請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬鴻文 | zh_TW |
| dc.contributor.advisor | Hwong-Wen Ma | en |
| dc.contributor.author | 林睿安 | zh_TW |
| dc.contributor.author | Rui-An Lin | en |
| dc.date.accessioned | 2026-01-27T16:14:17Z | - |
| dc.date.available | 2026-01-28 | - |
| dc.date.copyright | 2026-01-27 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-21 | - |
| dc.identifier.citation | Ali, Z. A., Zain, M., Hasan, R., Pathan, M. S., AlSalman, H., & Almisned, F. A. (2025). Digital twins: cornerstone to circular economy and sustainability goals. Environment, Development and Sustainability, 1-42.
Brunner, P. H., & Rechberger, H. (2016). Handbook of material flow analysis: For environmental, resource, and waste engineers. CRC press. Bruno, M., & Fiore, S. (2024). Review of lithium-ion batteries’ supply-chain in Europe: Material flow analysis and environmental assessment. Journal of environmental management, 358, 120758. Caminero, A., Tropini, C., Valles-Colomer, M., Shung, D. L., Gibbons, S. M., Surette, M. G., Sokol, H., Tomeo, N. J., & Tarr, P. I. (2025). Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI. Nature Reviews Gastroenterology & Hepatology, 22(11), 788-803. Cerchione, R., Morelli, M., Passaro, R., & Quinto, I. (2025). A critical analysis of the integration of life cycle methods and quantitative methods for sustainability assessment. Corporate Social Responsibility and Environmental Management, 32(2), 1508-1544. Chen, C., Luo, B., Li, N., Wang, B., Yang, H., Guo, J., & Xu, M. (2025). Spec-Driven AI for Science: The ARIA Framework for Automated and Reproducible Data Analysis. arXiv preprint arXiv:2510.11143. Chen, L., Li, X., Liu, W., Kang, X., Zhao, Y., & Wang, M. (2024). System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system. Applied Energy, 371, 123710. Chen, P.-C., Liu, K.-H., & Ma, H.-w. (2017). Resource and waste-stream modeling and visualization as decision support tools for sustainable materials management. Journal of Cleaner Production, 150, 16-25. Currie, D. J., Smith, C., & Jagals, P. (2018). The application of system dynamics modelling to environmental health decision-making and policy-a scoping review. BMC public health, 18(1), 402. de Fine Licht, K., & de Fine Licht, J. (2020). Artificial intelligence, transparency, and public decision-making: Why explanations are key when trying to produce perceived legitimacy. AI & SOCIETY, 35(4), 917-926. Dhanshyam, M., & Srivastava, S. K. (2021). Effective policy mix for plastic waste mitigation in India using System Dynamics. Resources, Conservation and Recycling, 168, 105455. Dunn, W. N. (2015). Public policy analysis: An integrated approach. Routledge. Fan, J., Chu, H., Liu, L., & Ma, H. (2024). LLMAir: Adaptive Reprogramming Large Language Model for Air Quality Prediction. 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), Feng, Y., Chen, S., & Zhang, L. (2013). System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecological Modelling, 252, 44-52. Ford, A. (2010). Modeling the environment (Vol. 488). Island press Washington, DC. Gao, C., Gao, C., Song, K., & Fang, K. (2020). Pathways towards regional circular economy evaluated using material flow analysis and system dynamics. Resources, Conservation and Recycling, 154, 104527. Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2022). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1), 215-274. Guzzo, D., Pigosso, D., Videira, N., & Mascarenhas, J. (2022). A system dynamics-based framework for examining Circular Economy transitions. Journal of Cleaner Production, 333, 129933. Howlett, M. (2023). Designing public policies: Principles and instruments. Routledge. IDC. (2025). 2025臺灣商用PC市場換機潮. https://my.idc.com/getdoc.jsp?containerId=prAP53825725 Ismail, H., & Hanafiah, M. M. (2021). Evaluation of e-waste management systems in Malaysia using life cycle assessment and material flow analysis. Journal of Cleaner Production, 308, 127358. Jang, Y.-C., Lee, G., Kwon, Y., Lim, J.-h., & Jeong, J.-h. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158, 104798. Ji, X., Wu, X., Deng, R., Yang, Y., Wang, A., & Zhu, Y. (2025). Utilizing large language models for identifying future research opportunities in environmental science. Journal of environmental management, 373, 123667. Kamath, D., Moore, S., Arsenault, R., & Anctil, A. (2023). A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling. Resources, Conservation and Recycling, 196, 107061. Klein, T. M., Celio, E., & Grêt-Regamey, A. (2015). Ecosystem services visualization and communication: A demand analysis approach for designing information and conceptualizing decision support systems. Ecosystem Services, 13, 173-183. Kwakkel, J. H., Walker, W. E., & Haasnoot, M. (2016). Coping with the wickedness of public policy problems: Approaches for decision making under deep uncertainty. In (Vol. 142, pp. 01816001): American Society of Civil Engineers. Leal Neto, A. d. C., Legey, L. F., González-Araya, M. C., & Jablonski, S. (2006). A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil. Environmental Management, 38, 879-888. Li, M., Fu, Q., Singh, V. P., Liu, D., Li, T., & Zhou, Y. (2020). Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty. Agricultural Systems, 178, 102685. Lin, R.-a., & Ma, H.-w. (2025). Application and scenario simulation of multimodal GPT in circular economy transformation: A case study of Taiwan's material flow data. Resources, Conservation and Recycling, 220, 108387. Liu, X., Zhang, J., Zhou, S., van der Plas, T. L., Vijayaraghavan, A., Grishina, A., Zhuang, M., Schofield, D., Tomlinson, C., & Wang, Y. (2025). Towards deployment-centric multimodal AI beyond vision and language. Nature Machine Intelligence, 1-13. Luo, J., Li, Z., Wang, J., & Lin, C.-Y. (2021). Chartocr: Data extraction from charts images via a deep hybrid framework. Proceedings of the IEEE/CVF winter conference on applications of computer vision, Ma, W., Hao, J. L., Zhang, C., Guo, F., & Di Sarno, L. (2022). System dynamics-life cycle assessment causal loop model for evaluating the carbon emissions of building refurbishment construction and demolition waste. Waste and Biomass Valorization, 13(9), 4099-4113. Maibaum, F., Kriebel, J., & Foege, J. N. (2024). Selecting textual analysis tools to classify sustainability information in corporate reporting. Decision Support Systems, 183, 114269. Manias, G., Apostolopoulos, D., Athanassopoulos, S., Borotis, S., Chatzimallis, C., Chatzipantelis, T., Compagnucci, M. C., Draksler, T. Z., Fournier, F., & Goralczyk, M. (2023). AI4Gov: Trusted AI for transparent public governance fostering democratic values. 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Miao, S., Liu, D., Ma, J., & Tian, F. (2020). System dynamics modelling of mixed recycling mode based on contract: a case study of online and offline recycling of E-waste in China. Mathematical and Computer Modelling of Dynamical Systems, 26(3), 234-252. Ni, X., Huang, X., Guo, R., Wang, J., Peng, K., Zhang, W., Zhu, Y., Yang, W., Wang, L., & Cai, C. (2023). Water–energy–carbon synergies and trade-offs: a daily nexus analysis for wastewater treatment plants. Resources, Conservation and Recycling, 188, 106712. Nie, Q., & Liu, T. (2025). Large language models: Tools for new environmental decision-making. Journal of environmental management, 375, 124373. Ortiz-de-Montellano, C. G.-S., Samani, P., & van der Meer, Y. (2023). How can the circular economy support the advancement of the Sustainable Development Goals (SDGs)? A comprehensive analysis. Sustainable Production and Consumption, 40, 352-362. Palazzo, J., Geyer, R., & Suh, S. (2020). A review of methods for characterizing the environmental consequences of actions in life cycle assessment. Journal of Industrial Ecology, 24(4), 815-829. Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10. Papageorgiou, A., Björklund, A., & Sinha, R. (2024). Applying material and energy flow analysis to assess urban metabolism in the context of the circular economy. Journal of Industrial Ecology, 28(4), 885-900. Pauliuk, S., Carrer, F., Heeren, N., & Hertwich, E. G. (2024). Scenario analysis of supply‐and demand‐side solutions for circular economy and climate change mitigation in the global building sector. Journal of Industrial Ecology, 28(6), 1699-1715. Pauliuk, S., & Hertwich, E. G. (2015). Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecological economics, 119, 83-93. Perçin, S. (2022). Evaluating the circular economy–based big data analytics capabilities of circular agri-food supply chains: the context of Turkey. Environmental Science and Pollution Research, 29(55), 83220-83233. Ramanujan, D., Bernstein, W. Z., Chandrasegaran, S. K., & Ramani, K. (2017). Visual analytics tools for sustainable lifecycle design: Current status, challenges, and future opportunities. Journal of Mechanical Design, 139(11), 111415. Rana, A., & Kumar, G. (2025). Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling. arXiv preprint arXiv:2512.14474. RECA. (2022). Key Strategic Action Plan for Resource Circulation and Zero Waste. https://www.reca.gov.tw/Overview RECA. (2025a). Taiwan Circular Economy Roadmap. https://www.reca.gov.tw/Roadmap RECA. (2025b). 應回收廢棄物(廢電子電器及廢資訊物品類)回收量資料. https://data.moenv.gov.tw/dataset/detail/WR_P_225 Safaei, M., & Longo, J. (2024). The end of the policy analyst? Testing the capability of artificial intelligence to generate plausible, persuasive, and useful policy analysis. Digital Government: Research and Practice, 5(1), 1-35. Saleh, M., Oliva, R., Kampmann, C. E., & Davidsen, P. I. (2010). A comprehensive analytical approach for policy analysis of system dynamics models. European journal of operational research, 203(3), 673-683. Schandl, H., Marcos‐Martinez, R., West, J., Miatto, A., Lutter, S., Lieber, M., Giljum, S., Lenzen, M., Li, M., & Wang, H. (2024). Global material flows and resource productivity: The 2024 update. Journal of Industrial Ecology, 28(6), 2012-2031. Seyyedi, S. R., Kowsari, E., Gheibi, M., Chinnappan, A., & Ramakrishna, S. (2024). A comprehensive review integration of digitalization and circular economy in waste management by adopting artificial intelligence approaches: Towards a simulation model. Journal of Cleaner Production, 460, 142584. Stanton, M. C. B., & Roelich, K. (2021). Decision making under deep uncertainties: A review of the applicability of methods in practice. Technological Forecasting and Social Change, 171, 120939. Sterman, J. (2002). System Dynamics: systems thinking and modeling for a complex world. Strapasson, A., Ferreira, M., Cruz-Cano, D., Woods, J., do Nascimento Maia Soares, M. P., & da Silva Filho, O. L. (2022). The use of system dynamics for energy and environmental education. International Journal of Educational Technology in Higher Education, 19(1), 5. Sušnik, J., Masia, S., Indriksone, D., Brēmere, I., & Vamvakeridou-Lydroudia, L. (2021). System dynamics modelling to explore the impacts of policies on the water-energy-food-land-climate nexus in Latvia. Science of the Total Environment, 775, 145827. Tan, Z., & Li, Z. (2024). Digital twins for sustainable design and management of smart city buildings and municipal infrastructure. Sustainable Energy Technologies and Assessments, 64, 103682. TenMax. (2024). 2024 台灣最新網路使用報告. https://www.tenmax.io/tw/archives/81986 Tleuken, A., Orel, D., Iskakova, A., Varol, H. A., & Karaca, F. (2024). Exploring stakeholders’ opinions on circular economy in the construction sector: A natural language processing analysis of social media discourse. Journal of Industrial Ecology, 28(4), 853-867. Veldhuis, G. A., Blok, D., de Boer, M. H., Kalkman, G. J., Bakker, R. M., & van Waas, R. P. (2024). From text to model: Leveraging natural language processing for system dynamics model development. System Dynamics Review, 40(3), e1780. Vélez-Henao, J. A., & Pauliuk, S. (2025). Pathways to a net zero building sector in Colombia: Insights from a circular economy perspective. Resources, Conservation and Recycling, 212, 107971. Wang, B., Zhang, S., Guo, L., Klemeš, J. J., & Varbanov, P. S. (2022). Graphical approaches for cleaner production and sustainability in process systems. Journal of Cleaner Production, 366, 132790. Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W., & Krausmann, F. (2019). Integrating material stock dynamics into economy-wide material flow accounting: concepts, modelling, and global application for 1900–2050. Ecological economics, 156, 121-133. Xia, L., Ke, Y., Wu, Z., Wang, J., Wang, R., Cai, Y., & Yang, Z. (2024). Mapping Chinese plastic flows from 2001 to 2040 based on dynamic probabilistic material flow analysis and scenario projection. Resources, Conservation and Recycling, 203, 107429. Yu, K. H., Zhang, Y., Li, D., Montenegro-Marin, C. E., & Kumar, P. M. (2021). Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environmental Impact Assessment Review, 86, 106492. Yun, L., Yun, S., & Xue, H. (2024). Improving citizen-government interactions with generative artificial intelligence: Novel human-computer interaction strategies for policy understanding through large language models. PLoS One, 19(12), e0311410. Zeng, C. (2024). Multimodal Machine Learning for Climate Adaptation Massachusetts Institute of Technology]. Zhao, B., Yu, Z., Wang, H., Shuai, C., Qu, S., & Xu, M. (2024). Data science applications in circular economy: Trends, status, and future. Environmental Science & Technology, 58(15), 6457-6474. Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., Ma, X., Marrone, B. L., Ren, Z. J., & Schrier, J. (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19), 12741-12754. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101364 | - |
| dc.description.abstract | 隨著全球資源枯竭與氣候變遷風險日益增加,循環經濟(Circular Economy)已被廣泛視為實現永續發展目標的重要路徑。在政策制定過程中,如何精確評估物質流動趨勢並預測政策干預的效果,是環境管理領域的核心課題。傳統上,物質流分析(Material Flow Analysis)與系統動力學(System Dynamics)被視為量化資源管理的主要工具。然而,根據過去的文獻回顧與實務觀察,該類方法在應用上存在若干技術侷限:首先,高品質數據的獲取往往受限於統計時滯或產業保密限制,導致模型參數化過程極為艱鉅;其次,傳統建模程序高度依賴專家經驗與手動校對,難以迅速應對日趨複雜的政策變遷與動態市場環境;最後,質性政策文本與定量系統參數之間的轉譯缺口,亦限制了模擬結果的解釋力。
基於上述背景,本研究試圖初步探討新興人工智慧技術——特別是多模態人工智慧(Multimodal AI)與大語言模型(Large Language Models, LLM)——輔助循環經濟決策之潛力。本研究並非旨在完全取代現有建模典範,而是提出一套輔助性框架,探究其是否能有效緩解傳統建模在數據處理與政策轉譯上的負擔,進而提升動態模擬的精確度與透明度。 本研究提出之 AI 輔助政策評估框架,主要建立在跨領域技術的整合嘗試之上。方法論架構可歸納為三個遞進層次:首先是物質流圖像的自動化解析,本研究嘗試運用多模態 AI 技術,對複雜的物質流系統圖進行視覺辨識,旨在初步提取系統內的單元組成、流動路徑及其隱含的質量守恆邏輯,藉此評估自動化結構開發的可行性。其次,本研究探索引入 LLM 進行政策文本的語義分析與參數映射。傳統政策評估需人工解讀海量法規與產業手冊,本研究則測試 LLM 是否能準確識別政策中的目標數值、實施時程與影響因素,並嘗試將這些非結構化的自然語言資訊轉譯為系統動力學模型中的存量、流量及輔助變數。此一嘗試旨在探討如何透過預訓練模型的推理能力,建立一套具備邏輯一致性的「語義-數量」轉換機制,以降低建模過程中的主觀偏誤。最後,將前述解析之資訊匯入系統動力學模型,進行長期動態模擬與情境分析,並透過視覺化工具輔助驗證模型之合理性,確保模擬結果能作為決策參考。 為評估此框架在宏觀層面之適用性,本研究以台灣 2013 至 2022 年之永續物料管理(SMM)為案例。基於歷史數據與政策目標,本研究透過 AI 輔助設定並評估了九種不同強度的政策情境。模擬結果顯示,在維持經濟增長的同時,若要顯著降低直接物質投入(DMI)並提高循環利用投入(CUI),需結合源頭減量與末端回收等多重機制之協同作用。透過模擬分析,研究觀察到在特定政策組合下,能夠兼顧資源循環與經濟生產力。此案例之貢獻在於,證明了 AI 工具在處理跨年度巨觀數據時,能提供更具效率的情境篩選能力。 在微觀產業層面,本研究以筆記型電腦循環體系為案例,探討高不確定性電子產品物料流動之建模問題。鑑於家戶行為與非正式回收體系對物質流向之影響,本研究運用大語言模型的知識檢索與推理能力,對全台筆電在用存量與流量進行結構化推估,並辨識影響回收效率之關鍵因子。研究結果顯示,除產品技術壽命外,消費者行為對循環績效具有顯著影響,其中「資料安全疑慮」為導致電子產品進入休眠流動之主要因素,凸顯於循環經濟建模中納入社會行為變數之必要性,並初步驗證 LLM 在挖掘非結構化行為資料上的輔助價值。 本研究之主要貢獻在於:於理論層面,提出一套結合人工智慧與系統模擬之探索性分析框架,初步縮小質性政策論述與定量動態建模之轉譯落差;於應用層面,發展一套具可擴展性的數位化輔助工具構想,協助決策者在複雜環境治理情境下,進行更具數據基礎與可比較性的政策評估。 | zh_TW |
| dc.description.abstract | As global resource depletion and climate change risks intensify, the Circular Economy (CE) has become a pivotal pathway for achieving sustainable development goals. However, traditional quantitative tools, such as Material Flow Analysis (MFA) and System Dynamics (SD), face technical constraints in policy evaluation, including data acquisition delays, labor-intensive modeling processes, and the "translation gap" between qualitative policy texts and quantitative system parameters.
This study proposes an exploratory AI-assisted framework that integrates Multimodal Artificial Intelligence and Large Language Models (LLMs) to complement existing modeling paradigms. The objective is to investigate the potential of AI in alleviating the burdens of data processing and policy translation, thereby enhancing the transparency and efficiency of dynamic simulations. The methodological framework consists of three levels: (1) utilizing Multimodal AI for the automated visual parsing of MFA diagrams to extract system structures; (2) employing LLMs for semantic analysis and parameter mapping of policy documents to reduce subjective bias; and (3) integrating these inputs into SD models for dynamic simulation and scenario analysis. The framework's applicability was evaluated through two case studies in Taiwan. At the macro level, the study analyzed Sustainable Material Management (SMM) from 2013 to 2022, assessing nine policy scenarios. The results suggest that achieving a balance between resource circulation and economic productivity requires the synergistic effect of source reduction and end-of-pipe recycling. At the micro level, the study examined the laptop circularity system. By leveraging the reasoning capabilities of LLMs, the research identified consumer "data security concerns" as a critical factor driving "hibernation flow." This finding highlights the importance of incorporating social behavioral variables into CE modeling. In conclusion, this research provides preliminary evidence that Multimodal AI and LLMs possess significant potential to optimize CE simulation workflows. The primary contribution lies in bridging the gap between qualitative policy discourse and quantitative modeling, offering a scalable digital foundation for future decision support. While the framework shows promise, the study emphasizes the ongoing necessity of expert supervision to mitigate risks such as model hallucination and ensure the rigor of policy evaluations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-27T16:14:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-27T16:14:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 目 次 vii 圖 次 ix 表 次 x 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究問題與解方 3 1.3 研究範圍與限制 4 1.4 研究方法與架構 6 1.5 研究名詞與定義 10 第 2 章 文獻回顧 13 2.1 多模態 AI 與大語言模型 (LLM) 在環境科學的應用 13 2.2 物質流分析與系統動力學在循環經濟中的角色 15 2.3 循環經濟動態模擬與政策評估的發展趨勢 17 第 3 章 研究方法 21 3.1 多模態 AI 在視覺圖像中的物質流模型分析 22 3.1.1 多模態 AI 工具比較與應用 22 3.1.2 多模態 AI 工作流程與產出 25 3.2 LLM 在政策文本中的物質流模型分析 31 3.2.1 LLM 工具比較與應用 31 3.2.2 LLM 工作流程與產出 34 3.3 AI 輔助動態模擬與視覺化驗證 39 3.3.1 輸入格式處理 39 3.3.2 輸出結果展示 40 3.4 AI 輔助政策評估與情境式確效 41 3.4.1 輸入格式設置 42 3.4.2 輸出結果分析 44 第 4 章 應用案例與結果 47 4.1 多模態 AI 應用於台灣永續物料管理與循環經濟轉型 47 4.1.1 台灣永續物料管理的物質流模型分析 47 4.1.2 AI 輔助動態模擬之視覺化分析結果 53 4.1.3 AI 輔助政策評估之情境式分析結果 57 4.1.4 最佳情境之永續物質管理與政策意涵 63 4.2 LLM 應用於台灣筆電循環體系之策略解析與模型建構 66 4.2.1 台灣筆電循環體系之系統邊界與生命週期階段定義 66 4.2.2 筆電循環體系之存量與流量結構描述 70 4.2.3 筆電流量之驅動因素建構與 LLM 推理邏輯 76 4.2.4 系統動力學模型建構與結構一致性校準方法 79 第 5 章 綜合討論與未來發展 83 5.1 多模態 AI 與 LLM 在動態模擬與政策評估的整合框架 83 5.2 研究限制與未來挑戰 85 5.3 全球循環經濟政策的應用前景 86 第 6 章 結論與建議 89 6.1 研究成果與貢獻 89 6.2 循環經濟政策優化方向 90 6.3 對決策者與產業界的行動建議 92 參考文獻 95 附錄 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 循環經濟 | - |
| dc.subject | 多模態人工智慧 | - |
| dc.subject | 大語言模型 | - |
| dc.subject | 系統動力學 | - |
| dc.subject | 政策評估 | - |
| dc.subject | Circular Economy | - |
| dc.subject | Multimodal Artificial Intelligence | - |
| dc.subject | Large Language Models | - |
| dc.subject | System Dynamics | - |
| dc.subject | Policy Evaluation | - |
| dc.title | 多模態 AI 與大語言模型在循環經濟之動態模擬與政策評估中的應用 | zh_TW |
| dc.title | Application of Multimodal AI and Large Language Models in Dynamic Simulation and Policy Evaluation of Circular Economy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 駱尚廉;林逸彬;闕蓓德;林俊旭 | zh_TW |
| dc.contributor.oralexamcommittee | Shang-Lien Lo;Yi-Pin Lin;Pei-Te Chiueh;Chun-Hsu Lin | en |
| dc.subject.keyword | 循環經濟,多模態人工智慧大語言模型系統動力學政策評估 | zh_TW |
| dc.subject.keyword | Circular Economy,Multimodal Artificial IntelligenceLarge Language ModelsSystem DynamicsPolicy Evaluation | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202600183 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2026-01-28 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 5.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
