請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101386完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林哲宇 | zh_TW |
| dc.contributor.advisor | Che-Yu Lin | en |
| dc.contributor.author | 謝嘉峻 | zh_TW |
| dc.contributor.author | Chia-Chun Hsieh | en |
| dc.date.accessioned | 2026-01-27T16:25:45Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-16 | - |
| dc.identifier.citation | [1] X. Liu, M. Wang, Y. Zheng, and X. Wang, "Fuzzy PI vibration suppression control strategy for space double flexible telescopic manipulator with fractional disturbance observer," Aerospace Science and Technology, vol. 155, p. 4, 2024, doi: 10.1016/j.ast.2024.109579.
[2] L. Mo, J. Zheng, J. Meng, and X. Liu, "Finite element-based numerical modeling and field data analysis of vibration wavefield propagation in urban rail transit facilities," Mechanical Systems and Signal Processing, vol. 237, pp. 1, 3, 7, 2025, doi: 10.1016/j.ymssp.2025.113086. [3] L. Wang, F. Zhang, M. Yan, and Y. Liu, "Dynamic modeling and optimization method for large-amplitude ultrasonic osteotome for surgical robots," Applied Acoustics, vol. 235, pp. 5–12, 2025, doi: 10.1016/j.apacoust.2025.110694. [4] Y. Qiu and Z. Qiu, "A novel structural dynamic load reconstruction method based on discrete variational symplectic integrators for Birkhoffian systems," Mechanical Systems and Signal Processing, vol. 224, p. 13, 2025, doi: 10.1016/j.ymssp.2024.112098. [5] S.-H. Xu and J.-L. Jia, "An efficient structural vibration damage evaluation method based on the spectral element method," Measurement, vol. 258, pp. 2, 3, 4, 10, 2026, doi: 10.1016/j.measurement.2025.119194. [6] C. Pan, H. Zeng, J. Lin, Z. Chen, and Z. Hou, "Free vibration-based method for structural damage identification using multi-objective and multi-task strategy," Structures, vol. 82, p. 11, 2025, doi: 10.1016/j.istruc.2025.110448. [7] A. R. Prashant, A. K. Tangirala, C. L. Rao, and M. V. V. S. Murthy, "Active fault-tolerant vibration dual-mode model predictive control for a smart flexible beam," Control Engineering Practice, vol. 165, pp. 10, 13, 2025, doi: 10.1016/j.conengprac.2025.106535. [8] Y. Kim, J. Lee, B. Wang, J. T. Hwang, and D. Lee, "Interpolation-based optimal knot selection in spline dimensional decomposition for uncertainty quantification in dynamical systems," Applied Mathematical Modelling, pp. 8–11, 2025, doi: 10.1016/j.apm.2025.116613. [9] P. L. dos Santos and T. A. Perdicoúlis, "Arduino in automatic control education: RC circuit step response analysis," IFAC-PapersOnLine, vol. 58, no. 26, p. 32, 2024. [10] S. Tong, J. Zeng, Y. Wang, S. Yu, and H. Wen, "Optimal design of tuned mass damper inerter (TMDI) parameters for enhanced vibration reduction in damped structures: An analytical and numerical study," Journal of Building Engineering, vol. 107, pp. 14, 22, 2025, doi: 10.1016/j.jobe.2025.112768. [11] J. Dou, Z. Li, M. Ding, H. Yao, and T. Yang, "Modelling and vibration suppression of a transmission system with a curved beam-based nonlinear energy sink," Communications in Nonlinear Science and Numerical Simulation, vol. 143, pp. 14–15, 2025, doi: 10.1016/j.cnsns.2025.108626. [12] Y. Yu and J. Kong, "Analytical model and parameter sensitivity analysis of natural frequency of tripod offshore wind turbine systems," Applied Mathematical Modelling, vol. 151, pp. 7–11, 2026, doi: 10.1016/j.apm.2025.116529. [13] E. Giordano, Y. Han, A. Wang, G. D. Bisol, S. Andrews, and D. Malomo, "Discontinuum rocking of rigid masonry macro-blocks using physics engines: analytical, numerical and experimental benchmarking," Structures, vol. 80, pp. 3–4, 2025, doi: 10.1016/j.istruc.2025.110027. [14] M. Yang, R. Hu, D. Meng, S. Hu, W. Peng, and Q. Gao, "Theoretical, numerical, and experimental study on a novel combined viscous–steel damping system for structural vibration control," Soil Dynamics and Earthquake Engineering, vol. 200, pp. 5–6, 2026, doi: 10.1016/j.soildyn.2025.109741. [15] S. Xiao, J. Bai, H. Jeong, L. Alzubaidi, and Y. Gu, "A meshless Runge–Kutta-based physics-informed neural network framework for structural vibration analysis," Engineering Analysis with Boundary Elements, vol. 170, pp. 15, 23, 2025, doi: 10.1016/j.enganabound.2024.106054. [16] W. Wang, H. Ma, S. Liu, and X. Guo, "Vibration suppression of spatial pipes with varied clamp configurations: dynamic modeling and experimental validation," Mechanical Systems and Signal Processing, vol. 241, pp. 10–12, 2025, doi: 10.1016/j.ymssp.2025.113437. [17] Z. Gong, C. Zheng, S. Huang, H. Yang, G. Su, and L. Liu, "CDSF: A curvature-driven semi-supervised framework with dynamic receptive fields for fine-grained vehicle component segmentation," Knowledge-Based Systems, vol. 328, pp. 12–13, 2025, doi: 10.1016/j.knosys.2025.114211. [18] J. Mazloum and B. Hadian Siahkal-Mahalle, "An efficient operator-splitting radial basis function-generated finite difference (RBF-FD) scheme for image noise removal based on nonlinear total variation models," Engineering Analysis with Boundary Elements, vol. 143, pp. 741–743, 2022, doi: 10.1016/j.enganabound.2022.07.017. [19] L. Á. Larios-Cárdenas and F. Gibou, "Machine learning algorithms for three-dimensional mean-curvature computation in the level-set method," Journal of Computational Physics, vol. 478, pp. 14–15, 2023, doi: 10.1016/j.jcp.2023.111995. [20] V. Linders, M. H. Carpenter, and J. Nordström, "Accurate solution-adaptive finite difference schemes for coarse and fine grids," Journal of Computational Physics, vol. 410, pp. 15–16, 2020, doi: 10.1016/j.jcp.2020.109393. [21] H. Liu, W. Cong, L. Wang, and D. Li, "Symbol error rate performance of nonlinear OFDM receiver with peak value threshold over frequency-selective fading channel," AEU – International Journal of Electronics and Communications, vol. 74, pp. 165–169, 2017, doi: 10.1016/j.aeue.2017.01.021. [22] Á. García-Faura, F. Fernández-Martínez, R. Kleinlein, R. San-Segundo, and F. Díaz-de-María, "A multi-threshold approach and a realistic error measure for vanishing point detection in natural landscapes," Engineering Applications of Artificial Intelligence, vol. 85, pp. 719–721, 2019, doi: 10.1016/j.engappai.2019.08.001. [23] J. Slavič et al., "Python open-source signal processing and modeling/simulation for scientific research in structural dynamics—A review," Mechanical Systems and Signal Processing, vol. 241, p. 35, 2025, doi: 10.1016/j.ymssp.2025.113465. [24] T. L. Schmitz and S. K. Smith, Mechanical Vibrations: Modeling and Measurement, pp. 29–152, Springer Nature, 2021. [25] D. G. Zill, Advanced Engineering Mathematics, p. 418, Jones & Bartlett Learning, 2020. [26] P. V. O’Neil, Advanced Engineering Mathematics, pp. 252–261, PWS–Kent Publishing Company, 1995. [27] C. Maruccio, P. Montegiglio, A. Kendibilir, and A. Kefal, "Adaptive modeling and parameter identification of piezoelectric structures under system uncertainty and nonlinear effects," Mechanical Systems and Signal Processing, vol. 241, p. 12, 2025, doi: 10.1016/j.ymssp.2025.113529. [28] Z. Ghemari and S. Saad, "Reducing the measurement error to optimize the sensitivity of the vibration sensor," IEEE Sensors Journal, vol. 14, no. 5, pp. 1527–1532, 2014, doi: 10.1109/JSEN.2014.2298493. [29] R. Morello, C. De Capua, and A. Meduri, "A Wireless Measurement System for Estimation of Human Exposure to Vibration During the Use of Handheld Percussion Machines," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 10, pp. 2513–2521, 2010, doi: 10.1109/TIM.2010.2057690. [30] J. Blair, "Histogram measurement of ADC nonlinearities using sine waves," IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 3, pp. 373–383, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101386 | - |
| dc.description.abstract | 振動現象普遍存在於各類工程系統中,從最基本的彈簧–質量模型,到車輛懸吊系統、工具機結構、精密設備、運輸設施、大型風力發電機,以及先進的AI機器人結構等,皆呈現由慣性、剛性與阻尼交互作用所形成的多樣化動態特性。近年的研究將振動分析應用於影像訊號處理(image signal processing)、疲勞損傷推估(fatigue damage estimation, FDE)、智慧感測(intelligent sensing)與結構健康監測(structural health monitoring, SHM)等領域,使時間域模擬成為理解系統行為、預測結構反應與進行控制設計的重要基礎工具。
在上述振動研究與數值模擬中,時間步長或取樣頻率的設定,直接影響模擬結果的解析度、導數計算品質以及整體運算成本。然而,若取樣訊號僅滿足奈奎斯特取樣定理所規範的「不失真」最低要求,雖可避免頻域混疊,卻無法完整還原振動的物理行為,時間域波形之曲率特性難以重現。由於缺乏可量化的判定準則,現行時間步長多半依賴經驗法則設定,使得模擬結果雖趨於保守與安全,卻往往伴隨不必要的計算成本,使得模擬結果偏向安全但低效。 基於此,本研究旨在建立一套可量化的時間步長設定準則。從離散時間節點連線之幾何平滑度出發,利用二階差分均方根與相對平滑度指標,定義「最小且足夠」的取樣節點數,透過單自由度與雙自由度振動系統驗證其可行性。研究結果顯示,提出的方法能有效反映離散時間節點的連線品質,並在精確度與計算效率之間提供明確取捨依據,可作為各類振動模擬與時間域分析中之客觀時間離散選擇機制。 | zh_TW |
| dc.description.abstract | Vibration phenomena are ubiquitous in engineering systems, ranging from the most fundamental spring–mass models to vehicle suspension systems, machine tool structures, precision equipment, transportation infrastructure, large-scale wind turbines, and advanced AI-driven robotic structures. These systems exhibit diverse dynamic characteristics arising from the coupled interactions of inertia, stiffness, and damping.In recent years, vibration analysis has been increasingly applied to fields such as image signal processing, fatigue damage estimation (FDE), intelligent sensing, and structural health monitoring (SHM). As a result, time-domain simulation has become a fundamental tool for understanding system behavior, predicting structural responses, and performing control design.
In vibration research and numerical simulations, the selection of time step or sampling frequency directly affects the resolution of simulation results, the quality of derivative evaluations, and the overall computational cost. However, when the sampling process merely satisfies the minimum “distortion-free” requirement prescribed by the Nyquist sampling theorem, frequency-domain aliasing can be avoided, but the physical behavior of the vibration cannot be fully reconstructed. In particular, the curvature characteristics of time-domain waveforms cannot be faithfully captured. Due to the lack of quantitative evaluation criteria, time-step selection is often based on empirical rules, leading to simulations that are conservative and numerically stable but accompanied by unnecessary computational expense, resulting in low overall efficiency. Motivated by these limitations, this study aims to establish a quantitative criterion for time-step selection. Starting from the geometric smoothness of vibration time histories, the proposed approach employs the root mean square of second-order differences and a relative smoothness index to define the “minimum yet sufficient” number of sampling points. The feasibility of the method is validated through single-degree-of-freedom and two-degree-of-freedom vibration systems. The results demonstrate that the proposed criterion effectively reflects the connection quality of discretized time points and provides a clear trade-off between accuracy and computational efficiency, serving as an objective guideline for time discretization in vibration simulations and time-domain analyses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:25:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:25:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機 12 第二章 研究方法 13 2.1 單/雙自由度自由振動理論 13 2.1.1 單自由度振動系統 13 2.1.2 三種阻尼與阻尼比 15 2.1.3 雙自由度自由振動 17 2.1.4 Rayleigh阻尼與座標轉換 20 2.2 訊號分析 23 2.2.1 離散訊號取樣 23 2.2.2 觀察窗選定 24 2.2.3 平滑度指標 27 2.2.4 假平滑出現 29 2.2.5 守門員機制與基準節點數定義 30 2.2.6 相對平滑度定義 31 2.2.7 臨界節點數定義 33 第三章 單質點無阻尼振動:研究流程與結果 35 3.1 模型與解析解 36 3.2 取樣設計與節點數掃描 37 3.3 相對平滑度指標 38 3.4 結果整理與討論 40 第四章 單質點三種阻尼振動:研究流程與結果 43 4.1 模型與解析解 43 4.2 取樣設計與節點數掃描 46 4.3 相對平滑度指標 48 4.4 結果整理與討論 51 第五章 雙質點無阻尼振動:研究流程與結果 56 5.1 模型與解析解 56 5.2 取樣設計與節點數掃描 59 5.3 相對平滑度指標 60 5.3.1 第一個初始條件 60 5.3.2 第二個初始條件 62 5.4 結果整理與討論 63 5.4.1 第一個初始條件 63 5.4.2 第二個初始條件 65 第六章 雙質點三種阻尼振動:研究流程與結果 67 6.1 模型與解析解 67 6.2 取樣設計與節點數掃描 75 6.3 相對平滑度指標 78 6.3.1 第一個初始條件 79 6.3.2 第二個初始條件 81 6.4 結果整理與討論 84 6.4.1 第一個初始條件 84 6.4.2 第二個初始條件 89 第七章 延伸應用與未來研究方向 94 7.1 研究結論 94 7.2 研究貢獻 95 7.3 未來研究方向 96 參考文獻 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 振動分析 | - |
| dc.subject | 取樣解析度 | - |
| dc.subject | 時間步長選擇 | - |
| dc.subject | 二階差分均方根 | - |
| dc.subject | 多自由度系統 | - |
| dc.subject | Vibration analysis | - |
| dc.subject | Sampling resolution | - |
| dc.subject | Time step selection | - |
| dc.subject | Second-difference RMS | - |
| dc.subject | Multi-degree-of-freedom systems | - |
| dc.title | 振動系統數值模擬時間步長設定之最佳化 | zh_TW |
| dc.title | Optimization of Time Step in Numerical Simulation of Vibration Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;鄭憶中 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;I-Chung Cheng | en |
| dc.subject.keyword | 振動分析,取樣解析度時間步長選擇二階差分均方根多自由度系統 | zh_TW |
| dc.subject.keyword | Vibration analysis,Sampling resolutionTime step selectionSecond-difference RMSMulti-degree-of-freedom systems | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202600142 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-01-28 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 5.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
