子導電值的影響. 國立臺灣大學理學院化學系碩士論文 2022. Isshiki, Y.; Fujii, S.; Nishino, T.; Kiguchi, M. Impact of junction formation processes on single molecular conductance. Phys. Chem. Chem. Phys. 2018, 20, 7947-7952. Haiss, W.; Wang, C.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Precision control of single-molecule electrical junctions. Nat. Mater. 2006, 5, 995-1002. Meisner, J. S.; Ahn, S.; Aradhya, S. V.; Krikorian, M.; Parameswaran, R.; Steigerwald, M.; Venkataraman, L.; Nuckolls, C. Importance of direct metal−π coupling in electronic transport through conjugated single-molecule junctions. J. Am. Chem. Soc. 2012, 134, 20440-20445. Zhang, J.; Kuznetsov, A. M.; Medvedev, I. G.; Chi, Q.; Albrecht, T.; Jensen, P. S.; Ulstrup, J. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 2008, 108, 2737-2791. Géranton, G.; Seiler, C.; Bagrets, A.; Venkataraman, L.; Evers, F. Transport properties of individual C60-molecules. J. Chem. Phys. 2013, 139, 234701. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101393 | - |
| dc.description.abstract | 了解單分子電性對於設計奈米級電子元件十分重要。單分子導電值取決於前緣分子軌域和電極費米能階的能量差,以及分子和電極介面接觸的交互作用。金屬串錯合物具有直線型可延伸的結構,過去已有許多量測金屬串導電值的案例,儘管在分子長度增加後導電值並不會明顯下降,但是導電值有時仍不及有機共軛體系分子。其中一個影響導電值的原因為用於連接電極和分子的軸向頭基具有較大接觸電阻,因此在本研究中試圖透過移除金屬串軸向頭基由電極直接和金屬核接觸,以掃描式穿隧顯微術破裂接合法量測無軸向頭基直線型三核銠金屬串分子[Rh3(dpa)4]2+的導電值,並搭配電化學方法控制金電極工作電極電位,改變分子能階和電極費米能間的能障,進一步調控分子導電值。
在導電值位移統計圖中呈現三種導電平台(UHC、HC、LC),且證明三種構型為獨立存在,其中LC構型的電子傳輸機制為空間傳輸,而HC構型包含鍵結傳輸貢獻。在電荷穩定性圖中分子在氧化還原電位(0.3 V及0.9 V)有較大的電流,為電子藉由兩步驟循序穿隧的方式傳輸至另一電極;另外在非分子氧化還原電位(0.6 V)也發現電流上升,由於此通道非由金屬核貢獻,在此電位下電子偏好由dpa傳輸至另一電極,與先前[Rh3(dpa)4(CN)2]觀察到的結果一致。理論計算中,在電極和分子作用後系統總能皆下降,且分子以軸向構型連接金電極較以側向構型連接穩定,表示分子和電極有機會以Au–Rh或Au–dpa的作用方式接合。穿透能譜中顯示軸向構型的穿透係數比側向構型高,且傳輸途徑顯示Au→Rh及Au→dpa的電子傳輸機制。另外比較平電極或粗糙電極,當金電極更靠近銠金屬時,穿透係數比起平電極更高。因此結合實驗與理論計算結果,推論UHC導電平台為軸向構型而金電極和銠距離接近可形成鍵結,HC導電平台為軸向構型而金電極和銠距離較遠僅有交互作用,LC導電平台為側向構型由金電極和dpa作用。 本研究結果提供另一種形成分子電極接合的設計,由金屬—金屬之間直接接觸並成功量測到分子電性,且具有多通道電子傳輸性質,更加提升單分子電子元件的導電值。 | zh_TW |
| dc.description.abstract | Understanding the single-molecule electron transport behaviors is essential to fabricate single-molecule-based nanodevices. The conductance of single-molecule junction can be altered by controlling the energy barrier between electrode Fermi level and frontier molecular orbital. Previous studies have shown that extended metal atom chains (EMAC) have lower decay constants than molecules with organic backbone. However, conductance of EMAC is often lower than that of conjugated system. One of the factors is that the axial group used to connect electrode and molecule may have greater contact resistance, which reduces the single-molecule conductance significantly. Therefore, in this study, the axial group of EMAC was removed so that electrode can contact with EMAC metal atom directly. The STM-bj method was used to measure conductance of [Rh3(dpa)4]2+, and a bipotentiostat was used to control the energy level alignment between electrode and molecule.
The conductance-displacement histograms show three conductance plateaus as UHC, HC and LC junctions. These three types of junctions coexist rather than byproducts from the change of working potential. Flicker noise analysis shows that LC junction is pure through-space tunneling, while HC junction contains through-bond tunneling. The charge stability diagrams show that the currents near redox potential (0.3 V, 0.9 V) are higher, which indicates sequential tunneling process assisted by molecular redox level. Also, near non-redox level (0.6 V), another transport channel is shown. This channel is the direct tunneling channel through dpa rather than Rh, which agrees with previous studies of [Rh3(dpa)4(CN)2]. In theoretical calculations, the axial and lateral structure between gold electrode and molecule was used. The total energies of both structures are reduced after interaction, which indicates that both structures are possible to form molecular junctions. The transmission spectra show that the axial structure is more conductive than lateral one, and the electron transport pathways show Au→Rh and Au→dpa contribution. In addition, by comparing the plate and rough gold electrodes, the results show that the conductance is near resonant when Au–Rh distance is short enough in the rough electrode. Based on experimental and theoretical results, we propose that the UHC junction corresponds to axial structure where Au–Rh distance is close enough to form bond, the HC junction corresponds to axial structure where the electrode interacts with Rh and dpa through long-ranged interactions, and LC junction corresponds to lateral structure where the electrode interacts with dpa through long-ranged interactions. These findings give insights into molecular design with multiple transport pathways, which include direct Au−Rh contact and Au−dpa interactions, and enable more conductive multichannel devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:29:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:29:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 ii
摘要 iii Abstract v 目次 vii 圖次 x 表次 xiv 第一章 緒論 1 1.1 單分子電性量測 1 1.2 量子傳輸機制 4 1.3 多電極系統調控分子電性 6 1.4 分子結構與單分子導電值關係 10 1.5 閃爍雜訊分析 12 1.6 金屬串錯合物與金屬—金屬鍵結理論 15 1.7 金屬串錯合物電性量測 20 1.8 研究動機 24 第二章 研究方法 26 2.1 實驗器材清單 26 2.1.1 藥品與耗材 26 2.1.2 儀器設備 27 2.2 電化學量測 29 2.2.1 參考電極製作 29 2.2.2 Luggin capillary製作 29 2.3 掃描穿隧顯微術 30 2.3.1 STM探針製作 30 2.3.2 STM基材製作 31 2.3.3 STM樣品槽組裝 33 2.3.4 STM儀器架設與操作 34 2.4 單分子電性量測與數據處理 37 2.4.1 小偏壓導電值 37 2.4.2 導電值軌跡的分群 38 2.4.3 偏壓掃描及工作電位掃描 39 2.4.4 閃爍雜訊 40 2.5 理論計算 41 2.5.1 電子結構 41 2.5.2 穿透能譜 41 第三章 結果與討論 42 3.1 分子合成與鑑定 42 3.1.1 分子合成 42 3.1.2 晶體結構 42 3.1.3 磁性量測 43 3.1.4 核磁共振光譜 44 3.1.5 電化學分析 45 3.2 單分子電性量測 46 3.2.1 小偏壓下的單分子導電值 46 3.2.2 電化學控制下的單分子導電值 53 3.2.3 工作電位掃描 63 3.2.4 閃爍雜訊 65 3.2.5 偏壓掃描 68 3.3 理論計算 72 3.3.1 電子結構 72 3.3.2 穿透能譜 78 第四章 結論 85 參考文獻 86 附錄 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 掃描穿隧顯微術破裂接合法 | - |
| dc.subject | 金屬串錯合物 | - |
| dc.subject | 單分子導電值 | - |
| dc.subject | 多通道電子傳輸 | - |
| dc.subject | 金屬—金屬鍵 | - |
| dc.subject | 庫倫阻斷效應 | - |
| dc.subject | scanning tunneling microscope-based break junction | - |
| dc.subject | extended metal-atom chains | - |
| dc.subject | single-molecule conductance | - |
| dc.subject | multichannel devices | - |
| dc.subject | metal-metal bonding | - |
| dc.subject | Coulomb blockade | - |
| dc.title | 無軸向頭基金屬串錯合物[Rh3(dpa)4]2+以金屬—金屬交互作用作為單分子接合點的電子傳輸機制 | zh_TW |
| dc.title | Electron-Transport Mechanism of Trirhodium EMAC [Rh3(dpa)4]2+ without Axial Ligands via Metal-Metal Interactions in Single-Molecule Junctions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 彭旭明;許良彥;陳以文 | zh_TW |
| dc.contributor.oralexamcommittee | Shie-Ming Peng;Liang-Yan Hsu;I-Wen Peter Chen | en |
| dc.subject.keyword | 掃描穿隧顯微術破裂接合法,金屬串錯合物單分子導電值多通道電子傳輸金屬—金屬鍵庫倫阻斷效應 | zh_TW |
| dc.subject.keyword | scanning tunneling microscope-based break junction,extended metal-atom chainssingle-molecule conductancemultichannel devicesmetal-metal bondingCoulomb blockade | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202600118 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2026-01-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 11.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
