Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-chih Wuen
dc.contributor.author林宇凡zh_TW
dc.contributor.authorYU-FAN LINen
dc.date.accessioned2026-01-16T16:08:52Z-
dc.date.available2026-01-17-
dc.date.copyright2026-01-16-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation1. Andrade, E.N.D.C., Wilkins Lecture - Robert Hooke. Proceedings of the Royal Society of London. Series B - Biological Sciences, 1950. 137(887): p. 153-187.
2. Newton, I., Opticks: or, A treatise of the reflections, refractions, inflections, and colours of light. 2019: Good Press.
3. H. Angus MacLeod, H.A.M., Thin-Film Optical Filters (4th ed.). 2010, Boca Raton: CRC Press.
4. Gbur, G. and T.D. Visser, Chapter Four - Young's interference experiment: Past, present, and future, in Progress in Optics, T.D. Visser, Editor. 2022, Elsevier. p. 275-343.
5. Ceccuzzi, S., F. Guerra, and G. Schettini, Analysis of a multilayer film with coupled mode theory. URSI Radio Science Letters, 2021. 3: p. 33.
6. Bragg, W.L. and W.H. Bragg, The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1913. 89(610): p. 248-277.
7. Michalzik, R., VCSEL Fundamentals, in VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, R. Michalzik, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 19-75.
8. Khurgin, J.B., et al., Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New Journal of Physics, 2012. 14(10): p. 105022.
9. Xu, K., et al., All-Dielectric Color Filter with Ultra-Narrowed Linewidth. Micromachines, 2021. 12(3): p. 241.
10. Brett, M., et al., Glancing angle deposition: recent research results. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Vol. 3790. 1999: SPIE.
11. Nieuwenhuizen, J. and H. Haanstra, Microfractography of thin films. Philips Tech Rev, 1966. 27(3): p. 87-91.
12. Hawkeye, M.M. and M.J. Brett, Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007. 25(5): p. 1317-1335.
13. Tait, R.N., T. Smy, and M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films, 1993. 226(2): p. 196-201.
14. Barranco, A., et al., Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016. 76: p. 59-153.
15. Sobahan, K.M., Y. Park, and C.K. Hwangbo, Effect of Deposition Angle on the Optical and the StructuralProperties of Ta2O5 Thin Films Fabricated by Using GlancingAngle Deposition. Journal of the Korean Physical Society, 2009. 55.
16. Sit, J.C., et al., Thin Film Microstructure Control Using Glancing Angle Deposition by Sputtering. Journal of Materials Research, 1999. 14(4): p. 1197-1199.
17. Haque, S.M., et al., Demonstration of tunable Ag morphology from nanocolumns to discrete nanoislands using novel angle constrained glancing angle EB evaporation technique. Surface and Coatings Technology, 2019. 375: p. 363-369.
18. Oh, G., et al., Structural properties of indium tin oxide thin films by glancing angle deposition method. J Nanosci Nanotechnol, 2013. 13(10): p. 7149-51.
19. Leem, J.W. and J.S. Yu, Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells. Optics Express, 2011. 19(S3): p. A258-A269.
20. Pandey, A.K., A.K. Tiwari, and H.K. Paliwal, Enhancement of mechanical, thermal and optical properties of TiO2 thin films using glancing angle deposition technique. Optical Materials, 2022. 134: p. 113054.
21. Mallick, S., et al., GLAD-Derived Silicon Nanoarrays on Electrochemically Polished Cu Foil: A Promising Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2025. 17(25): p. 36661-36668.
22. Chi, P.-W., C.-W. Su, and D.-H. Wei, Control of hydrophobic surface and wetting states in ultra-flat ZnO films by GLAD method. Applied Surface Science, 2017. 404: p. 380-387.
23. Lee, S.H., et al., Highly-reflective and conductive distributed Bragg reflectors based on glancing angle deposited indium tin oxide thin films for silicon optoelectronic applications. Thin Solid Films, 2015. 591: p. 351-356.
24. Harris, K.D., et al., Fabrication of porous platinum thin films for hydrocarbon sensor applications. Sensors and Materials, 2001. 13(4): p. 225-234.
25. Lakhtakia, A., et al., Sculptured-thin-film spectral holes for optical sensing of fluids. Optics Communications, 2001. 194(1): p. 33-46.
26. Qu, C., et al., Design of line seeds for glancing angle deposition. Journal of Vacuum Science & Technology A, 2021. 39(4): p. 043404.
27. Qu, C., et al., Bio-inspired antimicrobial surfaces fabricated by glancing angle deposition. Scientific Reports, 2023. 13(1): p. 207.
28. Lewis, B.G. and D.C. Paine, Applications and Processing of Transparent Conducting Oxides. MRS Bulletin, 2000. 25(8): p. 22-27.
29. Kim, D., et al., Low temperature deposition of ITO thin films by ion beam sputtering. Thin Solid Films, 2000. 377-378: p. 81-86.
30. Minami, T., Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 2005. 20(4): p. S35.
31. Zhang, K.H.L., et al., P-type transparent conducting oxides. Journal of Physics: Condensed Matter, 2016. 28(38): p. 383002.
32. Moreira, M., et al., A review on the p-type transparent Cu–Cr–O delafossite materials. Journal of Materials Science, 2022. 57(5): p. 3114-3142.
33. Song, S., et al., Rapid thermal annealing of ITO films. Applied Surface Science, 2011. 257(16): p. 7061-7064.
34. Frank, G. and H. Köstlin, Electrical properties and defect model of tin-doped indium oxide layers. Applied Physics A Solids and Surfaces, 1982. 27(4): p. 197-206.
35. Takaki, S., K. Matsumoto, and K. Suzuki, Properties of highly conducting ITO films prepared by ion plating. Applied Surface Science, 1988. 33-34: p. 919-925.
36. Baraton, M.-I., The Future of TCO Materials: Stakes and Challenges. MRS Proceedings, 2009. 1209: p. 1209-P03-06.
37. Patel, B.N. and M.M. Prajapati, OLED: a modern display technology. International Journal of Scientific and Research Publications, 2014. 4(6): p. 1-5.
38. Lee, T.D. and A.U. Ebong, A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 2017. 70: p. 1286-1297.
39. Aspnes, D.E., Spectroscopic ellipsometry — Past, present, and future. Thin Solid Films, 2014. 571: p. 334-344.
40. Cushman, C., et al., An introduction to modeling in spectroscopic ellipsometry, focusing on models for transparent materials: The Cauchy and Sellmeier models. Vacuum Technology & Coating, 2016. 7(01).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101327-
dc.description.abstract本研究利用斜角蒸鍍技術(Glancing Angle Deposition, GLAD)製備氧化銦錫(Indium Tin Oxide, ITO)薄膜,探討不同沉積角度對薄膜光學與電性質的影響。藉由調整基板傾斜角,可有效改變薄膜的孔隙率與結構形貌,進而調控其折射率與導電特性。實驗中分別於0°至80°角度下沉積ITO薄膜,並進行光譜分析、霍爾效應量測及電子顯微鏡觀察,結果顯示薄膜折射率隨傾斜角度增加而下降,導電性亦隨之降低。
進一步,本研究應用此特性設計並製備分佈式布拉格反射器(Distributed Bragg Reflector, DBR)多層膜結構,以達成可見光與紫外光選擇性反射之功能。結果顯示,以0 ˚/80 ˚斜角沉積組合製備之DBR結構在560 nm與370 nm波長處皆可展現選折性反射特性,370nm波段選擇性反射之DBR薄膜具備抗UV與高透明性雙重特性。此技術展示出利用單一材料即可實現功能性導電多層膜的潛力,為光電元件提供新穎製程與設計方向。
zh_TW
dc.description.abstractIn this study, Indium Tin Oxide (ITO) thin films were fabricated using Glancing Angle Deposition (GLAD) to investigate how varying deposition angles affect their optical and electrical properties. By adjusting the substrate tilt angle, the porosity and morphology of the films could be controlled, thereby tuning the refractive index and conductivity. ITO thin films were deposited at tilt angles ranging from 0 ˚ to 80 ˚, and
their characteristics were analyzed through spectroscopic measurements, Hall effect analysis, and electron microscopy. The results show that the refractive index and electrical conductivity decrease with increasing the deposition angle.
Furthermore, this study applied the angle-dependent refractive index of ITO films to design and fabricate Distributed Bragg Reflector (DBR) multilayer structures with optical reflectivity in the selected visible and ultraviolet spectral ranges. The ITO DBR structures fabricated using combine of 0 ˚ /80 ˚ tilting angle exhibited selective reflection at target wavelengths around 560 nm and 370 nm. Achieving both UV shielding and high optical transparency. This work demonstrates the potential of GLAD to create functional conductive multilayer films from a single material, offering a novel fabrication and design approach for optoelectronic devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-16T16:08:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-16T16:08:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
TABLE OF CONTENT v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 緒論 1
1.1 光學多層膜與分散式布拉格反射器 1
1.2 斜角度蒸鍍技術及光學膜應用 3
1.3 透明導電氧化物簡介 5
1.4 研究動機及論文架構 6
Chapter 1圖表 7
Chapter 2 可調折射率透明導電膜之研究方法 11
2.1 前言 11
2.2 薄膜沉積方法與製備 11
2.3 光學量測分析 12
2.4 電性量測分析 13
2.5 微觀形態量測分析 14
Chapter 2圖表 15
Chapter 3 可調折射率透明導電膜之特性 19
3.1 前言 19
3.2 各角度沉積之透明導電膜性質 19
3.2.1 0 ˚傾斜角沉積透明導電膜特性 19
3.2.2 30 ˚傾斜角沉積透明導電膜特性 19
3.2.3 45 ˚傾斜角沉積透明導電膜特性 20
3.2.4 60 ˚傾斜角沉積透明導電膜特性 20
3.2.5 70 ˚傾斜角沉積透明導電膜特性 21
3.2.6 80 ˚傾斜角沉積透明導電膜特性 21
3.3 綜合比較 21
3.4 小結 23
Chapter 3圖表 24
Chapter 4 功能性透明導電多層膜之研究 43
4.1 前言 43
4.2 研究方法 43
4.3 可見光波段選擇調控多層膜 44
4.3.1 中心波長450 nm之45°/80°ITO 斜角蒸鍍DBR薄膜 44
4.3.2 中心波長560 nm之0°/80°ITO 斜角蒸鍍DBR薄膜 45
4.4 抗UV多層膜 46
4.5 小結 48
Chapter 4圖表 49
Chapter 5 總結 60
REFERENCE 61
-
dc.language.isozh_TW-
dc.subject斜角蒸鍍技術-
dc.subject氧化銦錫-
dc.subject光學多層膜-
dc.subject分佈式布拉格反射鏡-
dc.subjectGlancing Angle Deposition-
dc.subjectIndium Tin Oxide-
dc.subjectOptical Multilayer-
dc.subjectDistributed Bragg Reflector-
dc.title斜角蒸鍍功能性透明導電多層膜之研究zh_TW
dc.titleStudy on Functional Transparent Conductive Multilayers by Glancing Angle Depositionen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張志豪;蔡志宏zh_TW
dc.contributor.oralexamcommitteeChih-Hao Chang;Chih-Hung Tsaien
dc.subject.keyword斜角蒸鍍技術,氧化銦錫光學多層膜分佈式布拉格反射鏡zh_TW
dc.subject.keywordGlancing Angle Deposition,Indium Tin OxideOptical MultilayerDistributed Bragg Reflectoren
dc.relation.page63-
dc.identifier.doi10.6342/NTU202503294-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2026-01-17-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf3.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved