Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鴻基zh_TW
dc.contributor.advisorHung-Chi Kuoen
dc.contributor.author陳迦勒zh_TW
dc.contributor.authorChia-Le Chenen
dc.date.accessioned2025-12-31T16:14:38Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-11-06-
dc.identifier.citationCamargo, S. J., & Sobel, A. H. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of climate, 18(15), 2996-3006.
Cha, T. Y., & Bell, M. M. (2024). Tropical Cyclone Asymmetric Eyewall Evolution and Intensification in a Two-Layer Model. EGUsphere, 2024, 1-29.
Chen, B. F., Chen, B., Lin, H. T., & Elsberry, R. L. (2019). Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Weather and Forecasting, 34(2), 447-465.
Chen, R., Zhang, W., & Wang, X. (2020). Machine learning in tropical cyclone forecast modeling: A review. Atmosphere, 11(7), 676.
Chen, B., Chen, B. F., & Chen, Y. N. (2021, May). Real-time tropical cyclone intensity estimation by handling temporally heterogeneous satellite data. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 17, pp. 14721-14728).
Chen, B., Chen, B. F., & Hsiao, C. M. (2021, May). Cnn profiler on polar coordinate images for tropical cyclone structure analysis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 2, pp. 991-998).
Chen, B. F., Kuo, Y. T., & Huang, T. S. (2023). A deep learning ensemble approach for predicting tropical cyclone rapid intensification. Atmospheric Science Letters, 24(5), e1151.
Chen, B. F., Chen, B., Hsiao, C. M., Teng, H. F., Lee, C. S., & Kuo. H. C. (2025). Constructing Deep Learning Datasets to Reveal Climate Trends of Tropical Cyclone Intensity and Structure Extremes. Journal of Climate (under review).
Didlake, A. C., & Houze, R. A. (2011). Kinematics of the secondary eyewall observed in Hurricane Rita (2005). Journal of the atmospheric sciences, 68(8), 1620-1636.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Hawkins, J. D., Lee, T. F., Turk, J., Sampson, C., Kent, J., & Richardson, K. (2001). Real-time Internet distribution of satellite products for tropical cyclone reconnaissance. Bulletin of the American Meteorological Society, 82(4), 567-578.
Hawkins, J. D., Lee T. F., Turk F. J., Richardson K., Sampson C., Kent J., & Wade R. (2006). Tropical cyclone multiple eyewall characteristics. Preprints, 27th Conf. on Hurricane and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [Available online at http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm.]
Higa, M., Tanahara, S., Adachi, Y., Ishiki, N., Nakama, S., Yamada, H., ... & Miyata, R. (2021). Domain knowledge integration into deep learning for typhoon intensity classification. Scientific reports, 11(1), 12972.
Houze Jr, R. A., Chen, S. S., Smull, B. F., Lee, W. C., & Bell, M. M. (2007). Hurricane intensity and eyewall replacement. science, 315(5816), 1235-1239.
Irish, J. L., Resio, D. T., & Ratcliff, J. J. (2008). The influence of storm size on hurricane surge. Journal of Physical Oceanography, 38(9), 2003-2013.
Klotzbach, P. J., Wood, K. M., Schreck III, C. J., Bowen, S. G., Patricola, C. M., & Bell, M. M. (2022). Trends in global tropical cyclone activity: 1990–2021. Geophysical Research Letters, 49(6), e2021GL095774.
Knaff, J. A., DeMaria, M., Molenar, D. A., Sampson, C. R., & Seybold, M. G. (2011). An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. Journal of applied meteorology and climatology, 50(10), 2149-2166.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Kuo, H. C., Cheng, W. Y., Yang, Y. T., Hendricks, E. A., & Peng, M. S. (2016). Deep convection in elliptical and polygonal eyewalls of tropical cyclones. Journal of Geophysical Research: Atmospheres, 121(24), 14-456.
Lavender, S. L., & McBride, J. L. (2021). Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size. International Journal of Climatology, 41, E1217-E1235.
Maclay, K. S., DeMaria, M., & Haar, T. H. V. (2008). Tropical cyclone inner-core kinetic energy evolution. Monthly Weather Review, 136(12), 4882-4898.
Matsuoka, D., Nakano, M., Sugiyama, D., & Uchida, S. (2018). Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Progress in Earth and Planetary Science, 5(1), 1-16.
Musgrave, K. D., Taft, R. K., Vigh, J. L., McNoldy, B. D., & Schubert, W. H. (2012). Time evolution of the intensity and size of tropical cyclones. Journal of Advances in Modeling Earth Systems, 4(3).
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3-40.
Powell, M. D., & Reinhold, T. A. (2007). Tropical cyclone destructive potential by integrated kinetic energy. Bulletin of the American Meteorological Society, 88(4), 513-526.
Rozoff, C. M., Schubert, W. H., & Kossin, J. P. (2008). Some dynamical aspects of tropical cyclone concentric eyewalls. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 134(632), 583-593.
Sitkowski, M., Kossin, J. P., & Rozoff, C. M. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Monthly Weather Review, 139(12), 3829-3847.
Teng, H. F., Lee, C. S., & Hsu, H. H. (2014). Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the western North Pacific. Geophysical Research Letters, 41(24), 9120-9126.
Terwey, W. D., & Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full‐physics modeled hurricanes. Journal of Geophysical Research: Atmospheres, 113(D12).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Velden, C. S., & Herndon, D. (2014). Update on the SATellite CONsensus (SATCON) algorithm for estimating TC intensity. Poster session I. San Diego.
Wang, B., & Chan, J. C. (2002). How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of climate, 15(13), 1643-1658.
Wang, C., & Li, X. (2023). Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images–A review. Atmospheric and Oceanic Science Letters, 16(4), 100373.
Willoughby, H. E., Clos, J. A., & Shoreibah, M. G. (1982). Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. Journal of atmospheric sciences, 39(2), 395-411.
Wimmers, A., Velden, C., & Cossuth, J. H. (2019). Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Monthly Weather Review, 147(6), 2261-2282.
Yang, Y. T., Kuo, H. C., Hendricks, E. A., & Peng, M. S. (2013). Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Monthly Weather Review, 141(8), 2632-2648.
Yang, Y. T., Kuo, H. C., Tsujino, S., Chen, B. F., & Peng, M. S. (2021). Characteristics of the long‐lived concentric eyewalls in tropical cyclones. Journal of Geophysical Research: Atmospheres, 126(11), e2020JD033703.
Zhuo, J. Y., & Tan, Z. M. (2021). Physics-augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery. Monthly Weather Review, 149(7), 2097-2113.
Zhuo, J. Y., & Tan, Z. M. (2023). A Deep-Learning Reconstruction of Tropical Cyclone Size Metrics 1981–2017: Examining Trends. Journal of Climate, 36(15), 5103-5123.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101184-
dc.description.abstract熱帶氣旋(TC)結構之分析對於描繪其特性與評估災害緩減效益具有關鍵重要性。颱風強度(V_max)廣泛應用於描述TC之生命週期與動力過程;而累加動能(integrated kinetic energy, IKE)則被提出作為代表TC整體能量與破壞潛力之指標。數值模擬研究顯示,若能同時分析V_max與IKE,將可對TC結構提供更為整體性的見解。然而,由於IKE資料主要依賴數量有限的飛機觀測,因此關於IKE之研究仍是缺少的。
本研究第一部分使用以不同頻道(可見光、水氣、紅外線)之衛星雲圖訓練,並以SAR與ASCAT風場校驗之人工智慧(AI)模式產出的TC軸對稱風場剖面,用以計算IKE。該資料在與27筆飛機觀測資料比對時之相關係數達R^2 = 0.99,顯示此資料之可信度。本研究進一步於累加動能–強度(K–V)相位圖上探討TC結構之演變與變異性,針對長生命期雙眼牆(concentric eyewall, CE)TC、短生命期CE TC,以及未發生CE之TC進行比較分析。合成分析結果顯示,長生命期CE有助於IKE的增強,而短生命期CE則維持其IKE。K–V相位圖進一步顯示CE影響TC生命期之演變,即由「小而強」發展為「大而強」,最終轉變為「大而弱」的風暴結構直至衰亡。本研究亦探討聖嬰現象(El Niño–Southern Oscillation, ENSO)對TC的生命期演變與變異度之影響,結果顯示,相較於La Niña年,El Niño年之TC具有較高之強度與IKE;惟在不同ENSO相位下,其結構變異度並未顯著不同。
本研究第二部分評估機器學習(machine learning, ML)模型以ERA5環境變數預報IKE及強度之可行性。我們利用Statistical Hurricane Intensity Prediction Scheme(SHIPS)環境變數的資料架構,輸入以不同ML演算法建構的模型,輸出對應的IKE。結果顯示,Transformer模型具有診斷連續156小時IKE之潛力,其演算法能有效萃取時序資訊,進而掌握TC結構隨時間之演變。從誤差隨預報時間之變化來看,掌握初始渦旋IKE與強度對機器學習模型於TC結構預報表現有關鍵的影響。
本研究運用AI模式生成之TC資料,突破以往受限於資料不足之結構分析瓶頸。透過整合IKE與強度,得以於二維架構中系統性分析TC結構於氣候尺度、CE過程及ENSO等不同情境下之演變與變異度。本研究亦驗證AI模型於同時預報強度與IKE之可行性,顯示AI技術對於輔助TC研究之潛力。
zh_TW
dc.description.abstractAnalysis of tropical cyclone (TC) structure is vital for featuring TC and evaluating disaster mitigation. Intensity (V_max) has been widely used to characterize the life cycle and dynamic process of TC, and integrated kinetic energy (IKE) has been proposed as a parameter representing TCs’ overall energy and destructive potential. Numerical TC simulations have shown holistic insights into TC structure by simultaneously analyzing intensity and IKE. However, valid IKE data are limited due to the reliance on infrequent aircraft observations, indicating insufficient investigation of TC IKE.
In the first part of this study, an AI-based TC axisymmetric wind profile—trained on multi-channel satellite imagery (visible, water vapor, and infrared) and validated against SAR and ASCAT wind fields—was used to calculate IKE. With an R^2= 0.99 against 27 aircraft observations, the validation showed the feasibility of this AI-based IKE dataset. Further investigations about TC structure were progressed on the IKE-Intensity phase (K-V) diagram. We examined the evolution and variability of long-lived concentric eyewall (CE) TCs, short-lived CE TCs, and no-CE TCs. Composite analysis results showed that long-lived (short-lived) CEs tended to increase (maintain) IKE. The K-V diagram suggested that CE process modulated the TCs life cycle, evolving from small, intense storm to large, intense storm to large, weak storm before demised. We also examined the evolution and variability of TCs influenced by El Niño Southern Oscillation (ENSO). The results indicated that TCs possessed greater Vmax and IKE in El Niño years than in La Niña years, while variability showed no significant differences across ENSO phases.
In the second part of this study, machine learning (ML) models were evaluated for their feasibility in forecasting IKE and V_max using ERA5 environmental variables. The models were constructed based on various ML algorithms and adopted the data framework of the Statistical Hurricane Intensity Prediction Scheme (SHIPS), with SHIPS-based environmental variables as inputs and IKE as the predicted output. The results indicate that the Transformer model demonstrates potential for diagnosing IKE over a continuous 156-hour timespan, as its algorithm effectively extracts sequential information to capture the temporal evolution of TC structure. The temporal error progression highlighted the importance of capturing the initial vortex size and intensity for ML models in forecasting TC structure.
This study utilizes AI-based TC datasets to perform analyses previously hindered by data limitations. Incorporating IKE alongside V_max allows a two-dimensional assessment of TC structural variability across climate trends, CE process, and ENSO phases. We also assess the feasibility of using AI models to forecast V_max and IKE simultaneously. This study highlights the potential of AI as a key in advancing study on TC.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:14:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:14:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 OVERVIEW OF TROPICAL CYCLONE (TC) STRUCTURE 1
1.2 CONCENTRIC EYEWALL (CE) 4
1.3 IMPACT OF EL NIÑO–SOUTHERN OSCILLATION (ENSO) ON TCS 5
1.4 MACHINE LEARNING (ML) MODEL 6
1.5 MOTIVATION 7
Chapter 2 Data 8
2.1 AI-BASED IKE 8
2.2 CE DATASET 9
2.3 ONI INDEX 11
Chapter 3 Methods 12
3.1 K-V DIAGRAM 12
3.2 ML MODELS 13
3.2.1 Input and Output data 13
3.2.2 MLR 15
3.2.3 DNN 16
3.2.4 RNN 17
3.2.5 Transformer 18
Chapter 4 Results 20
4.1 STRUCTURAL CHARACTERISTIC 20
4.1.1 CE Features 23
4.1.2 ENSO Modulation 25
4.2 TC STRUCTURAL PREDICTION ASSESSMENT 28
4.2.1 Performance Comparison Across Model Structures 28
4.2.2 Performance of Transformer Models 29
Chapter 5 Discussion and Summary 32
5.1 TC STRUCTURAL ANALYSIS 32
5.2 TC STRUCTURAL FORECAST ASSESSMENT 33
5.3 FUTURE WORK AND ACKNOWLEDGEMENT 34
REFERENCES 36
TABLE 40
FIGURES 52
-
dc.language.isoen-
dc.subject熱帶氣旋結構-
dc.subject累加動能-
dc.subject機器學習-
dc.subjecttropical cyclone structure-
dc.subjectintegrated kinetic energy-
dc.subjectmachine learning-
dc.title深度學習於熱帶氣旋結構演變與變異度之研究zh_TW
dc.titleA Study on Tropical Cyclone Structure Evolution and Variability with Deep Learningen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.coadvisor陳柏孚zh_TW
dc.contributor.coadvisorBuo-Fu Chenen
dc.contributor.oralexamcommittee蔡孝忠;楊明仁zh_TW
dc.contributor.oralexamcommitteeHsiao-Chung Tsai;Ming-Jen Yangen
dc.subject.keyword熱帶氣旋結構,累加動能機器學習zh_TW
dc.subject.keywordtropical cyclone structure,integrated kinetic energymachine learningen
dc.relation.page77-
dc.identifier.doi10.6342/NTU202504554-
dc.rights.note未授權-
dc.date.accepted2025-11-07-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-liftN/A-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved