請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101178完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳家麟 | zh_TW |
| dc.contributor.advisor | Ja-Ling Wu | en |
| dc.contributor.author | 劉品均 | zh_TW |
| dc.contributor.author | Pin-Jiun Liu | en |
| dc.date.accessioned | 2025-12-31T16:13:23Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-08 | - |
| dc.identifier.citation | [1] Gregory K. Wallace. The JPEG still picture compression standard. Communications of the ACM, 34(4):30–44, 1991.
[2] David S. Taubman and Michael W. Marcellin. JPEG2000: Image Compression Fundamentals, Standards and Practice. Springer Science & Business Media, 2002. [3] Fabrice Bellard. BPG image format. http://bellard.org/bpg/. Accessed: 2025-07-01. [4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 25:1097–1105, 2012. [5] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image compression. In International Conference on Learning Representations (ICLR), 2017. arXiv:1611.01704. [6] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang Johnston, and George Toderici. Variational image compression with a scale hyperprior. In ICLR, 2018. [7] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with discretized Gaussian mixture likelihoods and attention modules. In CVPR, pages 7939–7948, 2020. doi:10.6342/NTU202501437 [8] Ashish Vaswani et al. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017. [9] Alexey Dosovitskiy et al. An image is worth 16×16 words: Transformers for image recognition at scale. ICLR, 2021. [10] Ze Liu et al. Swin Transformer: Hierarchical vision transformer using shifted windows. In ICCV, pages 10012–10022, 2021. [11] Renjie Zou et al. Swin-transformer based image compression with large receptive field and high adaptability. In CVPR Workshops, 2022. [12] Jinming Liu et al. Learned image compression with mixed transformer–CNN architectures. In CVPR, 2023. [13] 許興宇. 透過漸進式學習實現基於 LoRA 的可變壓縮率深度影像壓縮. 臺灣大學資訊網路與多媒體研究所碩士論文, 2024. doi:10.6342/NTU202501437 [14] Edward J. Hu et al. LoRA: Low-rank adaptation of large language models. ICLR, 2022. [15] Tim Dettmers et al. QLoRA: Efficient finetuning of quantized LLMs. arXiv:2305.14314, 2023. [16] Yitao Zhang et al. AdaLoRA: Adaptive low-rank adaptation for efficient fine-tuning. arXiv:2303.10512, 2023. [17] Haotian Peng et al. AsyLoRA: Asymmetric low-rank adaptation for vision-and-language pre-training. arXiv:2309.16736, 2023. [18] Shizhe Gu, Ziwei Liu, and Dahua Lin. DoRA: Weight-decomposed low-rank adaptation. arXiv:2402.09353, 2024. [19] David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical priors for learned image compression. In NeurIPS, pages 10771–10780, 2018. [20] Gisle Bjontegaard. Calculation of average PSNR differences between RD-curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group, 2001. https://www.itu.int/md/T01-SG16-030409-TD-GEN-0003/en | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101178 | - |
| dc.description.abstract | 隨著深度學習技術的發展,深度影像壓縮模型已大量應用於日常生活中。然而, 傳統完整微調 (Full Fine-Tuning, FT)方式需耗費大量時間與計算資源,限制了可變率影像壓縮 (Variable-Rate Image Compression) 技術在資源受限設備上的應用。為此,本研究以系統性方式探討參數高效微調技術 LoRA (Low-Rank Adaptation) 及其變形體 (AsyLoRA 與 DoRA) 在可變率影像壓縮中的應用效能。 實驗結果顯示,LoRA 及其變形體相較於傳統完整微調方式,能將需更新參數量降至原先需求約 1% 以下,並將記憶體儲存需求從原先的 877 MB 降至僅約 4 MB,同時還能維持良好的壓縮功效。特別是 DoRA,在僅略增儲存開銷前提下,提供比 LoRA 更佳且更穩定的效能; 而 AsyLoRA 雖然相較於DoRA效能稍低,但所需記憶體量最低,特別適合應用於極低資源的環境。 總結而言,這些低秩調適方法在可變率影像壓縮中展現出高度的應用潛力,本研究為未來在資源受限情境下可變率影像壓縮的應用奠定了初步的基礎 | zh_TW |
| dc.description.abstract | With the development of deep learning technologies, deep image compression models have been widely applied in daily life. However, traditional full fine-tuning (FT) requires significant time and computational resources, limiting the practical deployment of variable-rate image compression techniques on resource-constrained devices. To address this, this study systematically investigates the effectiveness of parameter-efficient fine-tuning techniques, namely LoRA (Low-Rank Adaptation) and its variants (AsyLoRA and DoRA), in variable-rate image compression.
Experimental results show that LoRA and its variants can reduce the number of trainable parameters to about 1% of that required by traditional FT and lower storage requirements from 877 MB to approximately 4 MB, while still maintaining good compression performance. In particular, DoRA offers better and more stable performance than LoRA with only a slight increase in storage overhead. Although AsyLoRA shows slightly lower performance compared to DoRA, it achieves the lowest memory consumption, making it especially suitable for extremely resource-limited scenarios. In summary, these low-rank adaptation methods exhibit great potential for variable-rate image compression and lay a solid foundation for future applications on resource-constrained devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:13:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:13:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Image Compression 1 1.2 Variable-Rate Image Compression 2 1.3 Motivation 5 Chapter 2 Related Work 9 2.1 LoRA 9 2.2 Asymmetry LoRA 10 2.3 DoRA 11 2.4 Learned Image Compression with Mixed Transformer-CNN Architectures 14 Chapter 3 Proposed Method 19 3.1 Experiment Setup 19 3.2 Datasets 20 3.3 Performance Evaluation Indices 21 Chapter 4 Experiment Ⅰ 25 4.1 Anchor Point Selection 25 4.2 Layer Selection 28 4.3 Different Rank r for LoRA 29 Chapter 5 Experiment Ⅱ 31 5.1 Asymmetry LoRA's Results and Discussion 31 5.2 DoRA's Results and Discussion 34 Chapter 6 LoRA and Its Variants on Deep Image Compression Discussion 37 6.1 Computation-Efficiency Comparison 37 6.2 Memory-Efficient Comparison 39 Chapter 7 Conclusions 41 References 43 | - |
| dc.language.iso | en | - |
| dc.subject | 深度影像壓縮 | - |
| dc.subject | 可變率影像壓縮 | - |
| dc.subject | 低秩適應 | - |
| dc.subject | 非對稱低秩適應 | - |
| dc.subject | 權重分解式低秩適應 | - |
| dc.subject | Deep image compression | - |
| dc.subject | Variable rate image compression | - |
| dc.subject | LoRA | - |
| dc.subject | AsyLoRA | - |
| dc.subject | DoRA | - |
| dc.title | LoRA 與其變體應用於深度影像壓縮模型之效益探討 | zh_TW |
| dc.title | Effectiveness of LoRA and Its Variants on Deep Image Compression Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳駿丞;李明穗 | zh_TW |
| dc.contributor.oralexamcommittee | Jun-Cheng Chen;Ming-Sui Lee | en |
| dc.subject.keyword | 深度影像壓縮,可變率影像壓縮低秩適應非對稱低秩適應權重分解式低秩適應 | zh_TW |
| dc.subject.keyword | Deep image compression,Variable rate image compressionLoRAAsyLoRADoRA | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202501437 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-12-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
