請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孫霖(Sun-Lin Chung) | |
| dc.contributor.author | Yu-Chin Lin | en |
| dc.contributor.author | 林俞青 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:03:13Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.available | 2021-05-20T21:03:13Z | - |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-07-15 | |
| dc.identifier.citation | 中文部份:
宋彪、張玉海、萬渝生和簡平,2002,鋯石SHRIMP樣品靶製作、年齡測定及有關現象討論。地質評論,48: 第26-30頁。 李寄嵎、蔡榮浩、何孝桓、楊燦堯、鍾孫霖和陳正宏,1997,應用X光螢光分析儀從事岩石揚本之定量分析(I)主要元素。中國地質學會八十六年年會暨學術研討會論文摘要,第418-420頁 英文部份: Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3): 401-419. Aldanmaz, E., Koprubasi, N., Gurer, O., Kaymakci, N. and Gourgaud, A., 2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes. Lithos, 86(1-2): 50-76. Aldanmaz, E., Pearce, J., Thirlwall, M. and Mitchell, J., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. Angus, D., Wilson, D.C., Sandvol, E. and Ni, J., 2006. Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S wave receiver functions. Geophysical Journal International, 166(3): 1335-1346. Azizi, H. and Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47(4): 167-179. Badalian, R., Bigazzi, G., Cauvin, M.C., Chataigner, C., Jrbashyan, R., Karapetyan, S., Oddone, M. and Poidevin, J.L., 2001. An international research project on Armenian archaeological sites: fission-track dating of obsidians. Radiation Measurements, 34(1-6): 373-378. Berberian, F., Muir, I., Pankhurst, R. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of Geological Society, 139(5): 605-614. Boztug, D., Ercin, A.I., Kurucelik, M.K., Goc, D., Komur, I. and Iskenderoglu, A., 2006. Geochemical characteristics of the composite Kackar batholith generated in a Neo-Tethyan convergence system, Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(3): 286-302. Castillo, P.R., 2006. 埃達克岩成因回顧. 科學通報, 51(6): 617-627. Chiu, H.Y., Chung, S.L., Wu, F.Y., Liu, D., Liang, Y.H. and Lin, I., 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3-19. Chiu, H.Y., Zarrinkoub, M.H., Chung, S.-L., LIN, I.-J., Yang, H.-M., Lo, C.-H., Mohammadi, S.S. and Khatib, M.M., 2010. Zircon U-Pb Age and Geochemical Constraints on the Magmatic and Tectonic Evolution in Iran, in Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, Octorber 4-8, 2010, Ankara, Turkey. Chung, S.L., Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X., Zhang, Q. and Wang, Y., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196. Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q. and Zhang, Q., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. Chung, S.L., Sun, S., Tu, K., Chen, C.H. and Lee, C., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112(1-2): 1-20. Conticelli, S. and Peccerillo, A., 1992. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28(3-6): 221-240. Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. Dewey, J., Hempton, M., Kidd, W., Saroglu, F. and Sengor, A., 1986. Shortening of continental lithosphere: The neotectonics of eastern Anatolia--a young collision zone. Geological Society London Special Publications, 19(1): 1-36. Dilek, Y. and Altunkaynak, S., 2009. Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society London Special Publications, 311(1): 213-233. Dilek, Y., Imamverdiyev, N. and Altunkaynak, 2009. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4): 536-578. Eggins, S., Woodhead, J., Kinsley, L., Mortimer, G., Sylvester, P., McCulloch, M., Hergt, J. and Handler, M., 1997. A simple method for the precise determination of>= 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4): 311-326. Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. and Regard, V., 2006. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1-2): 85-97. Foley, S., Venturelli, G., Green, D. and Toscani, L., 1987. The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2): 81-134. Galoyan, G., Rolland, Y., Sosson, M., Corsini, M. and Melkonyan, R., 2007. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Comptes Rendus Geosciences, 339(7): 482-492. Gelati, R., 1975. Miocene marine sequence from Lake Van. Eastern Turkey: Rivista Italiana di Paleontologia e Stratigrafia, 81: 477–490. Goguitchaichvili, A. and Pares, J.M., 2000. A recognition palaeomagnetic study of volcanic and sedimentary rocks from Dmanissi (Caucasus): implications for the oldest human occupation in Europe. Earth and Planetary Sciences, 331: 183-186. Govindaraju, K., 1994. compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18 (Special Issue): 158 pp. Hafkenscheid, E., Wortel, M. and Spakman, W., 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research, 111(B8): B08401. Hatzfeld, D. and Molnar, P., 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2): RG2005, 48 PP. Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S. and Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113(1-2): 319-344. Karapetian, S., Jrbashian, R. and Mnatsakanian, A.K., 2001. Late collision rhyolitic volcanism in the north-eastern part of the Armenian Highland. Journal of Volcanology and Geothermal Research, 112(1-4): 189-220. Karapetyan, S.G., 1968. On the age and stratigraphic position of the most recent liparitic and liparitodacite rocks of the ArmSSR. Izwestia AN ArmSSR, Nauki o Ziemlie 1-2: 60-71. Karapetyan, S.G., 1972. Structural and Compositional Features of Young Rhyolitic Volcanoes in the Armenian SSR., National Academy of Sciences of the Armenian SSR, Yerevan, pp. 195. Kay, R. and Kay, S., 2002. Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3): 303-311. Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24): 8046-8049. Keskin, M., 2007. Eastern Anatolia: A hotspot in a collision zone without a mantle plume. Geological Society of America Special Papers, 430: 693-722. Keskin, M., Pearce, J. and Mitchell, J., 1998. Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85(1-4): 355-404. Keskin, M., Pearce, J.A., Kempton, P.D. and Greenwood, P., 2006. Magma-crust interactions and magma plumbing in a postcollisional setting: Geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. Postcollisional tectonics and magmatism in the Mediterranean region and Asia: 475-505. Kheirkhah, M., Allen, M. and Emami, M., 2009. Quaternary syn-collision magmatism from the Iran. Turkey borderlands: Journal of Volcanology and Geothermal Research, 182: 1–12. Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research, 102(B1): 853-874. Koop, W., Stoneley, R., Ridd, M., Murphy, R., Osmaston, M. and Kholief, M., 1982. Subsidence History of the Middle East Zagros Basin, Permian to Recent [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 305(1489): 149-168. Lee, H.Y., Chung, S.L., Ji, J., Qian, Q., Gallet, S., Low, P., Lee, T.Y. and Zhang, Q., 2011 (submitted). Geochemical and Sr-Nd isotope constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. JAES Special Issue: Tibetan Orogenic Evolution. Lee, H.Y., Chung, S.L., Lo, C.H., Ji, J., Lee, T.Y., Qian, Q. and Zhang, Q., 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20-35. Lemvel, V., 2007. Armenia National Atlas. Centre for Geodesy and Cartography, 232 pp. Lo, C.H. and Lee, C.Y., 1994. 40Ar/39Ar method of K-Ar age determination of geological samples using Tsing-Hua Open-Pool Reactor (THOR) Geological Society of China, 37: 143-164. Maggi, A. and Priestley, K., 2005. Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3): 1068-1080. Martin, H., Smithies, R., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. McKenzie, D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95(1-2): 53-72. McKenzie, D. and O'nions, R., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091. Moine-Vaziri, H., 1985. Volcanisme tertiaire et quaternaire en Iran, These d’Etat. Universite Paris-Sud, ORSAY, 290 pp. Moix, P., Beccaletto, L., Kozur, H.W., Hochard, C., Rosselet, F. and Stampfli, G.M., 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451(1-4): 7-39. Moyen, J.F., 2009. High Sr/Y and La/Yb ratios: The meaning of the. Lithos, 112(3-4): 556-574. Oddone, M., Bigazzi, G., Keheyan, Y. and Meloni, S., 2000. Characterisation of Armenian obsidians: Implications for raw material supply for prehistoric artifacts. Journal of Radioanalytical and Nuclear Chemistry, 243(3): 673-682. Okay, A.I. and Sahinturk, O., 1998. Geology of the eastern Pontides. Memoirs-American Association of Petroleum Geologists: 291-312. Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. and Pequegnat, C., 2010. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society, London, Special Publications, 330(1): 5-18. Pearce, J., 1982. Trace element characteristics of lavas from destructive plate boundaries. Andesites. Wiley, Chichester: 525–548. Pearce, J., Bender, J., De Long, S., Kidd, W., Low, P., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S. and Mitchell, J., 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2): 189-229. Rapp, R., Shimizu, N., Norman, M. and Applegate, G., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. Rapp, R.P., Watson, E.B. and Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I. and Stepanyan, R., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111(B5): B05411. Robinson, A., Banks, C., Rutherford, M. and Hirst, J., 1995. Stratigraphic and structural development of the Eastern Pontides, Turkey. Journal of Geological Society, 152(5): 861-872. Saroglu, F. and Yilmaz, Y., 1986. Geological evolution and basin models during neotectonic episode in the Eastern Anatolia. Bulletin Mineral Research and Exploration Institute of Turkey, 107: 61-83. Sengor, A., Altiner, D., Cin, A., Ustaomer, T. and Hsu, K., 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1): 119-181. Sengor, A., Ozeren, S., Genc, T. and Zor, E., 2003. East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophysical Research Letters, 30(24): 8045-8048. Sengor, A., Tuysuz, O., Imren, C., Sakinc, M., Eyidogan, H., Gorur, N., Le Pichon, X. and Rangin, C., 2005. The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33: 37-112. Sengor, A. and Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4): 181-190. Sengor, A.M.C., 1980. Turkiye'nin Neotektoniginin Esaslari: Turk. Jeol. Kur. Konf. Serisi, 2: 40 pp. Sengor, A.M.C. and Natal'in, B.A., 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. Stampfli, G., Marcoux, J. and Baud, A., 1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 373-409. Stern, C.R. and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. Stern, R.J., 2002. Subduction zones. Reviews of Geophysics, 40(4): 1012-1050. Sun, S. and McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313-345. Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S. and Shimizu, H., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4): 279-281. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4): 57-76. Thieblemont, D. and Tegyey, M., 1994. Une discrimination geochimique des roches differenciees temoin de la diversite d'origine et de la situation tectonique des magmas:. Comptes Rendus de l’Acade’mie des sciences, Paris, 319(II): 87-94. Tuysuz, N. and Erler, A., 1995. Geology and geotectonic implications of Kazikkaya area, Kagizman-Kars (Turkey): In Geology of the Black Sea Region, Proceedings of the International symposium on the Geology of the Black sea Region. In: T.E. A. Erler, E. Bingol, and S. Orcen (Editor), General Directorate of Mineral Research and Exploration and Chamber of Geological Eng., Ankara, Ankara, Turkey, pp. 76-81. Van de Zedde, D. and Wortel, M., 2001. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20(6): 868–882. van Hunen, J. and Allen, M.B., 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302(1-2): 27-37 Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29-60. Wang, K.L., Chung, S.L., Chen, C.H., Shinjo, R. and Yang, T.F., 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308(3): 363-376. Wang, Q., Wyman, D.A., Xu, J., Dong, Y., Vasconcelos, P.M., Pearson, N., Wan, Y., Dong, H., Li, C. and Yu, Y., 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. Wortel, M. and Spakman, W., 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290(5498): 1910-1917. Yilmaz, Y., 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105(2): 251-271. Yilmaz, Y., Saroglu, F. and Guner, Y., 1987. Initiation of the neomagmatism in East Anatolia. Tectonophysics, 134(1-3): 177-199. Yilmaz, Y., Tuysuz, O., Yigitbas, E., Genc, C. and Sengor, A., 1997. Geology and tectonic evolution of the Pontides, in Regional and Petroleum geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists (AAPG) Memoir, 68: 183-226. Zor, E., 2008. Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175(3): 1273-1282. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10117 | - |
| dc.description.abstract | 阿拉伯與歐亞大陸板塊的碰撞造山,包含數個小地塊的拼貼或增積,因此被稱為土耳其式造山運動。此造山帶主要由高加索、伊朗以及安納托利亞高原所組成(簡稱為CIA地區),碰撞前後均有廣泛分布的火成岩,前者為新特提斯洋向北隱沒所造成,後者約從11 Ma開始,形成機制多所爭議,本研究首先針對亞美尼亞境內的碰撞前與碰撞後火成岩進行地球化學與定年分析,討論岩石成因,再比對其他CIA地區碰撞後火成岩之地化性質與時空變化,綜合探討整個地區的碰撞後岩漿活動與地體構造演化。
本研究共分析採自亞美尼亞的12個碰撞前火成岩與35個碰撞後火成岩標本。結果顯示前者的形成年代介於57.5-26.5 Ma之間,屬中鉀鈣鹼性系列;後者的形成年代小於4.4 Ma,屬高鉀鈣鹼性系列。兩期火成岩皆具有輕稀土與其他高不相容元素的富集、高場力鍵結元素的虧損、並具有相似的鍶釹同位素組成(87Sr/86Sr ≈ 0.7040 to 0.7047; 143Nd/144Nd ≈ 0.5127 to 0.5129)。然而,碰撞後火成岩的鉀質與高不相容元素富集的程度明顯較高,根據稀土元素模擬計算,碰撞後火成岩之部份熔融程度(3-6%)較碰撞前火成岩(8-10 %)來得小,但兩者的地函源區均為尖晶石至石榴子石二輝橄欖岩過渡帶,約60-80公里深,且受過隱沒作用的富集,與其他CIA地區碰撞後火成岩之源區類似。 CIA地區的碰撞後岩漿活動不但普遍造成高鉀鈣鹼性系列岩石,還造成了埃達克岩與超鉀質岩。超鉀質岩目前只在伊朗西北部Saray火山被發現,噴發於11 Ma,具有相對富集的鍶釹同位素組成(87Sr/86Sr ≈ 0.7078; 143Nd/144Nd ≈ 0.5125)、由含金雲母之富集岩石圈地函發生小程度部份熔融而形成。埃達克岩分布較廣泛,約從6Ma肇始,由東安納托利亞經亞美尼亞到大高加索地區形成向東北逐漸年輕的噴發趨勢,並在伊朗西北部造成Sahand和Sabalan兩大火山,其鍶釹同位素組成均勻(87Sr/86Sr ≈ 0.7041 to 0.7050 and 143Nd/144Nd ≈ 0.5127 to 0.5128),與其他碰撞後鈣鹼性火山岩無異、應屬碰撞增厚的基性底侵下地殼熔融所造成。 整個CIA地區之碰撞後鈣鹼性岩漿活動約始於11 Ma,有先向南再向東遷移的時空變化趨勢,推測是由於大陸碰撞起始地區東安納托利亞之下的新特提斯洋岩石圈先向南退卻(slab roll-back)、接著向東撕裂(tear migration, 約自6 Ma開始)、最後拆解(slab break-off, 約自2 Ma開始)的結果。此一地體構造改變,導致軟流圈上湧並造成岩漿活動的廣泛分布及時空變化。此外,CIA西南部的火山活動從2 Ma左右終止,推測是受到該地區岩石圈增厚的抑制,增厚的機制除了和碰撞相關的構造增厚之外,可能還包含新的岩石圈地函形成,後者為早期碰撞後岩漿活動在軟流圈頂部的熔融殘餘、具有耐熔的特性。因此,基於阿拉伯與歐亞兩大陸塊的異時斜向碰撞,碰撞後岩漿活動預期將會沿著札格洛斯縫合帶(Zagros suture),向東南方向逐漸發展。 | zh_TW |
| dc.description.abstract | Armenia is located in the Arabia-Eurasia continental collision zone that has also been considered as the product of the “Turkic-type” orogeny involving accretion of a number of terranes. Cenozoic magmatism in this zone, named CIA (Caucasus-Iran- Anatolia) province in this study, took place in two main stages that, respectively, pre- and post-date the Arabia-Eurasia collision. Whereas the pre-collisional magmatism has been generally ascribed to the Neotethyan subduction, how was the cause or mechanisam of the voluminous post-collisional volcanism formed has long been an issue of debates.
This study reports new ages and geochemical data of the pre- and post-collisional igneous rocks from Armenia. All the studied rocks are calc- alkaline and characterized by enrichment in LREE and other highly incompatible trace elements (e.g., Rb, Ba, Th, U), and depletions in the high field strength elements (e.g., Nb, Ta, Ti). These geochemical features, similar to those of coeval magmatic rocks from the CIA province, support the existence of a subduction- modified mantle that prevails throughout the Cenozoic. In Armenia, however, post-collisional rocks are more enriched in potassium and highly incompatible trace elements than pre-collisional ones. Post-collisional basalts [La=24-63 ppm; (La/Yb)N =5.8-20], for example, are more LREE-enriched than pre-collisional basalts [La=15-28 ppm; (La/Yb)N of 3.5-7.9]. All the Armenian rocks show rather uniform Sr-Nd isotopic ratios (87Sr/86Sr ≈ 0.7040 to 0.7047; 143Nd/144Nd ≈ 0.5127 to 0.5129), similar to the isotopic compositions reported in other CIA magmatic provinces. REE modeling suggests that Armenian pre- to post-collisional basaltic magmas were derived from a common mantle source that is located in spinel- to garnet-lherzolite transition region at ~60-80 km depth, with melting degrees being larger in the former (8-10 %) and smaller in the latter (3-6 %). The Armenian results, combined with our data from other parts of the CIA province and literature information from E. Anatolia, allow us to better constrain the temporal, spatial and geochemical variations in the CIA province. The post-collisional volcanism began at ca. 11 Ma, and it shows change in time and space, prevailing during 9-6 Ma in E. Anatolia or the southwestern part of the CIA volcanic province and then migrating eastward. No volcanism occurred in the southwestern CIA province since ~2 Ma. Along with the predominant calc-alkaline rocks, adakites and ultrapotassic rocks are observed in the CIA volcanic province. The adakites are small-volume but widespread, erupting with a northeastward-younging trend from E. Anatolia to the Greater Caucasus. They have uniform Sr-Nd isotope ratios (87Sr/86Sr ≈ 0.7041 to 0.7050 and 143Nd/144Nd ≈ 0.5127 to 0.5128), similar to those of the other CIA post-collisional volcanics, suggesting a common mantle source. The ultrapotassic rocks that were emplaced in Saray, NW Iran, as one of the earliest eruptions (~11 Ma), have more “radiogenic” Sr-Nd isotope ratios (87Sr/86Sr ≈ 0.7078; 143Nd/144Nd ≈ 0.5125). The adakites are interpreted as partial melts of eclogitized lower crust, formed by basaltic underplating during the Neotethyan subduction and thickened by the collision, and the ultrapotassic rocks as small-degree melts of the metasomatized lithospheric mantle. The driving force of the CIA post-collisional volcanism may be attributed to roll-back and then break-off of the subducted Neotethyan slab that, assuming an oblique/diachronous collision between Arabia and Eurasia, may have started from the northwest, i.e., beneath the southwestern CIA province, and propagated southeastward. Volcanism thus produced may later be ceased owing to the formation of new lithospheric mantle from below, as the melting residue, and subsequent crustal/lithospheric thickening caused by the continued collision. Under this framework, it is predictable that the post-collisional magmatism will eventually migrate southeastward along the Zagros suture zone. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:03:13Z (GMT). No. of bitstreams: 1 ntu-99-R98224107-1.pdf: 14032354 bytes, checksum: b062800d73cad819d1be6c753878dcaf (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 目錄 v 圖目 viii 表目 x Chapter 1 緒論 1 1.1 前言…………………………… 1 1.2 前人研究 2 1.2.1 區域地質背景 2 1.2.2 CIA地區的岩漿活動 4 1.3 研究動機與目的 9 1.3.1 研究動機 9 1.3.2 研究目的 9 Chapter 2 研究方法 10 2.1 野外調查與採樣 10 2.2 岩象觀察 12 2.3 全岩主量元素含量分析 12 2.4 全岩微量元素含量分析 13 2.4.1 標本前處理 13 2.4.2 USGS標準樣分析結果 14 2.5 鍶-釹同位素組成分析 19 2.5.1 標本前處理 19 2.5.2 鍶-釹同位素化學分離流程 19 2.5.3 標準樣分析結果 22 2.6 全岩氬-氬定年分析 23 2.6.1 標本前處理 24 2.6.2 標本分析流程 24 2.7 鋯石鈾-鉛定年分析 25 2.7.1 樣品靶(target)的製備 25 2.7.2 儀器配置與分析方法 26 Chapter 3 亞美尼亞火成岩分析結果 28 3.1 野外觀察 28 3.2 岩象觀察 29 3.2.1 碰撞前火成岩 29 3.2.2 碰撞後火成岩 29 3.3 定年結果 32 3.3.1 全岩氬-氬定年 33 3.3.2 鋯石鈾-鉛定年 34 3.4 主量元素 44 3.5 微量元素 44 3.6 鍶-釹同位素 55 Chapter 4 亞美尼亞火成岩之岩石成因與綜合討論 58 4.1 亞美尼亞地區 58 4.1.1 地函源區性質 58 4.1.2 岩石成因 59 4.2 其他CIA地區碰撞後火成岩數據 62 4.2.1 前人研究 62 4.2.2 相關數據 65 4.3 CIA地區構造背景與地塊邊界 69 4.3.1 Reilinger et al., 2006 69 4.3.2 Moix et al., 2008 70 4.3.3 Sengor et al., 2003 70 Chapter 5 CIA地區碰撞後岩漿活動 74 5.1 地球化學特性與岩石成因 74 5.1.1 地函源區組成 74 5.1.2 部份熔融程度 77 5.1.3 地殼混染與結晶分化作用 82 5.2 CIA地區超鉀質岩與埃達克岩 83 5.2.1 超鉀質岩 83 5.2.2 埃達克岩 87 5.2.3 時空分布與岩石成因 90 5.3 CIA地區岩漿活動之時空變化 93 5.4 CIA岩石成因與地體構造演化模型 99 5.4.1 碰撞前岩漿活動 99 5.4.2 碰撞後岩漿活動 100 Chapter 6 結論 104 致謝 106 參考文獻 107 | |
| dc.language.iso | zh-TW | |
| dc.title | 亞美尼亞及高加索造山帶火成岩的地球化學特性與岩石成因 | zh_TW |
| dc.title | Geochemical Characteristics and Petrogenesis of Pre- to Post-collisional Igneous Rocks in Armenia and Caucasian regions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江博明(Bor-Ming Jahn),羅清華(Ching-Hua Lo),李通藝(Tung-Yi Lee),王國龍(Kuo-Lung Wang) | |
| dc.subject.keyword | 亞美尼亞,阿拉伯-歐亞板塊碰撞造山帶,地球化學,碰撞前與碰撞後火成岩,埃達克岩,超鉀質岩, | zh_TW |
| dc.subject.keyword | Armenia,Arabia-Eurasia collision zone,geochemistry,pre- and post-collisional volcanism,adakites,ultrapotassic rocks, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-07-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 13.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
