Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭惠心zh_TW
dc.contributor.advisorHui-Hsin Hsiaoen
dc.contributor.author陳力瑜zh_TW
dc.contributor.authorLi-Yu Chenen
dc.date.accessioned2025-12-31T16:25:30Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-15-
dc.identifier.citation1. Liang, J.-G., et al., Multiplex-gas detection based on non-dispersive infrared technique: A review. Sensors and Actuators A: Physical, 2023. 356: p. 114318.
2. Zhao, Z., et al., Mid‐infrared supercontinuum covering 2.0–16 μm in a low‐loss telluride single‐mode fiber. Laser & Photonics Reviews, 2017. 11(2): p. 1700005.
3. Aldhafeeri, T., et al., A review of methane gas detection sensors: Recent developments and future perspectives. Inventions, 2020. 5(3): p. 28.
4. Baranov, D.G., et al., Nanophotonic engineering of far-field thermal emitters. Nature materials, 2019. 18(9): p. 920-930.
5. Schuller, J.A., T. Taubner, and M.L. Brongersma, Optical antenna thermal emitters. Nature Photonics, 2009. 3(11): p. 658-661.
6. E. Hecht, O., 5th ed., Pearson, Boston, 2017.
7. Lochbaum, A., et al., On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS photonics, 2017. 4(6): p. 1371-1380.
8. Miyazaki, H., et al., Dual-band infrared metasurface thermal emitter for CO2 sensing. Applied Physics Letters, 2014. 105(12).
9. Moncada-Villa, E., et al., Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters. Physical Review B, 2015. 92(12): p. 125418.
10. Abraham Ekeroth, R.M., P. Ben-Abdallah, J.C. Cuevas, and A. García-Martín, Anisotropic thermal magnetoresistance for an active control of radiative heat transfer. ACS photonics, 2018. 5(3): p. 705-710.
11. Wang, J., F. Yang, L. Xu, and J. Huang, Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity. Physical Review Applied, 2020. 14(1): p. 014008.
12. Li, Y., et al., Structured thermal surface for radiative camouflage. Nature communications, 2018. 9(1): p. 273.
13. Salihoglu, O., et al., Graphene-based adaptive thermal camouflage. Nano letters, 2018. 18(7): p. 4541-4548.
14. Ball, D.W., Wien’s displacement law as a function of frequency. Journal of Chemical Education, 2013. 90(9): p. 1250-1252.
15. Ball, D.W., Wien’s displacement law as a function of frequency. Journal of Chemical Education, 2013. 90(9): p. 1250-1252.
16. Sun, K., et al., Infinite-Q guided modes radiate in the continuum. Physical Review B, 2023. 107(11): p. 115415.
17. Sun, K., U. Levy, and Z. Han, Thermal emission with high temporal and spatial coherence by harnessing quasiguided modes. Physical Review Applied, 2023. 20(2): p. 024033.
18. Sun, K., W. Wang, and Z. Han, High-Q resonances in periodic photonic structures. Physical Review B, 2024. 109(8): p. 085426.
19. Sun, K., U. Levy, and Z. Han, Exploiting zone-folding induced quasi-bound modes to achieve highly coherent thermal emissions. Nano Letters, 2024. 24(2): p. 764-769.
20. Sun, K., Y. Cai, L. Huang, and Z. Han, Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices. Nature Communications, 2024. 15(1): p. 4019.
21. Sun, K., et al., High-Q photonic flat-band resonances for enhancing third-harmonic generation in all-dielectric metasurfaces. Newton, 2025. 1(4).
22. Gerislioglu, B., et al., The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics, 2020. 12: p. 100178.
23. Schneider, M.N., et al., Influence of stress and strain on the kinetic stability and phase transitions of cubic and pseudocubic Ge-Sb-Te materials. Physical Review B—Condensed Matter and Materials Physics, 2010. 81(18): p. 184102.
24. Muramoto, K., et al., VO2-dispersed glass: A new class of phase change material. Scientific reports, 2018. 8(1): p. 1-8.
25. Du, K.-K., et al., Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science & Applications, 2017. 6(1): p. e16194-e16194.
26. Li, X., et al., Color camouflage, solar absorption, and infrared camouflage based on phase-change material in the visible-infrared band. Optical Materials Express, 2022. 12(3): p. 1251-1262.
27. Ren, Z., et al., Infrared camouflage based on the crystalline and amorphous GST multilayer films. Applied Physics Letters, 2022. 121(25).
28. Kang, Q., et al., Tunable thermal camouflage based on GST plasmonic metamaterial. Nanomaterials, 2021. 11(2): p. 260.
29. Nejat, M. and N. Nozhat, Sensing and switching capabilities of a tunable GST-based perfect absorber in near-infrared region. Journal of Physics D: Applied Physics, 2020. 53(24): p. 245105.
30. Sbeah, Z.A., et al., GST-based plasmonic biosensor for hemoglobin and urine detection. Plasmonics, 2022. 17(6): p. 2391-2404.
31. Almeida, E., G. Shalem, and Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature communications, 2016. 7(1): p. 10367.
32. Cao, T., et al., Giant enhancement of third harmonic generation from Ge2Sb2Te5 based Fabry-Perot cavity. arXiv preprint arXiv:1901.08795, 2019.
33. Hosseini, P., C.D. Wright, and H. Bhaskaran, An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 2014. 511(7508): p. 206-211.
34. Wang, Q., et al., Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature photonics, 2016. 10(1): p. 60-65.
35. Cao, T., R. Wang, R.E. Simpson, and G. Li, Photonic Ge-Sb-Te phase change metamaterials and their applications. Progress in Quantum Electronics, 2020. 74: p. 100299.
36. Aspnes, D., Local-field effects and effective-medium theory: A microscopic perspective. Am. J. Phys, 1982. 50(8): p. 704-709.
37. Qu, Y., et al., Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase‐changing material GST. Laser & Photonics Reviews, 2017. 11(5): p. 1700091.
38. Chen, L., et al., Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC advances, 2020. 10(9): p. 5146-5151.
39. Tang, H., et al., Infrared phase-change chiral metasurfaces with tunable circular dichroism. Optics Express, 2024. 32(11): p. 20136-20145.
40. Kang, D., Y. Kim, and M. Lee, Multispectral imaging with a planar cavity-type metasurface for optical security. ACS Applied Materials & Interfaces, 2023. 15(24): p. 29577-29585.
41. Li, C., et al., Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators. Applied Physics Letters, 2018. 113(23).
42. Kazemi Moridani, A., et al., Plasmonic thermal emitters for dynamically tunable infrared radiation. Advanced Optical Materials, 2017. 5(10): p. 1600993.
43. Cao, T., et al., Tuneable thermal emission using chalcogenide metasurface. Advanced Optical Materials, 2018. 6(16): p. 1800169.
44. Wang, Z., et al., Ultranarrow and wavelength-tunable thermal emission in a hybrid metal–optical tamm state structure. ACS photonics, 2020. 7(6): p. 1569-1576.
45. Du, K., et al., Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale, 2018. 10(9): p. 4415-4420.
46. Sun, K., et al., Ultra-narrow bandwidth mid-infrared thermal emitters achieved with all-dielectric metasurfaces. International Communications in Heat and Mass Transfer, 2023. 143: p. 106728.
47. Sun, K., Y. Cai, and Z. Han, A novel mid-infrared thermal emitter with ultra-narrow bandwidth and large spectral tunability based on the bound state in the continuum. Journal of Physics D: Applied Physics, 2021. 55(2): p. 025104.
48. Ciesielski, A., et al., Evidence of germanium segregation in gold thin films. Surface Science, 2018. 674: p. 73-78.
49. Kischkat, J., et al., <? A3B2 tlsb-0.01 w?> Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied optics, 2012. 51(28): p. 6789-6798.
50. Debenham, M., Refractive indices of zinc sulfide in the 0.405–13-μ m wavelength range. Applied optics, 1984. 23(14): p. 2238-2239.
51. Klein, C.A., Room-temperature dispersion equations for cubic zinc sulfide. Applied optics, 1986. 25(12): p. 1873-1875.
52. Frantz, J.A., et al., Optical constants of germanium antimony telluride (GST) in amorphous, crystalline, and intermediate states. Optical Materials Express, 2023. 13(12): p. 3631-3640.
53. Chuang, K.-T., et al., Metal oxide composite thin films made by magnetron sputtering for bactericidal application. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 337: p. 151-164.
54. Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
55. Bruker, VERTEX Series – Advanced Research FT-IR Spectrometers Brochure, Bruker Optics, 2021.
56. Gray, C., Multipole expansions of electromagnetic fields using Debye potentials. American Journal of Physics, 1978. 46(2): p. 169-179.
57. Gongora, A. and E. Ley-Koo, Complete electromagnetic multipole expansion including toroidal moments. Revista mexicana de física E, 2006. 52(2): p. 177-181.
58. Radescu, E. and G. Vaman, Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Physical Review E, 2002. 65(4): p. 046609.
59. Savinov, V., V. Fedotov, and N.I. Zheludev, Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Physical Review B, 2014. 89(20): p. 205112.
60. Qu, Y., et al., Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. Optics express, 2018. 26(4): p. 4279-4287.
61. Zhu, H., et al., Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon. Optics letters, 2018. 43(21): p. 5230-5233.
62. Duportal, M., et al., Multi-band metasurface-driven surface-enhanced infrared absorption spectroscopy for improved characterization of in-situ electrochemical reactions. ACS photonics, 2024. 11(2): p. 714-722.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101237-
dc.description.abstract本論文旨在設計與實現一種具連續波長可調特性的窄頻熱輻射發射器,結合非對稱光柵結構與相變化材料鍺銻碲合金(Ge₂Sb₂Te₅, GST),針對中紅外波段之斜向出射特性進行分析。根據破壞結構對稱性所引起布里淵區摺疊(Brillouin zone folding)之原理,模擬中設計出能在目標波長處產生高Q值且具備角度色散特性的準波導模態(Quasi-guided mode, QGM)共振的非對稱GST光柵結構。透過數值模擬分析不同偏振態(TE與TM)下的能帶分佈,並藉由調整光柵線寬、間距與GST厚度等參數,成功模擬出三種不同狀態之熱輻射調控結果,分別對應於aGST狀態下的TM偏振QGM共振出射、aGST狀態下的TE偏振QGM共振出射以及36%cGST狀態下的TE偏振QGM共振出射,展現約2 μm之連續可調光譜範圍並維持高Q值特性。在實驗部分,採用雷射直寫技術完成光柵樣品製作,惟受限於實際製程設備,部分結構參數需進行修正後,再利用修正後的模擬結果與實驗比對,透過改變偏振方向及控制GST相變化,仍可實現約1.5 μm之連續光譜可調範圍。綜合而言,本研究所提出之非對稱光柵結合相變化材料複合結構能以偏振方向、出射角度與材料相變等多重參數調控共振位置,達成大範圍連續可調的窄頻熱輻射響應,兼具高Q值與製程簡化之優勢,對未來可調式中紅外熱輻射與高靈敏分子感測元件之發展具有重要參考價值。zh_TW
dc.description.abstractThis thesis presents the design and implementation of a narrowband thermal emitter with continuously tunable wavelength characteristics in the mid-infrared region, specifically analyzing its oblique emission properties. By integrating an asymmetric grating structure with the phase-change material Ge₂Sb₂Te₅ (GST), the design utilizes Brillouin zone folding induced by symmetry breaking to generate high-Q Quasi-Guided Mode (QGM) resonances.
Numerical simulations were performed to analyze band distributions under both TE and TM polarizations. By systematically optimizing parameters such as grating linewidth, period, and GST thickness, the study successfully demonstrated three distinct thermal radiation modulation regimes: TM-polarized QGM (aGST), TE-polarized QGM (aGST), and TE-polarized QGM (36% cGST). These configurations exhibit a continuously tunable spectral range of approximately 2 μm while maintaining high Q-factors.
Experimentally, samples were fabricated using Direct Laser Writing technology, with structural parameters adjusted to account for manufacturing equipment constraints. By correlating the experimental results with revised simulations, a continuous tuning range of approximately 1.5 μm was achieved through the manipulation of polarization direction and GST phase transition. In summary, this research highlights that the proposed asymmetric composite structure allows for versatile resonance control via polarization, emission angle, and phase changes. This method offers a scalable solution for wide-range tunable thermal emission with high Q-factors, providing significant value for the development of future mid-infrared sensing devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:25:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:25:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口委審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xiv
第一章 緒論 1
1.1 熱輻射發射器 2
1.1.1 黑體輻射 2
1.1.1 克希荷夫熱輻射定律 3
1.2 準波導模態 (Quasi-guided Modes) 4
1.3 相變化材料 (Phase Change Materials, PCMs) 12
1.4 可調式熱輻射發射器 15
1.5 論文概述 17
第二章 數值計算原理與實驗架構 20
2.1 有限元素法 (Finite Element Method, FEM) 20
2.2 製程儀器介紹 23
2.2.1 濺鍍機 (Sputter) 23
2.2.2 電子束蒸鍍 (E-gun evaporation) 24
2.2.3 雷射直寫 (Laser Direct Writing, LDW) 26
2.2.4 反應性離子蝕刻 (Reactive Ion Etching, RIE) 29
2.3 量測儀器介紹 29
2.3.1 FTIR 反射量測 29
2.3.2 FTIR 熱輻射量測 31
2.4 實驗流程 34
第三章 非對稱光柵熱輻射發射器 36
3.1 非對稱光柵結構設計原理 36
3.1.1 QGM共振能帶圖 37
3.1.2 Q值對應不對稱參數以及波數模擬 41
3.1.3 隨角度變化模擬發射頻譜 45
3.2 近場模態 49
3.3 幾何結構分析 56
3.3.1 改變週期對於QGM共振的影響 56
3.3.2 改變介電質厚度對於QGM共振的影響 57
3.3.3 改變光柵高度&寬度對於QGM共振的影響 60
3.3.4 改變光柵線寬差對於QGM共振的影響 61
第四章 實驗結果與討論 63
4.1 樣品製作成果 63
4.1.1 雷射直寫問題&樣品成品 63
4.1.2 修改後模擬結構參數 66
4.2 樣品量測結果 74
4.2.1 第一階段aGST TM反射&發射頻譜 76
4.2.2 第二階段aGST TE 反射&發射頻譜 79
4.2.3 結構缺陷模擬測試 82
4.2.4 相變化測試 86
4.2.5 第三階段36%cGST TM反射&發射頻譜 89
第五章 結論 95
參考文獻 97
-
dc.language.isozh_TW-
dc.subject可調式熱輻射-
dc.subject中紅外-
dc.subject相變化材料-
dc.subject準波導模態-
dc.subject不對稱光柵-
dc.subjectTunable thermal emission-
dc.subjectmid-infrared-
dc.subjectphase-change materials-
dc.subjectquasi-guided modes-
dc.subjectasymmetric gratings-
dc.title結合Ge2Sb2Te5相變化材料與準波導模態之窄頻波長可調式熱輻射發射zh_TW
dc.titleIntegration of Ge₂Sb₂Te₅ Phase-Change Material with Quasi-Guided Mode Resonance for Tunable Narrowband Thermal Emissionen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林致廷;曾銘綸;李佳翰zh_TW
dc.contributor.oralexamcommitteeChih-Ting Lin;Ming-Lun Tseng;Jia-Han Lien
dc.subject.keyword可調式熱輻射,中紅外相變化材料準波導模態不對稱光柵zh_TW
dc.subject.keywordTunable thermal emission,mid-infraredphase-change materialsquasi-guided modesasymmetric gratingsen
dc.relation.page102-
dc.identifier.doi10.6342/NTU202504794-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-12-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2030-12-15-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  此日期後於網路公開 2030-12-15
14.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved