Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author許峻維zh_TW
dc.contributor.authorChun-Wei Hsuen
dc.date.accessioned2026-01-13T16:11:31Z-
dc.date.available2026-01-14-
dc.date.copyright2026-01-13-
dc.date.issued2025-
dc.date.submitted2025-12-30-
dc.identifier.citation[1] N. DOCOMO, "5G Evolution and 6G (version 3.0)," White Paper February 2021.
[2] G. Xu, Y. Nam, S. Lee, A. Tehrani, D. Y. Lee, A. Prasad, C. Tarver, and M. Tonnemacher, “Upper Mid-Band Spectrum for 6G: Opportunities and Key Enablers,” Samsung Research Blog, 2024. [Online]. Available: https://research.samsung.com/blog/Upper-Mid-Band-Spectrum-for-6G-Opportunities-and-Key-Enablers. [Accessed: 18-Aug-2025].
[3] J. -H. Kim et al., "Compact Dual-Core Drive Stage Using Three-Winding Transformer for CMOS Broadband Power Amplifier," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 6, pp. 773-776, June 2024, doi: 10.1109/LMWT.2024.3396491.
[4] M. Ghorbanpoor, E. Liu, T. -Y. Huang and H. Wang, "12 GHz Stacked Power Amplifier with 22.9 dBm Psat and 44.9% PAEsat for 6G in 22nm FDSOI," 2024 19th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 2024, pp. 62-65, doi: 10.23919/EuMIC61603.2024.10732645.
[5] H. Zhou, H. Chang, and C. Fager, "A Ku-Band GaN MMIC Push-Pull Power Amplifier with Coupled-Line Balun and Capacitive Neutralization for 6G Applications," 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), Bruges, Belgium, 2024, pp. 289-292, doi: 10.1109/ESSERC62670.2024.10719504.
[6] P. Asbeck, S. Alluri, J. -H. Li and J. -T. Chung, "A Monolithic X-Band 32 dBm GaAs HBT Power Amplifier with Efficient Operation Over a Wide Range of Power Supply Voltages," 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, Washington, DC, USA, 2024, pp. 768-771, doi: 10.1109/IMS40175.2024.10600207.
[7] J. -H. Kim et al., "An Efficient Ku-Band Two-Way Vertical-like Power-Combining Power Amplifier using Merged Inter-stage Transformers Achieving 23-23.4 dBm Psat and 45.2-46.6% Peak PAE in 65nm CMOS," 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Washington, DC, USA, 2024, pp. 299-302, doi: 10.1109/RFIC61187.2024.10599991.
[8] T. S. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications. Upper Saddle River, NJ, USA: Pearson Education Inc., 2015.
[9] “Why is the 60 GHz Band not good for long-range communications?” Everything RF, Aug. 17, 2017. [Online]. Available: https://www.everythingrf.com/community/why-is-the-60-ghz-band-not-good-for-long-range-communications [Accessed: 25-Aug-2025].
[10] A. Valdes-Garcia et al., "A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010, doi: 10.1109/JSSC.2010.2074951.
[11] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia and J. C. Widmer, "IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper]," in IEEE Communications Magazine, vol. 52, no. 12, pp. 132-141, December 2014, doi: 10.1109/MCOM.2014.6979964.
[12] "IEEE Standard for Information technology--Telecommunications and information exchange between systems--Local and metropolitan area networks--Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band," in IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), vol., no., pp.1-628, 28 Dec. 2012, doi: 10.1109/IEEESTD.2012.6392842.
[13] A. Wootten and A. R. Thompson, "The Atacama Large Millimeter/Submillimeter Array," in Proceedings of the IEEE, vol. 97, no. 8, pp. 1463-1471, Aug. 2009, doi: 10.1109/JPROC.2009.2020572.
[14] European Southern Observatory (ESO), “ALMA Receiver Bands,” [Online]. Available: https://www.eso.org/public/teles-instr/alma/receiver-bands/. [Accessed: 03 Nov. 2025].
[15] C. Yi et al., "Design of a 17–24-GHz High-Efficiency Power Amplifier for Satellite Communications," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 188-191, Feb. 2023, doi: 10.1109/LMWC.2022.3206269.
[16] H. Lee, W. Lee, T. Kim, M. Helaoui, F. M. Ghannouchi and Y. Yang, "6–18 GHz GaAs pHEMT Broadband Power Amplifier Based on Dual-Frequency Selective Impedance Matching Technique," in IEEE Access, vol. 7, pp. 66275-66280, 2019, doi: 10.1109/ACCESS.2019.2917699.
[17] Sheng-Ming Luo et al., "24-GHz MMIC development using 0.15-µm GaAs PHEMT process for automotive radar applications," 2008 Asia-Pacific Microwave Conference, Hong Kong, China, 2008, pp. 1-4, doi: 10.1109/APMC.2008.4957907.
[18] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz Compact PHEMT Power Amplifier Using Coupled-Line Based MCCR Matching Technique," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 956-959, doi: 10.1109/IMS30576.2020.9223797.
[19] P. -C. Huang, Z. -M. Tsai, K. -Y. Lin and H. Wang, "A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 112-119, Jan. 2012, doi: 10.1109/TMTT.2011.2170091.
[20] B. -W. Huang, Z. -H. Fu and K. -Y. Lin, "A Millimeter-Wave Ultra-Wide Band Power Amplifier in 0.15-μm GaAs pHEMT for 5G Communication," 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 2022, pp. 97-99, doi: 10.23919/APMC55665.2022.10000027.
[21] S. -J. Fe, S. -H. Lai and H. -Y. Chang, "A 0.5-W 26-31 GHz Power Amplifier Using Pre-matching Technique in 0.15-μm pHEMT Process," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-2, doi: 10.1109/RFIT52905.2021.9565271.
[22] Z. -H. Fu, M. -X. Li, T. -G. Ma, C. -S. Wu and K. -Y. Lin, "Millimeter-Wave GaAs Ultra-Wideband Medium Power Amplifier and Broadband High-Power Power Amplifier for 5G/6G Applications," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 14, no. 1, pp. 111-121, March 2024, doi: 10.1109/JETCAS.2024.3356010.
[23] Q. Cai, W. Che, K. Ma and Q. Xue, "A Compact Ku-Band Broadband GaAs Power Amplifier Using an Improved Darlington Power Stage," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3068-3078, July 2020, doi: 10.1109/TMTT.2020.2987022.
[24] C. Xie, P. Wu, C. Tan, Y. Yuan, J. Zeng and Z. Yu, "An X/Ku Dual-Band Switchless Frequency Reconfigurable GaAs Power Amplifier," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 539-542, June 2022, doi: 10.1109/LMWC.2021.3139665.
[25] Z. Zhang, W. Zheng, X. Xia and Y. Wang, "A 52.97–60.51-GHz Voltage-Controlled Oscillator With an 8-Shaped-Inductor-Based Triple-Coil Transformer," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 10, pp. 1466-1469, Oct. 2023, doi: 10.1109/LMWT.2023.3309275.
[26] Y. Wang, J. Xu, K. He, M. Wu and R. Zhang, "A 67.4–71.2-GHz nMOS-Only Complementary VCO With Buffer-Reused Feedback Technique," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 12, pp. 810-813, Dec. 2019, doi: 10.1109/LMWC.2019.2949937.
[27] J. Y. Jin, L. Wu and Q. Xue, "A V-Band CMOS VCO With Digitally-Controlled Inductor for Frequency Tuning," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 8, pp. 979-983, Aug. 2018, doi: 10.1109/TCSII.2018.2795577.
[28] H. Jia, B. Chi, L. Kuang and Z. Wang, "A 47.6–71.0-GHz 65-nm CMOS VCO Based on Magnetically Coupled π-Type LC Network," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 5, pp. 1645-1657, May 2015, doi: 10.1109/TMTT.2015.2415487.
[29] M. Haghi Kashani, A. Tarkeshdouz, R. Molavi, A. Sheikholeslami, E. Afshari and S. Mirabbasi, "On the Design of a High-Performance mm-Wave VCO With Switchable Triple-Coupled Transformer," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4450-4464, Nov. 2019, doi: 10.1109/TMTT.2019.2938943.
[30] C. -H. Hung and R. Gharpurey, "A 57-to-75 GHz dual-mode wide-band reconfigurable oscillator in 65nm CMOS," 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, USA, 2014, pp. 261-264, doi: 10.1109/RFIC.2014.6851714.
[31] J. Yin and H. C. Luong, "A 57.5–90.1-GHz Magnetically Tuned Multimode CMOS VCO," in IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1851-1861, Aug. 2013, doi: 10.1109/JSSC.2013.2258796.
[32] H. -J. Wu et al., "60-GHz Millimeter-Wave Voltage-Controlled Oscillators Using Transformer- Tuning Technique," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2018, pp. 1124-1126, doi: 10.23919/APMC.2018.8617431.
[33] T. -N. Luo and Y. -J. E. Chen, "A Sub-1V Low Power V-Band CMOS VCO With Self-Body-Bias," 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 2007, pp. 1-4, doi: 10.1109/APMC.2007.4555024.
[34] Yi-Hsien Cho, Ming-Da Tsai, Hong-Yeh Chang, Chia-Chi Chang and H. Wang, "A low phase noise 52-GHz push-push VCO in 0.18-/spl mu/m bulk CMOS technologies," 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers, Long Beach, CA, USA, 2005, pp. 131-134, doi: 10.1109/RFIC.2005.1489608.
[35] L. Qiu et al., "Ultralow Power E-Band Low-Noise Amplifier With Three-Stacked Current-Sharing Amplification Stages in 28-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 6, pp. 732-735, June 2022, doi: 10.1109/LMWC.2022.3161998.
[36] C. -J. Liang et al., "A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 481-484, May 2021, doi: 10.1109/LMWC.2021.3062027.
[37] Y. Zhang, X. Tang, Z. Wei, X. Feng and F. Huang, "A 58–110 GHz 4.2 dB Minimum NF CMOS LNA With Broadband Simultaneous Noise and Impedance Matching," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 5, pp. 504-507, May 2024, doi: 10.1109/LMWT.2024.3373618.
[38] C. Han, J. Zhou and X. Luo, "A 70–86-GHz Deep-Noise-Canceling LNA With Dual-Stage Noise Cancellation Using Asymmetric Compensation Transformer and 4-to-1 Hybrid-Phase Combiner," in IEEE Journal of Solid-State Circuits, vol. 60, no. 3, pp. 1030-1042, March 2025, doi: 10.1109/JSSC.2024.3440053.
[39] Y. Zhang, Z. Wei, X. Tang, L. Zhang and F. Huang, "A 76.5–92.6 GHz CMOS LNA Using Two-Port kQ-Product Theory for Transformer Design," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 10, pp. 1187-1190, Oct. 2022, doi: 10.1109/LMWC.2022.3170929.
[40] D. Pan, Z. Duan, S. Chakraborty, L. Sun and P. Gui, "A 60–90-GHz CMOS Double-Neutralized LNA Technology With 6.3-dB NF and −10dBm P−1dB," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 7, pp. 489-491, July 2019, doi: 10.1109/LMWC.2019.2919631.
[41] G. Feng et al., "Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 769-780, March 2017, doi: 10.1109/JSSC.2016.2641459.
[42] J. -H. Song, H. -W. Choi, J. -T. Lim and C. -Y. Kim, "W-Band Broadband CMOS LNA Using Partially Coupled Transformer and Large Transistor," in IEEE Microwave and Wireless Technology Letters, vol. 35, no. 1, pp. 83-86, Jan. 2025, doi: 10.1109/LMWT.2024.3499322.
[43] De-Ren Lu, Yu-Chung Hsu, Jui-Chih Kao, Jhe-Jia Kuo, Dow-Chih Niu and Kun-You Lin, "A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3, doi: 10.1109/MWSYM.2012.6259481.
[44] H. P. G. Rao, T. Elazar and E. Socher, "An 86-90 GHz Adaptive Gain CMOS LNA with Linearity Enhancement & −6 dBm Blocker Tolerance," 2025 IEEE/MTT-S International Microwave Symposium - IMS 2025, San Francisco, CA, USA, 2025, pp. 835-838, doi: 10.1109/IMS40360.2025.11103918.
[45] Y. Wang, T. -Y. Chiu, C. -C. Chien, W. -H. Tsai and H. Wang, "An E-Band High-Performance Variable Gain Low Noise Amplifier for Wireless Communications in 90-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1095-1098, Sept. 2022, doi: 10.1109/LMWC.2022.3161295.
[46] 卓宜賢, "應用於微波及毫米波金氧半場效電晶體壓控振盪器之研製," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/yus45s
[47] Z. Xing, H. Liu, Y. Wu, C. Zhao, Y. Yu and K. Kang, "A 3-GHz Inverse-Coupled Current-Reuse VCO Implemented by 1:1 Transformer," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 5, pp. 434-436, May 2022, doi: 10.1109/LMWC.2021.3135837.
[48] Donghyun Baek, Taeksang Song, Sangsoo Ko, Euisik Yoon and Songcheol Hong, "Analysis on resonator coupling and its application to CMOS quadrature VCO at 8 GHz," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003, Philadelphia, PA, USA, 2003, pp. 85-88, doi: 10.1109/RFIC.2003.1213899.
[49] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966, doi: 10.1109/PROC.1966.4682.
[50] F. Pareschi, A. Celentano, M. Mangia, R. Rovatti and G. Setti, "Through-The-Barrier Communications in Isolated Class-E Converters Embedding a Low-K Transformer," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180486.
[51] A. Basaligheh, P. Saffari, W. Winkler and K. Moez, "A Wide Tuning Range, Low Phase Noise, and Area Efficient Dual-Band Millimeter-Wave CMOS VCO Based on Switching Cores," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 2888-2897, Aug. 2019, doi: 10.1109/TCSI.2019.2901253.
[52] J. Zhang, C. Zhao, Y. Wu, H. Liu, Y. Zhu and K. Kang, "An Ultralow Phase Noise Eight-Core Fundamental 62-to-67-GHz VCO in 65-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 125-127, Feb. 2019, doi: 10.1109/LMWC.2018.2890087.
[53] C. Fan, J. Yin, C. -C. Lim, P. -I. Mak and R. P. Martins, "17.9 A 9mW 54.9-to-63.5GHz Current-Reuse LO Generator with a 186.7dBc/Hz FoM by Unifying a 20GHz 3rd-Harmonic-Rich Current-Output VCO, a Harmonic-Current Filter and a 60GHz TIA," 2020 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 282-284, doi: 10.1109/ISSCC19947.2020.9063044.
[54] S. Balamurali, G. Mangraviti, C. -H. Tsai, P. Wambacq and J. Craninckx, "Design and Analysis of 55–63-GHz Fundamental Quad-Core VCO With NMOS-Only Stacked Oscillator in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 1997-2010, July 2022, doi: 10.1109/JSSC.2022.3165654.
[55] D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz CMOS low noise amplifier," in IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997, doi: 10.1109/4.568846.
[56] Y. -T. Chang and H. -C. Lu, "A V-Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, Nov. 2019, doi: 10.1109/TMTT.2019.2938752.
[57] Choong-Yul Cha and Sang-Gug Lee, "A 5.2GHz LNA in 0.35 µm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance," Proceedings of the 28th European Solid-State Circuits Conference, Florence, Italy, 2002, pp. 339-342.
[58] Y. Yuan, B. Yuan, J. Li, Z. Wang, J. Zeng and Z. Yu, "A Broadband Cascode Low-Noise Amplifier Using Transformer Feedback and Darlington Techniques," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 41-45, Jan. 2024, doi: 10.1109/TCSII.2023.3303437.
[59] J. Li et al., "Analysis and Design of a 2-40.5 GHz Low Noise Amplifier With Multiple Bandwidth Expansion Techniques," in IEEE Access, vol. 11, pp. 13501-13509, 2023, doi: 10.1109/ACCESS.2023.3243090.
[60] C. J. Lee, H. J. Lee, J. G. Lee, T. H. Jang and C. S. Park, "A W-band CMOS low power wideband low noise amplifier with 22 dB gain and 3dB bandwidth of 20 GHz," 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413040.
[61] R. Brown, Chapter 2, ALMA project book, [Online] Available: https://www.cv.nrao.edu/~demerson/almapbk/construc/ [Accessed: 30-Oct-2025].
[62] J. Carpenter, D. Iono, L. Testi, N. Whyborn, A. Wooten, N. Evans, “ALMA 2030 roadmap”, July 2018. [Online]. Available: https://www.almaobservatory.org/wp-content/uploads/2018/07/20180712-alma-development-roadmap.pdf [Accessed: 30-Oct-2025].
[63] WIN Semiconductors Corp., 4V Ka-Band E-mode pHEMT Technology with Monolithic Vertical PIN and Schottky Barrier Diodes, PIH1-10: Qualification Report, internal document, Version 1, Jan. 2019.
[64] WIN Semiconductors Corp., PIH1-10 Technology Summary (Rev. 3), Hsinchu, Taiwan, June 2020.
[65] B. Razavi, Design of analog CMOS integrated circuits. New York: McGraw-Hill, 2001.
[66] H. Goldberg, "Some Notes on Noise Figures," in Proceedings of the IRE, vol. 36, no. 10, pp. 1205-1214, Oct. 1948, doi: 10.1109/JRPROC.1948.231248.
[67] C. -W. Hsu, Y. -Q. Lin, Y. Wang, C. -S. Wu, T. -H. Chen and H. Wang, "A 15.7-21.4 GHz Power Amplifier with 28.2-dBm Psat and 33.1% PAEpeak in 0.18-μm GaAs pHEMT Process for 6G FR3 Applications," 2025 IEEE Asia-Pacific Microwave Conference (APMC), Jeju, Korea (South), 2025.
[68] E. Hegazi, H. Sjoland and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001, doi: 10.1109/4.972142.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101278-
dc.description.abstract本論文主要包含三個部分。第一部分是應用於第六代行動通訊系統第三頻段的Ku/K 頻段功率放大器設計與結果,使用0.18微米增強型砷化鎵假型高速場效電晶體(pHEMT)製程。第二部分為應用於60 GHz短距離通訊系統之V 頻段低功耗LC壓控振盪器之設計與結果,使用65奈米金氧半場效電晶體製程。第三部分是應用於天文接收機之W 頻段高增益低雜訊放大器設計與結果,使用65奈米金氧半場效電晶體製程。
第一部分為應用於第六代行動通訊系統第三頻段的Ku/K 頻段功率放大器設計。此電路採用三級單端共源極放大架構,實現高增益及高輸出功率之表現,此外由於三五族化合物製程之電晶體相較於金氧半場效電晶體製程較不穩定,故本設計導入LC高通濾波器與小電阻以提升穩定度。量測結果顯示,小信號增益在 15.7 至 21.4 GHz 之間達 5.7 GHz 的 3-dB 頻寬,峰值增益 25.5 dB;大信號量測結果顯示,最大輸出飽和功率為 28.2 dBm,最大功率附加效率達 33.1%,晶片面積為 2.8 平方毫米。
第二部分為應用於60 GHz 短距離通訊系統之V 頻段低功耗LC壓控振盪器之設計。此電路採用電流重複利用拓樸以達成低功耗操作,並以反向耦合變壓器改善振盪啟動條件並產生差動輸出,減少電源與接地干擾。量測結果顯示,振盪頻率範圍為58.3至62 GHz,對應6.2%的頻率調變範圍;相位雜訊於1 MHz與10 MHz偏移頻率處分別為 -93.87 dBc/Hz與 -111.52 dBc/Hz,核心功耗僅2.12毫瓦,最大輸出功率為 -4.3 dBm。晶片總面積為0.56 平方毫米,核心面積為0.07 平方毫米。
第三部分為應用於天文接收機之W 頻段高增益低雜訊放大器。此電路由三級電流重複利用共源極放大級與一級達靈頓疊接式放大級組合而成,藉由增加少量功耗以換取整體增益提升,同時第一級採用源極衰退技術同時改善增益及雜訊匹配。量測結果顯示,此低雜訊放大器3-dB頻寬為73.6 GHz至93.3 GHz,峰值增益28.5 dB,最小雜訊指數6.1 dB,整體直流功耗29.7毫瓦,晶片面積0.53 平方毫米。
zh_TW
dc.description.abstractThis thesis consists of three parts. The first chapter presents the design and measurement results of a Ku/K-band power amplifier (PA) for the 6G FR3 application, fabricated in a 0.18-μm E-mode GaAs pHEMT process. The second chapter describes the design and measurement results of a V-band low-power LC voltage-controlled oscillator (VCO) for 60-GHz short-range communication applications, fabricated in a 65-nm CMOS process. The third chapter demonstrates the design and measurement results of a high-gain W-band low-noise amplifier (LNA) for astronomical receivers, fabricated in a 65-nm CMOS process.
The first part focuses on a Ku/K-band power amplifier (PA) designed for the forward-looking 6G FR3 applications. This PA is designed using three-stage single-ended common-source amplifiers in a 0.18-μm enhancement-mode (E-mode) gallium arsenide (GaAs) pseudomorphic high-electron-mobility-transistor (pHEMT) process. Due to the physical constraints, III–V compound transistors are more unstable in contrast to CMOS. Therefore, this PA utilizes LC high-pass filters and small series resistors to enhance the circuit's stability. The measured small-signal result shows that the PA achieves a 3-dB bandwidth of 5.7 GHz, spanning from 15.7 to 21.4 GHz, and a peak gain of 25.5 dB. In addition, the measured large signal result shows that the PA delivers a saturated output power of 28.2 dBm (Psat) and a maximum power-added efficiency (PAEpeak) of 33.1%. The total chip area is 2.8 mm².
The second part presents a low-power V-band voltage-controlled oscillator (VCO) designed for 60-GHz short-range communication applications. This circuit utilizes the current-reused topology to achieve low-power operation. By replacing a single large tank inductor with an inverse-coupled transformer, the proposed VCO not only inherits the good phase noise performance of the current-reused VCO but also achieves differential outputs, mitigates the start-up problem, and alleviates disturbances to the power supply and ground. The measurement results indicate that the proposed VCO achieves an oscillation frequency of 58.3 GHz to 62.0 GHz with a 6.2% frequency tuning range. Moreover, the VCO exhibits a phase noise of -93.87 dBc/Hz at a 1 MHz offset frequency and -111.52 dBc/Hz at a 10 MHz offset frequency, accompanied by a low core power consumption of 2.12 mW, and a maximum output power of -4.3 dBm. The total chip area is 0.56 mm², with a core area of 0.07 mm².
The third part demonstrates a W-band high-gain low-noise amplifier (LNA) designed for astronomical receivers. The LNA consists of three current-reused common-source stages and one Darlington-cascode stage in the output stage. The stage combination trades slightly more DC power for large gain enhancement. The inductive source degeneration is utilized in the first stage to enhance gain matching and noise matching simultaneously. The measurement results demonstrate that the proposed LNA achieves a small-signal peak gain of 28.5 dB within a 3-dB frequency range of 73.6 GHz to 93.3 GHz. Additionally, within the 3-dB bandwidth, the minimum noise figure is 6.1 dB with the total DC power consumption of 29.7 mW. The total chip area is 0.53 mm².
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2026-01-13T16:11:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2026-01-13T16:11:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 Sixth-Generation Wireless Communication Systems 1
1.1.2 60-GHz Short-Range Wireless Communication Systems 2
1.1.3 ALMA Receiver Systems for Astronomical Observation 4
1.2 Literature Surveys 5
1.2.1 Ku/K-band Power Amplifier in GaAs pHEMT Process 5
1.2.2 V-band Voltage-Controlled Oscillator in CMOS Process 8
1.2.3 W-band Low-Noise Amplifier in CMOS Process 11
1.3 Contributions 14
1.3.1 Ku/K-band PA in GaAs pHEMT Process 14
1.3.2 V-band Low DC-Power VCO in CMOS Process 15
1.3.3 W-band High-Gain LNA in CMOS Process 16
1.4 Thesis Organization 17
Chapter 2 Design of a 15.7-21.4 GHz Power Amplifier in 0.18-μm E-mode GaAs pHEMT Process 18
2.1 Introduction 18
2.2 Circuit Design 21
2.2.1 Process Characteristics 21
2.2.2 Circuit Architecture and Power Budget 23
2.2.3 Bias Selection 24
2.2.4 Device Size Selection 25
2.2.5 Matching Networks 39
2.2.6 Stabilization 46
2.2.7 Circuit Schematic and Post-Layout Simulation Results 49
2.3 Measurement Results 57
2.4 Summary 63
Chapter 3 Design of a 2.12 mW DC-power V-band LC Voltage-Controlled Oscillator in 65-nm CMOS Process 65
3.1 Introduction 65
3.2 Circuit Design 68
3.2.1 Circuit Architecture 68
3.2.2 LC Tank Design 71
3.2.3 Bias and Device Size Selection 88
3.2.4 Buffer Design 90
3.2.5 Circuit Schematic and Post-Layout Simulation Results 96
3.3 Measurement Results 103
3.4 Summary 107
Chapter 4 Design of a High-Gain W-band Low-Noise Amplifier with Darlington Cascode Technique in 65-nm CMOS Process 109
4.1 Introduction 110
4.2 Circuit Design 112
4.2.1 Circuit Architecture 112
4.2.2 Bias and Device Size Selection 115
4.2.3 Inductive Source Degeneration Technique [55] 124
4.2.4 Current-Reused Technique [56-57] 129
4.2.5 Darlington Cascode Technique [58-59] 136
4.2.6 Circuit Schematic and Post-Layout Simulation Results 144
4.3 Measurement Results 152
4.4 Summary 159
Chapter 5 Conclusions 161
REFERENCES 163
-
dc.language.isoen-
dc.subject增強型砷化鎵假型高速場效電晶體製程-
dc.subject互補式金氧半導體-
dc.subject功率放大器-
dc.subject壓控振盪器-
dc.subject低雜訊放大器-
dc.subjectKu/K 頻段-
dc.subjectV 頻段-
dc.subjectW 頻段-
dc.subject第六代行動通訊系統第三頻段-
dc.subject短距離通訊系統-
dc.subject天文接收機-
dc.subjectE-mode GaAs pHEMT-
dc.subjectCMOS-
dc.subjectpower amplifier-
dc.subjectvoltage-controlled oscillator-
dc.subjectlow-noise amplifier-
dc.subjectKu/K-band-
dc.subjectV-band-
dc.subjectW-band-
dc.subject6G FR3-
dc.subjectshort-range communication-
dc.subjectastronomical receiver-
dc.titleKu/K頻段砷化鎵功率放大器、V頻段低功耗LC壓控振盪器及W頻段高增益低雜訊放大器之研究zh_TW
dc.titleResearch of Ku/K-Band GaAs Power Amplifier, V-Band Low-Power LC Voltage-Controlled Oscillator, and W-Band High-Gain Low-Noise Amplifieren
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃天偉;蔡政翰;張鴻埜;王雲杉zh_TW
dc.contributor.oralexamcommitteeTian-Wei Huang;Jeng-Han Tsai;Hong-Yeh Chang;Yun-Shan Wangen
dc.subject.keyword增強型砷化鎵假型高速場效電晶體製程,互補式金氧半導體功率放大器壓控振盪器低雜訊放大器Ku/K 頻段V 頻段W 頻段第六代行動通訊系統第三頻段短距離通訊系統天文接收機zh_TW
dc.subject.keywordE-mode GaAs pHEMT,CMOSpower amplifiervoltage-controlled oscillatorlow-noise amplifierKu/K-bandV-bandW-band6G FR3short-range communicationastronomical receiveren
dc.relation.page168-
dc.identifier.doi10.6342/NTU202504823-
dc.rights.note未授權-
dc.date.accepted2025-12-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
6.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved