請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101194完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭宏 | zh_TW |
| dc.contributor.advisor | Jau-Horng Chen | en |
| dc.contributor.author | 張彧宸 | zh_TW |
| dc.contributor.author | Yu-Chen Chang | en |
| dc.date.accessioned | 2025-12-31T16:16:40Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-01 | - |
| dc.identifier.citation | [1] 3GPP TS 38.104 version 15.21.0, 2025-01s, 5G NR Base Station (BS) radio transmission and reception.
[2] Weiguo Yan, Chengguo Liu, Shuai Zhou, Zhipeng Wu, Jingwei Zhang, “Design and measurement analysis of Class AB power amplifier,” 2016 IEEE Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, pp. 849-851, 2012. [3] A. Wolfman, A. Sayag, S. Levin, and E. Socher, ‘‘Fully integrated LDMOS class AB power amplifiers,’’ in Proc. IEEE Int. Conf. Microw., Commun., Antennas Electron. Syst. (COMCAS), Nov. 2015, pp. 1–4. [4] Marian K. Kazimierczuk, "Class AB, B, and C RF Power Amplifiers," in Rf power amplifiers , Wiley, 2015, pp.117-163. [5] L. Samal, K. K. Mahapatra,and K. Raghuramaiah, “Class-C power amplifier design for GSM application,” in Proc. ICCCA, Feb. 2012, pp. 1–5. [6] F. H. Raab, “Class-D power amplifier with RF pulse-width modulation,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 924–927. [7] A. Hussein, A. Nader Mohieldin, F. Hussien, and A. Eladawy, “A low-distortion high-efficiency class-D audio amplifier based on sliding mode control,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 8, pp. 713–7717, Aug. 2016. [8] N. O. Sokal and A. D. Sokal, “Class E–A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SSC-10, no. 3, pp. 168–176, Jun. 1975. [9] F. H. Raab, “Maximum efficiency and output of class-F power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 6, pp. 1162–1166, Jun. 2001. [10] W. Hallberg, M. Özen, D. Gustafsson, K. Buisman, and C. Fager, “A Doherty power amplifier design method for improved efficiency and linearity,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4491–4504, Dec. 2016. [11] Y. Komatsuzaki, K. Nakatani, S. Shinjo, S. Miwa, R. Ma, and K. Yamanaka, “3.0–3.6 GHz wideband, over 46% average efficiency GaN Doherty power amplifier with frequency dependency compensating circuits,” in Proc. IEEE Topical Conf. RF/Microwave Power Model. Radio Wireless Appl. (PAWR), Jan. 2017, pp. 22–24. [12] B. Kim, J. Kim, I. Kim, and J. Cha, “The Doherty power amplifier,” IEEE Microw. Mag., vol. 7, no. 5, pp. 42–50, Oct. 2006. [13] S. Chen and Q. Xue, “Optimized load modulation network for Doherty power amplifier performance enhancement,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3474–3481, Nov. 2012 [14] N. Srirattana, A. Raghavan, D. Heo, P. E. Allen, and J. Laskar, “Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp. 852–860, Mar. 2005. [15] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803-806, Jul. 1952. [16] Y. Wang, “An improved Kahn transmitter architecture based on delta-sigma modulation,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2003, vol. 3, pp. 1327-1330. [17] M. Taromaru, N. Ando, T. Kodera, and K. Yano, “An EER transmitter architecture with burst-width envelope modulation based on trianglewave comparison PWM,” in Proc. IEEE Int. Symp. PIMRC, Sep. 2007, pp. 1–5. [18] Y. -C. Chang, Y. -H. Chen, J. -H. Chen and Y. -J. E. Chen, “A direct digital synthesis transmitter for 5G applications with low-resolution DACs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 2024. [19] H. Oh et al., “Doherty power amplifier based on the fundamental current ratio for asymmetric cells,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4190–4197, Nov. 2017. [20] J. Son, I. Kim, J. Moon, J. Lee, and B. Kim, “A highly efficient asymmetric Doherty power amplifier with a new output combining circuit,” in Proc. IEEE Int. Conf. Microw., Commun., Antennas Electron. Syst. (COMCAS), Nov. 2011, pp. 1–4. [21] J. Lee, J. Kim, J. Kim, K. Cho, and S. P. Stapleton, “A high power asymmetric Doherty amplifier with improved linear dynamic range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1348–1351. [22] A. Piacibello, V. Camarchia, P. Colantonio, and R. Giofrè, “3-way Doherty power amplifiers: Design guidelines and MMIC implementation at 28 GHz,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 5, pp. 2016–2028, May 2023. [23] J. Sheth and S. M. Bowers, “A differential digital 4-way Doherty power amplifier with 48% peak drain efficiency for low power applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Aug. 2020, pp. 119–122. [24] M. Beikmirza et al., “A 4-way Doherty digital transmitter featuring 50%- LO signed IQ interleave upconversion with more than 27 dBm peak power and 40% drain efficiency at 10 dB power back-off operating in the 5 GHz band,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 92–94. [25] M. Özen, K. Andersson and C. Fager, “Symmetrical Doherty power amplifier with extended efficiency range,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1273–1284, April 2016. [26] T.-H. Wang, Y.-H. Chen, C.-W. Chang, K.-M. Li, J.-H. Chen, and J. Staudinger, “On the thermal memory effect reduction of power amplifiers using pulse modulation,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 4, pp. 285–287, Apr. 2019. [27] D. M. Pozar, Microwave Engineering. New York, NY, USA: Wiley, 2012. [28] S.-C. Lin, S.-H. Xu, Y.-H. Chen, C.-W. Chang, Y.-J. E. Chen, and J.-H. Chen, “Gibbs-phenomenon-reduced digital PWM for power amplifiers using pulse modulation,” IEEE Access, vol. 7, pp. 178788–178797, Dec. 2019. [29] K. Hausmair, S. Chi, P. Singerl, and C. Vogel, “Aliasing-free digital pulse-width modulation for burst-mode RF transmitters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 415–427, Feb. 2013. [30] K.-F. Liang, H.-S. Yang, C.-W. Chang, and J.-H. Chen, “A wideband pulse-modulated polar transmitter using envelope correction for LTE applications,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 8, pp. 2603–2608, Aug. 2015. [31] S. -H. Xu, C. -W. Chang, Y. -C. Chang, S. -C. Lin, J. -H. Chen and J. Staudinger, “A digital combining applied to the multilevel pulse modulated polar transmitter,” IEEE Access, vol. 11, pp. 58055–58063, 2023. [32] S. -H. Xu et al., “A multilevel pulse modulated polar transmitter for multicarrier 5G applications using low-complexity digital predistortion,” in Proc. Asia–Pacific Microw. Conf. (APMC), Nov. 2022, pp. 506–508. [33] J.-H. Chen, H.-S. Yang, and Y.-J. E. Chen, “A multi-level pulse modulated polar transmitter using digital pulse-width modulation,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 295–297, May 2010. [34] J. Chani-Cahuana, P. N. Landin, C. Fager, and T. Eriksson, “Iterative learning control for RF power amplifier linearization,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 9, pp. 2778–2789, Sep. 2016. [35] C.-W. Chang, S.-C. Lin, J.-H. Chen, and J. Staudinger, "A highly linear pulse-modulated polar transmitter using aliasing-free digital PWM for small-cell base stations," IEEE Trans. Microw. Theory Techn., Aug. 2018. [36] A. Ahmed, X. Hue, M. Szymanowski, R. Uscola, J. Staudinger, and J. Kitchen, “2.6GHz integrated LDMOS Doherty power amplifier for 5G basestation applications,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 7, pp. 881–884, July 2021. [37] I. Peppas et al., “A 3.6GHz highly efficient dual-driver Doherty power amplifier,” in Proc. IEEE Top. Conf. Power Amplif. Wireless Radio Appl. (PAWR), 2024, pp. 85–88. [38] J. Wong, N. Watanabe, and A. Grebennikov, “High-power highefficiency broadband GaN HEMT Doherty amplifiers for base station applications,” in Proc. IEEE Topical Conf. RF/Microw. Power Model. Radio Wireless Appl. (PAWR), Jan. 2018, pp. 16–19. [39] R. McLaren and H. J. de la Rosa, “Doherty architecture for wideband power amplifier design,” U.S Patent 996 690 3B1, May 8, 2018. [40] J. Zhou, W. Chen, L. Chen, and Z. Feng, “3.5-GHz high-efficiency broadband asymmetric Doherty power amplifier for 5G applications,” in Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMMT), May 2018, pp. 1–3. [41] W. Choi, H. Kang, H. Oh, K. C. Hwang, K.-Y. Lee, and Y. Yang, “Doherty power amplifier based on asymmetric cells with complex combining load,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 4, pp. 2336–2344, Apr. 2021. [42] R. S. Embar, L. Wang, J. Kim, C. Dragon, and G. Tucker, “A 400 W 2-way asymmetrical doherty PA with 50% efficiency based on second generation airfast LDMOS technology,” in Proc. IEEE Top. Conf. Power Amplif. Wireless Radio Appl. (PAWR), Jan. 2015, pp. 1–3. [43] Özen and C. Fager, “Symmetrical Doherty amplifier with high efficiency over large output power dynamic range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. [44] M. Masood, P. Rashev, and J. S. Kenney, “Digitally-assisted Doherty power amplifier: efficiency enhancement and linearity improvement,” in 2018 IEEE MTT-S Int. Microw. Symp. Dig., June 2018, pp. 801–804. [45] R. Darraji and F. M. Ghannouchi, “Digital Doherty amplifier with enhanced efficiency and extended range,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 11, pp. 2898–2909, Nov. 2011.. [46] A. Piacibello, R. Quaglia, V. Camarchia, C. Ramella, and M. Pirola, “Dual-input driving strategies for performance enhancement of a Doherty power amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2018, pp. 1–4. [47] Y.-C. Chang, S.-H. Xu, and J. -H. Chen, “A pulse modulated polar transmitter using a modified Doherty power amplifier for 5G applications,” in Proc. Asia–Pacific Microw. Conf. (APMC), 2024, pp. 832–834. [48] Y. Chen, T. Wang, S. Lin, J. Chen, and Y. E. Chen, “A pulse-modulated polar transmitter using direct digital synthesis for 5G NR mobile applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 10, pp. 1894–1898, Oct. 2020. [49] H. Yang, S. Tsai, M. Kao, and T. Chen, “Spur-reduced and efficiency enhanced pulse-modulated polar transmitters with output direct absorptive filter connection,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 1, pp. 711–718, Jan. 2022. [50] C. Liang, P. Roblin, and Y. Hahn, “Accelerated design methodology for dual-input Doherty power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 3983–3995, Oct. 2019. [51] J. Li, R. Shu, Z. Xu and Q. J. Gu, “A 21-dm-OP1dB 20.3%-efficiency −131.8-dBm/Hz-noise X-band Cartesian error feedback transmitter with fully integrated power amplifier in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1491–1501, Jun. 2020. [52] Y. Yu, J. Cai, X.-W. Zhu, P. Chen, and C. Yu, “Self-sensing digital predistortion of RF power amplifiers for 6G intelligent radio,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 475–478, May 2022. [53] Lei Ding et al., “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159-165, Jan. 2004. [54] K.-F. Liang, J.-H. Chen, and Y.-J.-E. Chen, “A quadratic-interpolated LUT-based digital predistortion technique for cellular power amplifiers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 133–137, Mar. 2014. [55] C. Liu and H. Zhao, “A 2D-LUT Scheme Design for Complex-Valued Spline Adaptive Filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 8, pp. 3154–3158, Aug. 2023. [56] D. Gruber et al., “A 12b 16GS/s RF-sampling capacitive DAC for multi-band soft-radio base-station applications with on-chip transmission-line matching network in 16nm FinFET,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2021, pp. 174–176. [57] K. Rawat, M. Rawat, and F. M. Ghannouchi, “Compensating I–Q imperfections in hybrid RF/digital predistortion with an adapted lookup table implemented in an FPGA,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 389–393, May 2010. [58] S. Chung, J. W. Holloway, and J. L. Dawson, “Open-loop digital predistortion using Cartesian feedback for adaptive RF power amplifier linearization,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1449–1452. [59] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York, NY, USA: Wiley, 1980. [60] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct. 2006. [61] R. Hongyo, Y. Egashira, T. M. Hone, and K. Yamaguchi, “Deep neural network-based digital predistorter for Doherty power amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 146–148, Feb. 2019. [62] J. Kim, C. Park, J. Moon, and B. Kim, “Analysis of adaptive digital feedback linearization techniques,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 345–354, Feb. 2010. [63] S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2547–2553, Oct. 2011. [64] X. Feng, B. Feuvrie, A. S. Descamps and Y. Wang, “A digital predistortion method based on nonuniform memory polynomial model using interpolated LUT,” in Proc. IEEE Top. Conf. Power Amplif. Wireless Radio Appl. (PAWR), Jan. 2015, pp. 1–3. [65] A. G. M. Strollo, D. De Caro, and N. Petra, “A 430 MHz, 280 mW processor for the conversion of Cartesian to polar coordinates in 0.25um CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2503–2513, Nov. 2008. [66] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Trans. Commun., vol. 29, no. 11, pp. 1715-1720, Nov. 1981. [67] R. Darraji, F. M. Ghannouchi, and O. Hammi, “A dual-input digitally driven Doherty amplifier architecture for performance enhancement of Doherty transmitters,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1284–1293, May 2011. [68] H. Paaso and A. Mammela, “Comparison of direct learning and indirect learning predistortion architectures,” in Proc. IEEE Int. Symp. Wireless Commun. Syst., Oct. 2008, pp. 309–313. [69] C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, pp. 223–227, Jan. 1997. [70] L. Ding et al., “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159–165, Jan. 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101194 | - |
| dc.description.abstract | 無線通訊為了滿足對更高的資料傳輸速率,更好的頻譜效率以及更低的功耗而迅速演進。現代之基地台需要功率放大器在高效率運作的同時,仍保持高度線性以確保符合通訊規範。然而,傳統功率放大器設計常常難以滿足這些要求,特別是在處理高峰均功率比的複雜調變訊號時。
為解決這些挑戰,本論文設計一種多爾蒂放大器,並整合了脈衝調變信號以實現在功率回退的區間仍維持較高效率。此外,論文中還實現了兩種數位預失真技術,以減少非線性失真並提升傳輸訊號完整性。 根據量測之結果,此發射機在2.6 GHz中心頻率下,針對第五代新無線電(5GNR) n38,n41,n90等頻段,在功率回退範圍內的效率皆超過50%。調變訊號之量測結果顯示此發射機架構不僅能達到高效率,同時也能符合線性度之規範,展示了此架構在現代基地台無線通訊系統中的可行性。 | zh_TW |
| dc.description.abstract | Wireless communication systems have rapidly evolved to meet increasing demands for higher data rates, improved spectral efficiency, and lower power consumption. Modern base stations require power amplifiers (PAs) that operate efficiently while maintaining high linearity to ensure compliance with spectral emission regulations. However, conventional PA designs often struggle to meet these requirements, especially when handling complex modulation schemes with high peak-to-average power ratios (PAPR).
To address these challenges, this thesis presents a carefully designed Doherty power amplifier (DPA), integrated with pulse modulation signals to achieve higher efficiency. Various digital predistortion (DPD) techniques are implemented to mitigate nonlinear distortions and improve signal integrity. The implemented transmitter achieves over 50% of efficiency within the backoff range at a 2.6 GHz center frequency, targeting the fifth generation new radio (5GNR) band n38, n41 and n90. Measurement results with a modulated signal demonstrate high efficiency while exceeding linearity specifications, showcasing the feasibility of the proposed transmitter for modern base station wireless communication systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:16:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:16:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 1.2.1 Linear-mode amplifiers 3 1.2.2 Switching-mode amplifiers 5 1.2.3 Doherty power amplifiers 8 1.3 Pulse Modulated Polar Transmitter 10 1.4 Research purpose 14 Chapter 2 A Class C Doherty Power Amplifier for Pulse Modulated Polar Transmitter 16 2.1 Introduction 16 2.2 Design of class C Doherty PA for PMPT 18 2.3 Multilevel Gibbs-phenomenon-reduced DPWM signal 27 2.4 Implementation and measurement results 31 2.5 Summary 37 Chapter 3 A High-Efficiency PMPT Using Digital Doherty Power Amplifier 38 3.1 Introduction 38 3.2 Design and simulation of the digital DPA 41 3.3 Efficiency analysis of the PMPT 44 3.4 Implementation and Measurement 48 3.5 Summary 55 Chapter 4 Low-Cost Digital Predistortion Methods for PAs 56 4.1 Introduction 56 4.2 The 2D-LUT DPD algorithm 61 4.3 The neural network based digital calibration 67 4.4 Measurement results 73 4.4.1 2D-LUTs DPD 74 4.4.2 Neural network based digital calibration 82 4.5 Summary 86 Chapter 5 Conclusion 88 REFERENCE 91 | - |
| dc.language.iso | en | - |
| dc.subject | 多爾蒂放大器 | - |
| dc.subject | 數位預失真 | - |
| dc.subject | 查表法 | - |
| dc.subject | 類神經網路 | - |
| dc.subject | Doherty Power Amplifier (DPA) | - |
| dc.subject | Pulse Modulated Polar Transmitter (PMPT) | - |
| dc.subject | Digital Predistortion (DPD) | - |
| dc.subject | Look-up Table (LUT) | - |
| dc.subject | Neural Network (NN) | - |
| dc.title | 使用改良的數位控制多爾蒂功率放大器之脈衝式極化發射機及其數位預失真 | zh_TW |
| dc.title | A High Efficiency Pulse Modulated Polar Transmitter Using Modified Digital Doherty Power Amplifier with Digital Calibration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳怡然;陳彥廷;楊濠瞬;余帝穀 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Jan Emery Chen;Yen-Ting Chen;Hao-Shun Yang;Ti-Ku Yu | en |
| dc.subject.keyword | 多爾蒂放大器,數位預失真查表法類神經網路 | zh_TW |
| dc.subject.keyword | Doherty Power Amplifier (DPA),Pulse Modulated Polar Transmitter (PMPT)Digital Predistortion (DPD)Look-up Table (LUT)Neural Network (NN) | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202504720 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-12-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 7.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
