請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101292完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政鴻 | zh_TW |
| dc.contributor.advisor | Cheng-Hung Wu | en |
| dc.contributor.author | 陳致愷 | zh_TW |
| dc.contributor.author | Chih-Kai Chen | en |
| dc.date.accessioned | 2026-01-13T16:14:26Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-29 | - |
| dc.identifier.citation | H.-s. Ahn, M. Gümüş, and P. Kaminsky. Pricing and manufacturing decisions when demand is a function of prices in multiple periods. Operations Research, 55(6):1039 1057, 2007.
B. An, H. Chen, N. Park, and V. Subrahmanian. Map: Frequency-based maximization of airline profits based on an ensemble forecasting approach. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 421–430, 2016. B. An, H. Chen, N. Park, and V. Subrahmanian. Data-driven frequency-based airline profit maximization. ACM Transactions on Intelligent Systems and Technology (TIST), 8(4):1–28, 2017. C. K. Anderson and J. G. Wilson. Wait or buy? the strategic consumer: Pricing and profit implications. Journal of the Operational Research Society, 54(3):299–306, 2003. V. F. Araman and R. Caldentey. Dynamic pricing for nonperishable products with demand learning. Operations research, 57(5):1169–1188, 2009. Y. Aviv and A. Pazgal. Optimal pricing of seasonal products in the presence of forward-looking consumers. Manufacturing & service operations management,10(3):339–359, 2008. M.E.Ben-Akiva and S.R.Lerman. Discrete choice analysis: theory and application to travel demand, volume 9. MIT press, 1985. D. Bertsimas and G. Perakis. Dynamic pricing: A learning approach. In Mathematical and computational models for congestion charging, pages 45–79. Springer, 2006. O. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function: Risk bounds and near-optimal algorithms. Operations research, 57(6):1407–1420, 2009. O. Besbes and A. Zeevi. On the minimax complexity of pricing in a changing environment. Operations research, 59(1):66–79, 2011. G.Bitran and R.Caldentey. An overview of pricing models for revenue management.Manufacturing & Service Operations Management, 5(3):203–229, 2003. P. Cao, M. Fan, and K. Liu. Optimal dynamic pricing problem considering patient and impatient customers'purchasing behaviour. International Journal of Production Research, 53(22):6719–6735, 2015. A.X.Carvalho and M.L.Puterman. Learning and pricing in an internet environment with binomial demands. Journal of Revenue and Pricing Management, 3(4):320 336, 2005. K. Chen, Y. Zha, L. C. Alwan, and L. Zhang. Dynamic pricing in the presence of 126 reference price effect and consumer strategic behaviour. International Journal of Production Research, 58(2):546–561, 2020. L. Chen, A.Mislove, and C.Wilson. An empirical analysis of algorithmic pricing on amazon marketplace. In Proceedings of the 25th international conference on World Wide Web, pages 1339–1349, 2016. M. Chen and Z.-L. Chen. Recent developments in dynamic pricing research:multiple products, competition, and limited demand information. Production and Operations Management, 24(5):704–731, 2015. X. Chen, P. Hu, and Z. Hu. Efficient algorithms for the dynamic pricing problem with reference price effect. Management Science, 63(12):4389–4408, 2017. A. V. Den Boer. Dynamic pricing and learning: Historical origins, current research, and new directions. Surveys in operations research and management science,20(1):1–18, 2015. A. V. den Boer and N. B. Keskin. Dynamic pricing with demand learning and reference effects. Management Science, 68(10):7112–7130, 2022. S. S. Eren and C. Maglaras. Monopoly pricing with limited demand information.Journal of revenue and pricing management, 9(1):23–48, 2010. G.Gallego and M.Talebian. Demand learning and dynamic pricing for multi-version products. Journal of Revenue and Pricing Management, 11(3):303–318, 2012. G. Gallego and G. Van Ryzin. A multiproduct dynamic pricing problem and its applications to network yield management. Operations research, 45(1):24–41, 1997.127 G. Gallego and R. Wang. Multiproduct price optimization and competition under the nested logit model with product differentiated price sensitivities. Operations Research,62(2):450–461, 2014. J. Heaton. Introduction to neural networks with Java. Heaton Research, Inc., 2008. Z. Hu, X. Chen, and P. Hu. Dynamic pricing with gain-seeking reference price effects. Operations Research, 64(1):150–157, 2016. S. Jo, G. M. Lee, and I. Moon. Airline dynamic pricing with patient customers using deep exploration-based reinforcement learning. Engineering Applications of Artificial Intelligence, 133:108073, 2024. D. Kai-Ineman, A. Tversky, et al. Prospect theory: An analysis of decision under risk. Econometrica, 47(2):363–391, 1979. G. Kalyanaram and R. S. Winer. Empirical generalizations from reference price research. Marketing science,14(3_supplement):G161–G169, 1995. D.P.Kingma and J.Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. P. K. Kopalle, A. G. Rao, and J. L. Assuncao. Asymmetric reference price effects and dynamic pricing policies. Marketing Science, 15(1):60–85, 1996. M. Kremer, B. Mantin, and A. Ovchinnikov. Dynamic pricing in the presence of myopic and strategic consumers: Theory and experiment. Production and Operations Management, 26(1):116–133, 2017. Y. Levin, J. McGill, and M. Nediak. Dynamic pricing in the presence of strategic consumers and oligopolistic competition. Management science, 55(1):32–46, 2009.128 J. Li, N. Granados, and S. Netessine. Are consumers strategic ? structural estimation from the air-travel industry. Management Science, 60(9):2114–2137, 2014. J. Liu, B. Liu, Y. Liu, H. Chen, L. Feng, H. Xiong, and Y. Huang. Personalized air travel prediction: A multi-factor perspective. ACM Transactions on Intelligent Systems and Technology (TIST), 9(3):1–26, 2017. Q. Liu and G. J. Van Ryzin. Strategic capacity rationing to induce early purchases. Management Science, 54(6):1115–1131, 2008. Y. Liu and W. L. Cooper. Optimal dynamic pricing with patient customers. Operations research, 63(6):1307–1319, 2015. I. Lobel. Dynamic pricing with heterogeneous patience levels. Operations Research, 68(4):1038–1046, 2020. M.S.Lobo and S.Boyd. Pricing and learning with uncertain demand. In INFORMS revenue management conference, pages 63–64, 2003. C. Maglaras and J. Meissner. Dynamic pricing strategies for multiproduct revenue management problems. Manufacturing & Service Operations Management,8(2):136–148, 2006. D. McFadden. The choice theory approach to market research. Marketing science,5(4):275–297, 1986. S. Mumbower, L. A. Garrow, and M. J. Higgins. Estimating flight-level price elasticities using online airline data: A first step toward integrating pricing, demand, and revenue optimization. Transportation Research Part A: Policy and Practice, 66:196 212, 2014.129 I. Popescu and Y. Wu. Dynamic pricing strategies with reference effects. Operations research, 55(3):413–429, 2007. S. L. Puller and L. M. Taylor. Price discrimination by day of-week of purchase: Evidence from the us airline industry. Journal of Economic Behavior & Organization,84(3):801–812, 2012. A. Rajan, Rakesh, and R. Steinberg. Dynamic pricing and ordering decisions by a monopolist. Management science, 38(2):240–262, 1992. N. Reimers and I. Gurevych. Reporting score distributions makes a difference: Performance study of lstm-networks for sequence tagging. arXiv preprint arXiv:1707.09861, 2017. M. Rothschild. A two-armed bandit theory of market pricing. Journal of Economic Theory, 9(2):185–202, 1974. B. C. Smith, J. F. Leimkuhler, and R. M. Darrow. Yield management at american airlines. interfaces, 22(1):8–31, 1992. X.Su. Intertemporal pricing with strategic customer behavior. Management Science,53(5):726–741, 2007. K. Talluri and G. Van Ryzin. Revenue management under a general discrete choice model of consumer behavior. Management Science, 50(1):15–33, 2004. J. Von Neumann and O.Morgenstern. Theory of games and economic behavior, 2nd rev. Princeton university press, 1947. C.-H. Wen and P.-H. Chen. Passenger booking timing for low-cost airlines: A continuous logit approach. Journal of Air Transport Management, 64:91–99, 2017.130 S.Wu,Q.Liu,and R.Q.Zhang. The reference effects on a retailer's dynamic pricing and inventory strategies with strategic consumers. Operations Research, 63(6):1320 1335, 2015. Y. Yang, W.-L. Chu, and C.-H. Wu. Learning customer preferences and dynamic pricing for perishable products. Computers & Industrial Engineering, 171:108440,2022. P. Ye, J. Qian, J. Chen, C.-h. Wu, Y. Zhou, S. De Mars, F. Yang, and L. Zhang.Customized regression model for airbnb dynamic pricing. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining,pages 932–940, 2018. D. Zhang and W. L. Cooper. Pricing substitutable flights in airline revenue management. European Journal of Operational Research, 197(3):848–861, 2009. H. Zhang and S. Jasin. Online learning and optimization of (some) cyclic pricing policies in the presence of patient customers. Manufacturing & Service Operations Management, 24(2):1165–1182, 2022. N. Zhao, Q. Wang, P. Cao, and J. Wu. Dynamic pricing with reference price effect and price-matching policy in the presence of strategic consumers. Journal of the operational Research Society, 70(12):2069–2083, 2019. 周芳屹. 基於深層學習的生產系統動態控制. 臺灣大學工業工程學研究所學位論文,pages1–51,2017. 蔡沂芯. 應用多智能體分解與合成之動態派工與預防保養方法. 臺灣大學工業工程學研究所學位論文,pages1–161,2019. 131 郭紫萱. 考量參考價格之需求參數估計與動態訂價. 臺灣大學工業工程學研究所學位論文,pages1–123,2024 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101292 | - |
| dc.description.abstract | 隨著網路發展及比價工具的普及,消費者不再是被動的價格接收方。消費者因價格偏高而延遲購買的耐心行為,讓定價決策變得更加複雜,對動態定價構成挑戰。如果業者未將延遲購買行為納入定價考量,可能會錯失最佳定價,導致整體收益下降。因此,本研究提出一種結合耐心消費者行為與參考效應的動態定價策略。建立一個可以在未知環境中,進行精準預測和即時決策的訂價系統。
本研究主要聚焦於航空機票市場。我們運用多項羅吉特模型(MNL)來量化參考價格、市場參考價值及競爭者價格對購買行為的影響,並將其納入動態規劃(DP)模型中以求解最佳定價。此外,我們應用長短期記憶神經網絡(LSTM)來預測消費者耐心行為與價值參數。並透過自適應訓練持續提升模型預測效能,使其能適應市場變動,動態修正預測結果。 為克服動態規劃面臨的維度詛咒問題,我們進一步訓練深度神經網絡(DNN)以取代動態規劃,使其能夠即時做出精準的定價決策。本研究同時設計數值模擬,以測試模型在未知市場中的適應能力。模擬結果顯示,若能精準預測消費者的耐心程度,將能有效提升收益。本研究模型在市場中,能維持穩定效能,並展現良好的應用價值,可供時效性商品業者參考。 | zh_TW |
| dc.description.abstract | With the development of online markets and the widespread availability of price comparison tools, consumers are no longer passive price takers.Patient consumers tend to delay purchases when prices are perceived as high, which complicates pricing decisions and poses challenges for dynamic pricing. If firms fail to account for such delayed purchasing behavior, they may miss optimal pricing opportunities and experience reduced overall revenue. To address this issue, this study proposes a dynamic pricing framework that integrates consumer patience and reference price effects, enabling accurate prediction and real-time pricing decisions under uncertain environments.
This research focuses on the airline ticket market. A multinomial logit (MNL) model is employed to quantify the influence of reference price, market reference value, and competitor's prices on consumer choice, and these factors are incorporated into a dynamic programming (DP) model to derive optimal prices. In addition, long short-term memory (LSTM) neural networks are used to predict consumer patience levels and demand parameters. An adaptive training mechanism is further applied to continuously improve prediction accuracy, allowing the model to adjust to market changes and dynamically refine its estimates. To overcome the potential curse of dimensionality in dynamic programming, a deep neural network (DNN) is trained to approximate the DP solution and generate real-time pricing decisions. A discrete-event simulation is also developed to evaluate the model's adaptability in previously unseen market environments. Simulation results show that accurate prediction of consumer patience significantly enhances revenue performance.Overall, the proposed model demonstrates stable performance and strong practical value,providing a useful reference for industries dealing with perishable or time-sensitive products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:14:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:14:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xix 符號列表 xxiii 第一章緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的與方法 3 1.4研究流程 4 第二章文獻探討 7 2.1動態定價 7 2.2耐心型消費者 8 2.2.1耐心消費者之動態定價 8 2.3參考效應 10 2.3.1離散選擇模型 11 2.3.2存在競爭及替代品之動態定價 11 2.4需求學習 12 2.4.1有限資訊下之動態定價 13 2.5研究貢獻 14 第三章考量耐心消費者之動態定價17 3.1耐心程度和價值參數已知 17 3.1.1問題假設 17 3.1.2購買機率-多項羅吉特模型應用 18 3.1.3考量耐心消費者之轉移機率 20 3.1.4動態規劃模型 22 3.1.5動態定價模擬程式 25 3.1.6動態定價結果 27 3.1.7參數已知&DP模擬結果 28 3.2耐心程度和價值參數未知 33 3.2.1問題假設 33 3.2.2離線模型訓練——長短期記憶神經網路(LSTM) 34 3.2.3 LSTM(離線模型)&DP模擬結果 62 第四章自適應訓練與深層神經網路69 4.1自適應訓練 69 4.1.1架構與原理 69 4.1.2自適應訓練-Level1 70 4.1.3 LSTM(Level1)&DP模擬結果 81 4.1.4自適應訓練-Level2 86 4.1.5 LSTM(Level2)&DP模擬結果 96 4.2深度神經網路 101 4.2.1架構與原理-DNN 101 4.2.2 DNN模型訓練 102 4.2.3參數已知&DNN模擬結果 106 4.2.4 LSTM(Level2)&DNN模擬結果 111 4.2.5 DNN模擬結果-參數擴充 116 第五章結論與未來研究方向123 5.1結論 123 5.2未來研究方向 123 參考文獻 125 附錄A—LSTM訓練過程 133 A.1自適應-Level1 133 A.1.1價值參數 133 A.1.2消費者耐心程度 137 A.2自適應-Level2 141 A.2.1價值參數 141 A.2.2消費者耐心程度 145 附錄B—模擬結果 151 B.1已知參數&DP 151 B.2離線模型&DP 164 B.3自適應訓練 176 B.3.1 LSTM(Level1)&DP 176 B.3.2 LSTM(Level2)&DP 189 B.4 DNN 202 B.4.1已知參數&DNN 202 B.4.2 LSTM(Level2)&DNN 215 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 耐心消費者 | - |
| dc.subject | 參考效應 | - |
| dc.subject | 動態定價 | - |
| dc.subject | Patient Consumer | - |
| dc.subject | Reference Effect | - |
| dc.subject | Dynamic Pricing | - |
| dc.title | 考量耐心消費者與參考效應之動態定價 | zh_TW |
| dc.title | Dynamic Pricing with Consumer Patience and Reference Effect Considerations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文智;黃奎隆 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chih Chen;Kwei-Long Huang | en |
| dc.subject.keyword | 耐心消費者,參考效應動態定價 | zh_TW |
| dc.subject.keyword | Patient Consumer,Reference EffectDynamic Pricing | en |
| dc.relation.page | 227 | - |
| dc.identifier.doi | 10.6342/NTU202504833 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-12-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 36.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
