請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹 | zh_TW |
| dc.contributor.advisor | Hsin-Shu Chen | en |
| dc.contributor.author | 鍾銀香 | zh_TW |
| dc.contributor.author | Sharon Isabelle Timotius | en |
| dc.date.accessioned | 2026-01-14T16:14:59Z | - |
| dc.date.available | 2026-01-24 | - |
| dc.date.copyright | 2026-01-14 | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-08 | - |
| dc.identifier.citation | [1] A. T. Elshafiey, P. Zarkesh-Ha, and J. Trujillo, “The effect of power supply ramp time on sram pufs,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 946–949, 2017.
[2] W. Wang, A. Singh, U. Guin, and A. Chatterjee, “Exploiting power supply ramp rate for calibrating cell strength in sram pufs,” in 2018 IEEE 19th Latin-American Test Symposium (LATS), pp. 1–6, IEEE, 2018. [3] Y. Shifman and J. Shor, “Preselection methods to achieve very low ber in sram-based pufs—a tutorial,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 6, pp. 2551–2556, 2022. [4] K. Liu, X. Chen, H. Pu, and H. Shinohara, “A 0.5-v hybrid sram physically unclonable function using hot carrier injection burn-in for stability reinforcement,” IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2193–2204, 2021. [5] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey of internet of things (iot) authentication schemes,” Sensors, vol. 19, no. 5, p. 1141, 2019. [6] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A puf taxonomy,” Applied physics reviews, vol. 6, no. 1, p. 011303, 2019. [7] J. Shehu Yalli, M. Hilmi Hasan, and A. Abubakar Badawi, “Internet of things (iot): Origins, embedded technologies, smart applications, and its growth in the last decade,” IEEE Access, vol. 12, pp. 91357–91382, 2024. [8] S. Al-Sarawi, M. Anbar, R. Abdullah, and A. B. Al Hawari, “Internet of things market analysis forecasts, 2020–2030,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 449–453, 2020. [9] M. Chui, M. Collins, and M. Patel, “The internet of things: Catching up to an accelerating opportunity,” 2021. [10] M. El-Hajj, M. Chamoun, A. Fadlallah, and A. Serhrouchni, “Analysis of authentication techniques in internet of things (iot),” in 2017 1st Cyber Security in Networking Conference (CSNet), pp. 1–3, IEEE, 2017. [11] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014. [12] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,” Nature Electronics, vol. 3, no. 2, pp. 81–91, 2020. [13] M. Alioto, “Trends in hardware security: From basics to asics,” IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 56–74, 2019. [14] B. Halak, Physically unclonable functions. Springer, 2018. [15] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002. [16] Z. Chen, Y. Zeng, G. Hefferman, Y. Sun, and T. Wei, “Fiberid: molecular-level secret for identification of things,” in 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 84–88, 2014. [17] Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Scientific reports, vol. 6, no. 1, p. 26840, 2016. [18] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and R. Wolters, “Read-proof hardware from protective coatings,” in Cryptographic Hardware and Embedded Systems - CHES 2006 (L. Goubin and M. Matsui, eds.), (Berlin, Heidelberg), pp. 369–383, Springer Berlin Heidelberg, 2006. [19] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. A. Halderman, and E. W. Felten, “Fingerprinting blank paper using commodity scanners,” in 2009 30th IEEE Symposium on Security and Privacy, pp. 301–314, IEEE, 2009. [20] R. Maes and I. Verbauwhede, Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions, pp. 3–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. [21] S. Nassif, “Modeling and analysis of manufacturing variations,” in Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169), pp. 223–228, 2001. [22] A. Maiti and P. Schaumont, “Improved ring oscillator puf: An fpga-friendly secure primitive,” Journal of cryptology, vol. 24, no. 2, pp. 375–397, 2011 [23] S. Hemavathy and V. S. K. Bhaaskaran, “Arbiter puf—a review of design, composition, and security aspects,” IEEE Access, vol. 11, pp. 33979–34004, 2023. [24] D. Suzuki and K. Shimizu, “The glitch puf: A new delay-puf architecture exploiting glitch shapes,” in Cryptographic Hardware and Embedded Systems, CHES 2010 (S. Mangard and F.-X. Standaert, eds.), (Berlin, Heidelberg), pp. 366–382, Springer Berlin Heidelberg, 2010. [25] V. Sehwag and T. Saha, “Tv-puf: A fast lightweight analog physical unclonable function,” in 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), pp. 182–186, 2016. [26] R. Helinski, D. Acharyya, and J. Plusquellic, “A physical unclonable function defined using power distribution system equivalent resistance variations,” in Proceedings of the 46th Annual Design Automation Conference, DAC ’09, (New York, NY, USA), p. 676–681, Association for Computing Machinery, 2009. [27] D. Jeon, J. H. Baek, Y.-D. Kim, J. Lee, D. K. Kim, and B.-D. Choi, “A physical unclonable function with bit error rate < 2.3 × 10−8 based on contact formation probability without error correction code,” IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 805–816, 2020. [28] D. E. Holcomb, W. P. Burleson, K. Fu, et al., “Initial sram state as a fingerprint and source of true random numbers for rfid tags,” in Proceedings of the Conference on RFID Security, vol. 7, p. 01, 2007. [29] H. Fujiwara, M. Yabuuchi, H. Nakano, H. Kawai, K. Nii, and K. Arimoto, “A chip-id generating circuit for dependable lsi using random address errors on embedded sram and on-chip memory bist,” in 2011 Symposium on VLSI Circuits - Digest of Technical Papers, pp. 76–77, 2011. [30] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Dram-based intrinsic physically unclonable functions for system-level security and authentication,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1085–1097, 2017. [31] P. Koeberl, . Kocabaş, and A.-R. Sadeghi, “Memristor pufs: A new generation of memory-based physically unclonable functions,” in ”2013 Design, Automation and Test in Europe Conference and Exhibition (DATE)”, pp. 428–431, 2013. [32] S. C. B. J. Vrijaldenhoven, “Acoustical physical uncloneable functions,” master’s thesis, Eindhoven University of Technology, Eindhoven, Netherlands, November 2004. Available at https://pure.tue.nl/ws/files/46971492/600055-1.pdf. [33] G. DeJean and D. Kirovski, “Rf-dna: Radio-frequency certificates of authenticity,” in Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, vol. 4727 of Lecture Notes in Computer Science, pp. 346–363, Springer, 2007. [34] G. Hammouri, A. Dana, and B. Sunar, “Cds have fingerprints too,” in Cryptographic Hardware and Embedded Systems - CHES 2009 (C. Clavier and K. Gaj, eds.), (Berlin, Heidelberg), pp. 348–362, Springer Berlin Heidelberg, 2009. [35] R. S. Indeck and M. W. Muller, “Method and apparatus for fingerprinting magnetic media,” Nov. 15 1994. US Patent 5,365,586. [36] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to evaluate and compare the performance of physical unclonable functions,” in Embedded systems design with FPGAs, pp. 245–267, Springer, 2012. [37] D. Li and K. Yang, “A self-regulated and reconfigurable cmos physically unclonable function featuring zero-overhead stabilization,” IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 98–107, 2020. [38] L. Ni, P. Wang, Y. Zhang, X. Li, G. Li, L. Ding, and J. Zhang, “Si puf: An sram and inverter-based puf with a bit error rate of 0.0053pj/bit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 4, pp. 2339–2343, 2024. [39] A. Vijayakumar, V. C. Patil, and S. Kundu, “On improving reliability of srambased physically unclonable functions,” Journal of Low Power Electronics and Applications, vol. 7, no. 1, p. 2, 2017. [40] M. Hofer and C. Boehm, “An alternative to error correction for sram-like pufs,” in International Workshop on Cryptographic Hardware and Embedded Systems, pp. 335–350, Springer, 2010. [41] R. J. Parker, J. B. A. Velamala, K.-Y. J. Shen, D. Johnston, Y.-F. Chang, S. M. Ramey, S.-J. S. Wu, and P. Penmatsa, “A physical unclonable function leveraging hot carrier injection aging,” in 2023 IEEE International Reliability Physics Symposium (IRPS), pp. 1–5, 2023. [42] M. Bhargava, C. Cakir, and K. Mai, “Reliability enhancement of bi-stable pufs in 65nm bulk cmos,” in 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 25–30, 2012. [43] A. Maiti and P. Schaumont, “Improving the quality of a physical unclonable function using configurable ring oscillators,” in 2009 International Conference on Field Programmable Logic and Applications, pp. 703–707, 2009. [44] L. Lu, T. Yoo, and T. T.-H. Kim, “A 6t sram based two-dimensional configurable challenge-response puf for portable devices,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2542–2552, 2022. [45] S. Baek, G.-H. Yu, J. Kim, C. T. Ngo, J. K. Eshraghian, and J.-P. Hong, “A reconfigurable sram based cmos puf with challenge to response pairs,” IEEE Access, vol. 9, pp. 79947–79960, 2021. [46] S. I. Timotius, Y.-L. Wang, and H.-S. Chen, “An sram-based puf with high native-stability using alternative configuration technique,” in 2025 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6, 2025. [47] S. S. Kudva, M. E. Sinangil, S. Tell, N. Nedovic, S. Song, B. Zimmer, and C. T. Gray, “16.4 high-density and low-power puf designs in 5nm achieving 23× and 39× ber reduction after unstable bit detection and masking,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC), vol. 67, pp. 302–304, 2024. [48] S. Park, M. Jeong, J. Kim, D. Kim, and Y. Lee, “A 6t-sram-based physically-unclonable-function with low ber through automated maximum mismatch detection,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 7, pp. 3493–3497, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101319 | - |
| dc.description.abstract | 本論文提出一種採用雙上電控制技術之靜態隨機存取記憶體型物理不可仿製功能電路架構。
由於其雙穩態特性,靜態隨機存取記憶體型物理不可仿製功能電路本質上較為不穩定。高對稱性單元在上電時更易受雜訊干擾,進而產生不穩定的輸出位元。本論文旨在提升原生穩定性,以降低對糾錯碼的使用。所提出的雙重上電控制技術使單一物理不可仿製功能電路單元在相同挑戰條件下可產生兩組彼此獨立的回應。根據上電模式的不同,單元的上電狀態將僅取決於物理不可仿製功能電路單元中交叉耦合反相器內 PMOS 或 NMOS 之間的臨界電壓不匹配。當其中一組回應出現不穩定時,另一組回應可作為備援,提供單元第二次獲得穩定性的機會。 本研究使用 180 納米 CMOS 製程實現測試晶片。在 1.8V 電源與 30 納秒上升斜率條件下,不可仿製功能電路核心於 Low-first 與 High-first 兩種上電模式中分別消耗 5.39 fJ/bit 與 5.19 fJ/bit。量測結果顯示,採用雙上電後之原生 BER 為 0.16%,較未改良之 2.24% 提升 92.85%。其評估指標包含 44.22% 的隨機性與 49.2% 的唯一性。 | zh_TW |
| dc.description.abstract | This thesis presents a static random-access memory (SRAM) based physically unclonable function (PUF) with a dual power-up control technique.
An SRAM PUF is inherently more unstable due to its bistable nature. More symmetric cells can be heavily affected by noise and generate unstable output bits. This thesis aims to enhance the native stability of PUFs to reduce the need for Error-Correcting Code (ECC) usage. The proposed dual power-up control technique enables a single PUF cell to generate two independent sets of responses for a single set of challenges. Depending on the power-up mode, the cell response is only dependent on either the threshold voltage mismatch between the PMOS or NMOS pair of the cross-coupled inverter inside the SRAM cell. One of the response sets can be used as a backup if the other is found to be unstable, giving the cell a second chance at stability. Test chips are fabricated in a 180 nm CMOS process. When given a 1.8 V supply and a 30 ns ramp, the PUF core consumes 5.39 fJ/bit and 5.19 fJ/bit during the Low-first and High-first modes, respectively. The measured native BER with dual power-up is 0.16%, which is a 92.85% improvement from the raw value of 2.24%. The evaluated metrics show uniformity of 44.22% and uniqueness of 49.21%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-14T16:14:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-14T16:14:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Fundamental Concepts and Methods of Physically Unclonable Functions 5 2.1 Principles of Physically Unclonable Functions . . . . . . . . . . . . 5 2.2 Physical Disorders in Integrated Circuits . . . . . . . . . . . . . . . 6 2.3 PUF Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Types of PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Ring Oscillator PUF . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.2 Arbiter PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.3 SRAM PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.1 Reliability and Stability . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.3 Uniformity and Randomness . . . . . . . . . . . . . . . . . . . . . 15 2.5.4 Bit Aliasing and Spatial Bias . . . . . . . . . . . . . . . . . . . . . 16 2.6 Stabilization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1 Temporal Majority Voting . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.2 Preselection and Masking . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.3 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.4 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7 Reference Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7.1 The Effect of Power Supply Ramp Time on SRAM PUFs [1] . . . . 23 2.7.2 Exploiting Power Supply Ramp Rate for Calibrating Cell Strength in SRAM PUFs [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 3 Proposed SRAM-Based PUF and Dual Power-Up Control Technique 27 3.1 Power-Up Control Technique . . . . . . . . . . . . . . . . . . . . . 27 3.2 8T SRAM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 SRAM PUF Cell Model for Analysis . . . . . . . . . . . . . . . . . 30 3.3.2 Power-Up Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 Slope of Q and QB . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 PUF Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 System Architecture and Operation . . . . . . . . . . . . . . . . . . 43 3.5.1 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.2 Wordline Pulse Generation . . . . . . . . . . . . . . . . . . . . . . 45 3.5.3 Predecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.4 Ramp Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.5 Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.6 Bitline Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5.7 Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Expected Advantages and Hypothesis . . . . . . . . . . . . . . . . . 54 3.7 Simulated Results and Validation of The Hypothesis . . . . . . . . . 56 Chapter 4 Measurement 59 4.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Design Issues and Workarounds . . . . . . . . . . . . . . . . . . . . 62 4.2.1 Functionality Verification . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.2 SAEN Control Signal Timing . . . . . . . . . . . . . . . . . . . . . 63 4.2.3 Asymmetric Effect of Parasitic Coupling Capacitor . . . . . . . . . 64 4.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Uniqueness and Randomness . . . . . . . . . . . . . . . . . . . . . . 69 4.5 Verification of Proposed Hypothesis . . . . . . . . . . . . . . . . . . 73 4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Chapter 5 Conclusion and Future Work 77 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References 79 | - |
| dc.language.iso | en | - |
| dc.subject | 靜態隨機存取記憶體 | - |
| dc.subject | 物理不可仿製功能 | - |
| dc.subject | 雙重上電控制 | - |
| dc.subject | 暗位元屏蔽 | - |
| dc.subject | static random-access memory (SRAM) | - |
| dc.subject | physical unclonable function (PUF) | - |
| dc.subject | dual power-up control | - |
| dc.subject | dark-bit masking | - |
| dc.title | 基於雙重上電控制機制之靜態隨機存取記憶體型物理 不可仿製功能電路原生穩定性強化設計 | zh_TW |
| dc.title | An SRAM-Based PUF with Dual Power-Up Control Technique for Improved Native Stability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉宗德;洪崇智 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Te Liu;Chung-Chih Hung | en |
| dc.subject.keyword | 靜態隨機存取記憶體,物理不可仿製功能雙重上電控制暗位元屏蔽 | zh_TW |
| dc.subject.keyword | static random-access memory (SRAM),physical unclonable function (PUF)dual power-up controldark-bit masking | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202600031 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2026-01-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2031-01-06 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 此日期後於網路公開 2031-01-06 | 6.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
