請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101285完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊明仁 | zh_TW |
| dc.contributor.advisor | Ming-Jen Yang | en |
| dc.contributor.author | 朱品瑞 | zh_TW |
| dc.contributor.author | Pin-Rui Zhu | en |
| dc.date.accessioned | 2026-01-13T16:12:54Z | - |
| dc.date.available | 2026-01-14 | - |
| dc.date.copyright | 2026-01-13 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-19 | - |
| dc.identifier.citation | Akiyama, T., 1973: The large-scale aspects of the characteristic features of the Baiu front. Pap. Meteor. Geophys, 24, 157-188.
Akiyama, T., 1990: Large, Synoptic and Meso Scale Variations of the Baiu Front, during July 1982 Part II: Frontal Structure and Disturbances. J. Meteor. Soc. Japan, 68, 557-574, https://doi.org/10.2151/jmsj1965.68.5_557. Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST. J. Atmos. Sci., 69, 3197-3222, https://doi.org/10.1175/jas-d-11-0276.1. Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler weather radar: principles and applications. Cambridge university press, 636 pp. Cha, T.-Y., and M. M. Bell, 2023: Three-Dimensional Variational Multi-Doppler Wind Retrieval over Complex Terrain. J. Atmos. Oceanic Technol., 40, 1381-1405, https://doi.org/10.1175/jtech-d-23-0019.1. Chang, P.-L., and Coauthors, 2021: An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bull. Amer. Meteor. Soc., 102, E555-E577, https://doi.org/10.1175/bams-d-20-0043.1. Chen, G. T.-J., 1983: Observational Aspects of the Mei-Yu Phenomenon in Subtropical China. J. Meteor. Soc. Japan, 61, 306-312, https://doi.org/10.2151/jmsj1965.61.2_306. Chen, G. T.-J., C.-C. Wang, and D. T.-W. Lin, 2005: Characteristics of Low-Level Jets over Northern Taiwan in Mei-Yu Season and Their Relationship to Heavy Rain Events. Mon. Wea. Rev., 133, 20-43, https://doi.org/10.1175/MWR-2813.1. Chen, Q., 1982: The Instability of the Gravity-inertia Wave and its Relation to Low-level Jet and Heavy Rainfall. J. Meteor. Soc. Japan, 60, 1041-1057, https://doi.org/10.2151/jmsj1965.60.5_1041. Chen, S.-J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, and B. Cui, 1998: A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front. Mon. Wea. Rev., 126, 2330-2351, https://doi.org/10.1175/1520-0493(1998)126%3C2330:AMCSOH%3E2.0.CO;2. Chen, T.-J. G., and C.-P. Chang, 1980: The Structure and Vorticity Budget of an Early Summer Monsoon Trough (Mei-Yu) over Southeastern China and Japan. Mon. Wea. Rev., 108, 942-953, https://doi.org/10.1175/1520-0493(1980)108%3C0942:TSAVBO%3E2.0.CO;2. Chen, Y.-L., C.-K. Wang, C.-C. Tu, F. Hsiao, and P.-L. Lin, 2022: Revisiting a Mei-Yu Front Associated with Heavy Rainfall over Taiwan during 6–7 June 2003. Atmosphere, 13, https://doi.org/10.3390/atmos13050644. Cornejo, I. C., A. K. Rowe, K. L. Rasmussen, and J. C. DeHart, 2024: Orographic Controls on Extreme Precipitation Associated with a Mei-Yu Front. Mon. Wea. Rev., 152, 531-551, https://doi.org/10.1175/mwr-d-23-0170.1. DeHart, J. C., and M. M. Bell, 2020: A Comparison of the Polarimetric Radar Characteristics of Heavy Rainfall From Hurricanes Harvey (2017) and Florence (2018). J. Geophys. Res., 125, https://doi.org/10.1029/2019jd032212. Didlake, A. C., and R. A. Houze, 2009: Convective-Scale Downdrafts in the Principal Rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269-3293, https://doi.org/10.1175/2009MWR2827.1. Ding, Y., 1992: Summer Monsoon Rainfalls in China. J. Meteor. Soc. Japan, 70, 373-396, https://doi.org/10.2151/jmsj1965.70.1B_373. Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the Eyewall Structure of Typhoon Sinlaku (2008) during the Transformation Stage of Extratropical Transition. Mon. Wea. Rev., 142, 3372-3392, https://doi.org/10.1175/mwr-d-13-00313.1. Fritz, C., Z. Wang, S. W. Nesbitt, and T. J. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett., 43, 894-901, https://doi.org/10.1002/2015gl067122. Gorgucci, E., and L. Baldini, 2015: Influence of Beam Broadening on the Accuracy of Radar Polarimetric Rainfall Estimation. J. Hydrometeor., 16, 1356-1371, https://doi.org/10.1175/jhm-d-14-0084.1. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803. Hersbach, H., and Coauthors, 2023: ERA5 hourly data on pressure levels from 1940 to present. Copernicus climate change service (c3s) climate data store (cds), 10, 24381, https://doi.org/10.24381/cds.bd0915c6. Hou, J.-P., C.-Y. Chen, and P.-D. Jeng, 2025: A Case Study Simulation of the Heavy Rainfall Event in Southwestern Taiwan during the Mei-Yu Front on May 22, 2020. Asia-Pacific Journal of Atmospheric Sciences, 61, https://doi.org/10.1007/s13143-025-00404-9. Houze, R. A., 1997: Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196, https://doi.org/10.1175/1520-0477(1997)078%3C2179:SPIROC%3E2.0.CO;2. Houze, R. A., 2014: Cloud Dynamics. Vol. 104, Academic press, 432 pp. Hu, Y., Y. Deng, Y. Lin, Z. Zhou, C. Cui, and X. Dong, 2021: Dynamics of the spatiotemporal morphology of Mei-yu fronts: an initial survey. Climate Dyn., 56, 2715-2728, https://doi.org/10.1007/s00382-020-05619-2. Jameson, A., and E. Mueller, 1985: Estimation of Propagation-Differential Phase Shift from Sequential Orthogonal Linear Polarization Radar Measurements. J. Atmos. Oceanic Technol., 2, 133-137, https://doi.org/10.1175/1520-0426(1985)002%3C0133:EOPDPS%3E2.0.CO;2. Jeong, J. H., D. I. Lee, C. C. Wang, S. M. Jang, C. H. You, and M. Jang, 2012: Environment and morphology of mesoscale convective systems associated with the Changma front during 9–10 July 2007. Ann. Geophys., 30, 1235-1248, https://doi.org/10.5194/angeo-30-1235-2012. Jou, B. J.-D., W.-C. Lee, and R. H. Johnson, 2011: An Overview of SoWMEX/TiMREX. The Global Monsoon System, 2nd ed., C.-P. Chang, Ed., World Scientific, 303-318. Kumjian, M. R., and O. P. Prat, 2014: The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables. J. Atmos. Sci., 71, 3052-3067, https://doi.org/10.1175/jas-d-13-0357.1. Kumjian, M. R., O. P. Prat, K. J. Reimel, M. van Lier-Walqui, and H. C. Morrison, 2022: Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sensing, 14, https://doi.org/10.3390/rs14153706. Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan Area Mesoscale Experiment (TAMEX): An Overview. Bull. Amer. Meteor. Soc., 71, 488-503, https://doi.org/10.1175/1520-0477(1990)071%3C0488:TTAMEA%3E2.0.CO;2. Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the Separation of Enhanced ZDR and KDP Regions in Nonsupercell Tornadic Storms. Wea. Forecasting, 33, 1143-1157, https://doi.org/10.1175/waf-d-18-0011.1. Loeffler, S. D., M. R. Kumjian, M. Jurewicz, and M. M. French, 2020: Differentiating Between Tornadic and Nontornadic Supercells Using Polarimetric Radar Signatures of Hydrometeor Size Sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020gl088242. Matsumoto, S., S. Yoshizumi, and M. Takeuchi, 1970: On the Structure of the “Baiu Front” and the Associated Intermediate-scale Disturbances in the Lower Atmosphere. J. Meteor. Soc. Japan, 48, 479-491, https://doi.org/10.2151/jmsj1965.48.6_479. Matsumoto, S., K. Ninomiya, and S. Yoshizumi, 1971: Characteristic Features of “Baiu” Front Associated with Heavy Rainfall. J. Meteor. Soc. Japan, 49, 267-281, https://doi.org/10.2151/jmsj1965.49.4_267. Ninomiya, K., 1984: Characteristics of Baiu Front as a Predominant Subtropical Front in the Summer Northern Hemisphere. J. Meteor. Soc. Japan, 62, 880-894, https://doi.org/10.2151/jmsj1965.62.6_880. Rogers, R. F., P. D. Reasor, J. A. Zawislak, and L. T. Nguyen, 2020: Precipitation Processes and Vortex Alignment during the Intensification of a Weak Tropical Cyclone in Moderate Vertical Shear. Mon. Wea. Rev., 148, 1899-1929, https://doi.org/10.1175/mwr-d-19-0315.1. Ryzhkov, A. V., 2007: The Impact of Beam Broadening on the Quality of Radar Polarimetric Data. J. Atmos. Oceanic Technol., 24, 729-744, https://doi.org/10.1175/jtech2003.1. Seliga, T. A., and V. Bringi, 1976: Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. J. Appl. Meteor. Climatol., 15, 69-76, https://doi.org/10.1175/1520-0450(1976)015%3C0069:PUORDR%3E2.0.CO;2. Steiner, M., R. A. Houze Jr, and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor. Climatol., 34, 1978-2007, https://doi.org/10.1175/1520-0450(1995)034%3C1978:CCOTDS%3E2.0.CO;2. Tam, F. I. H., M. J. Yang, and W. C. Lee, 2022: Polarimetric Size Sorting Signatures in the Convective Regions of Mesoscale Convective Systems in PECAN: Implications on Kinematics, Thermodynamics, and Precipitation Pathways. J. Geophys. Res., 127, e2021JD035822, https://doi.org/10.1029/2021jd035822. Tao, C., and H. Jiang, 2015: Distributions of Shallow to Very Deep Precipitation–Convection in Rapidly Intensifying Tropical Cyclones. J. Climate, 28, 8791-8824, https://doi.org/10.1175/jcli-d-14-00448.1. Tu, C.-C., Y.-L. Chen, P.-L. Lin, and P.-H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31, 159-176, https://doi.org/10.3319/tao.2019.07.01.01. Wakimoto, R., and V. Bringi, 1988: Dual-Polarization Observations of Microbursts Associated with Intense Convection: The 20 July Storm during the MIST Project. Mon. Wea. Rev., 116, 1521-1539. Wang, C.-C., J. Chieh-Sheng Hsu, G. Tai-Jen Chen, and D.-I. Lee, 2014: A Study of Two Propagating Heavy-Rainfall Episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic Evolution, Episode Propagation, and Model Control Simulation. Mon. Wea. Rev., 142, 2619-2643, https://doi.org/10.1175/mwr-d-13-00331.1. Wimmers, A. J., and C. S. Velden, 2011: Seamless Advective Blending of Total Precipitable Water Retrievals from Polar-Orbiting Satellites. J. Appl. Meteor. Climatol., 50, 1024-1036, https://doi.org/10.1175/2010jamc2589.1. Wu, Y.-C., M.-J. Yang, and R. F. Rogers, 2022: Examining Terrain Effects on the Evolution of Precipitation and Vorticity of Typhoon Fanapi (2010) after Departing the Central Mountain Range of Taiwan. Mon. Wea. Rev., 150, 1517-1540, https://doi.org/10.1175/MWR-D-21-0205.1. Yang, S.-C., S.-H. Chen, L. J.-Y. Liu, H.-L. Yeh, W.-Y. Chang, K.-S. Chung, P.-L. Chang, and W.-C. Lee, 2024: Investigating the Mechanisms of an Intense Coastal Rainfall Event during TAHOPE/PRECIP-IOP3 Using a Multiscale Radar Ensemble Data Assimilation System. Mon. Wea. Rev., 152, 2545-2567, https://doi.org/10.1175/mwr-d-24-0049.1. Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123, 1941-1963, https://doi.org/10.1175/1520-0493(1995)123%3C1941:TDKAME%3E2.0.CO;2. Yuter, S. E., and R. A. Houze, 1997: Measurements of Raindrop Size Distributions over the Pacific Warm Pool and Implications for Z–R Relations. Journal of Applied Meteorology, 36, 847-867, https://doi.org/10.1175/1520-0450(1997)036%3C0847:MORSDO%3E2.0.CO;2. Zhou, Y., S. Gao, and S. S. Shen, 2004: A Diagnostic Study of Formation and Structures of the Meiyu Front System over East Asia. J. Meteor. Soc. Japan, 82, 1565-1576, https://doi.org/10.2151/jmsj.82.1565. 楊明仁、鄭明典、黃清勇、林沛練、林博雄、李清勝、王重傑、劉清煌、呂國臣、張保亮、黃椿喜、侯昭平、鍾高陞、張偉裕、林品芳,2023:臺灣區域豪雨觀測暨預報實驗(TAHOPE)簡介。中華民國氣象學會會刊,64,50-67。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101285 | - |
| dc.description.abstract | 在2022年5月25日至8月10日進行的臺灣區域豪雨觀測與預報實驗(Taiwan-Area Heavy rain Observation and Prediction Experiment, TAHOPE)中,本研究選取了兩道梅雨鋒面個案進行分析,分別對應第一次特別觀測期(Special Observation Period 1, SOP1)與第三次密集觀測期(Intensive Observation Period 3, IOP3)。儘管於5月25日(SOP1)與6月6日(IOP3)的0700-1900 UTC期間,這兩道梅雨鋒面在臺灣海峽中北部之975 hPa等壓面上具有相當接近的平均位置,但SOP1個案在北臺灣(桃園以北)地區產生的總降水量卻接近IOP3個案的三倍,呈現非常顯著的差異,本研究旨在探討造成此降水差異的可能因素與物理機制。
分析結果顯示,儘管IOP3個案的鋒面斜率、鋒面強度及綜觀尺度的運動學特徵相較於SOP1個案而言均明顯偏強,但SOP1個案具備更有利的熱力條件及中小尺度運動場結構(如:持續性的低層輻合帶,可不斷激發新對流胞),並伴隨著較顯著的碰撞合併過程、較高的低層液態水含量與可能較高的雲微物理尺度降水效率,這些因素共同促使SOP1個案在北臺灣地區產生明顯高於IOP3個案的總累積雨量,因此鋒面過境時所伴隨的降水多寡可能並非單純由其結構與強度所決定,而是環境水氣含量、中小尺度過程與雲微物理過程綜合作用之下的結果。 | zh_TW |
| dc.description.abstract | During the Taiwan-Area Heavy rain Observation and Prediction Experiment (TAHOPE) conducted from 25 May to 10 August 2022, two Meiyu front cases were selected for investigation in this study, corresponding to Special Observation Period 1 (SOP1) and Intensive Observation Period 3 (IOP3), respectively.
Although the two Meiyu fronts at 975 hPa were similarly positioned over the central to northern Taiwan Strait between 0700 UTC and 1900 UTC on 25 May (the SOP1 case) and 6 June (the IOP3 case), the rainfall totals observed over northern Taiwan (over and north of Taoyuan) in the SOP1 case were nearly three times as much as those in the IOP3 case, showing a highly significant difference. This study aimed to uncover the possible controlling factors and physical mechanisms responsible for this contrast. Our analysis indicated that although the IOP3 case exhibited a noticeably steeper frontal slope, greater frontal intensity, and stronger synoptic-scale kinematic features, the SOP1 case possessed more favorable thermodynamic conditions and mesoscale-to-convective-scale kinematic structures (e.g., persistent low-level convergence zones repeatedly initiating new convection), along with more pronounced collision-coalescence, higher low-level liquid water content, and potentially greater cloud-microphysics precipitation efficiency. These factors collectively led to substantially higher accumulated rainfall over northern Taiwan in the SOP1 case than in the IOP3 case, suggesting that the amount of precipitation during the frontal passages may not be solely determined by the structure and intensity of the front, but rather by the combined effects of environmental moisture and both mesoscale-to-convective-scale and microphysical processes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:12:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2026-01-13T16:12:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents v List of Tables vii List of Figures ix Chapter 1 Introduction 1 1.1 Literature Review 1 1.2 Overview of TAHOPE 2022 4 1.3 Motivation 6 1.4 Thesis Organization 7 Chapter 2 Data and Methods 8 2.1 Dataset Descriptions 8 2.1.1 Synoptic-Scale Analysis Data 8 2.1.2 Surface Station and QPESUMS Data 9 2.1.3 Sounding and Radar Data 10 2.2 Study Area 11 2.3 Definition of the Meiyu Front 12 2.4 Radar Data Preprocessing 14 2.5 3D Wind Retrieval 14 2.6 Interpretations of Dual-Polarization Radar Parameters 15 2.7 Convective-Stratiform Separation Algorithm 20 2.8 Methods for Identifying Low-Level Size Sorting Signature 23 Chapter 3 Case Overview 26 3.1 Overall Precipitation Features 26 3.2 Overall Comparison of the Two Selected Periods 27 Chapter 4 Analysis Results 30 4.1 Synoptic Insights 30 4.2 Thermodynamic Insights 36 4.3 Kinematic Insights 39 4.3.1 The SOP1 Case 40 4.3.2 The IOP3 Case 42 4.4 Warm-Cloud Microphysical Insights 43 4.4.1 Temporal Evolution of Different Precipitation Regimes 43 4.4.2 Temporal Evolution of S-Pol PID and Polarimetric Parameters 45 4.4.3 CFAD Analysis for EP1 48 4.4.4 CFAD Analysis for EP2 52 4.4.5 Parameter Space Analysis 54 4.4.6 Low-Level Size Sorting Signature for the IOP3 Case 56 Chapter 5 Conclusions and Future Work 59 5.1 Conclusions 59 5.2 Future Work 62 References 63 Tables 69 Figures 77 | - |
| dc.language.iso | en | - |
| dc.subject | TAHOPE | - |
| dc.subject | 梅雨鋒面 | - |
| dc.subject | 低層輻合帶 | - |
| dc.subject | 碰撞合併 | - |
| dc.subject | 低層液態水含量 | - |
| dc.subject | TAHOPE | - |
| dc.subject | Meiyu front | - |
| dc.subject | Low-level convergence zones | - |
| dc.subject | Collision-coalescence | - |
| dc.subject | Low-level liquid water content | - |
| dc.title | 2022年TAHOPE期間兩場梅雨鋒面個案之比較:探討造成降水特徵差異的物理機制 | zh_TW |
| dc.title | A Comparison of Two Meiyu Front Cases during TAHOPE 2022: Exploring the Physical Mechanisms for the Differences in Precipitation Features | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳正平;王重傑;宋偉國;侯昭平 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Ping Chen;Chung-Chieh Wang;Wei-Kuo Soong;Jou-Ping Hou | en |
| dc.subject.keyword | TAHOPE,梅雨鋒面低層輻合帶碰撞合併低層液態水含量 | zh_TW |
| dc.subject.keyword | TAHOPE,Meiyu frontLow-level convergence zonesCollision-coalescenceLow-level liquid water content | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202504817 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-12-22 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2026-01-14 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 16.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
