Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101169
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李岳聯zh_TW
dc.contributor.advisorYueh-Lien Leeen
dc.contributor.author黃詩晏zh_TW
dc.contributor.authorShih-Yen Huangen
dc.date.accessioned2025-12-31T16:11:34Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-16-
dc.identifier.citation[1] Black–Magnesia, J.; Air, F. Rediscovery of the Elements.
[2] Verma, A.; Sunkari, S.S. Introductory Chapter: Magnesium-A Perspective. In Current Trends in Magnesium (Mg) Research; IntechOpen: 2022.
[3] Mathaudhu, S.; Luo, A.; Neelameggham, N.; Nyberg, E.; Sillekens, W. Essential readings in magnesium technology; Springer: 2016.
[4] Clow, B.B. History of Primary Magnesium Since World War II. In Essential Readings in Magnesium Technology; Springer: 2014; pp. 85-87.
[5] Zhang, Y.; Yan, C.; Wang, F.; Lou, H.; Cao, C. Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surface and Coatings Technology 2002, 161, 36-43.
[6] Abbott, T.B. Magnesium: industrial and research developments over the last 15 years. Corrosion 2015, 71, 120-127.
[7] Liu, L.; Chen, X.; Pan, F. A review on electromagnetic shielding magnesium alloys. Journal of Magnesium and Alloys 2021, 9, 1906-1921.
[8] Esmaily, M.; Svensson, J.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L. Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science 2017, 89, 92-193.
[9] Liu, B.; Yang, J.; Zhang, X.; Yang, Q.; Zhang, J.; Li, X. Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys 2023, 11, 15-47.
[10] Hakamada, M.; Furuta, T.; Chino, Y.; Chen, Y.; Kusuda, H.; Mabuchi, M. Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 2007, 32, 1352-1360.
[11] Yang, J.; Zhu, Z.; Han, S.; Gu, Y.; Zhu, Z.; Zhang, H. Evolution, limitations, advantages, and future challenges of magnesium alloys as materials for aerospace applications. Journal of Alloys and Compounds 2024, 1008, 176707.
[12] Sugawara, Y.; Nakasuka, S.; Higashi, K.; Kobayashi, C.; Koyama, K.; Okada, T. Structure and thermal control of panel extension satellite (PETSAT). Acta Astronautica 2009, 65, 958-966.
[13] Florea, M.; Constantin, V.-S.; Bucur, A.-C.; Faur, R.; Predu, D.; Cazacu, A. Materials and Structures Used in Aeronautics: Present and Future Perspectives. INCAS Bulletin 2024, 16.
[14] Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clinical kidney journal 2012, 5, i3-i14.
[15] Biber, R.; Pauser, J.; Brem, M.; Bail, H.J. Bioabsorbable metal screws in traumatology: a promising innovation. Trauma Case Reports 2017, 8, 11-15.
[16] Poinern, G.E.J.; Brundavanam, S.; Fawcett, D. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. American Journal of Biomedical Engineering 2012, 2, 218-240.
[17] Buldum, B.B.; Sık, A.; Ozkul, İ. Investigation of magnesium alloys machinability. International Journal of Electronics Mechanical and Mechatronics Engineering 2013, 2, 261-268.
[18] Weiler, J. Exploring the concept of castability in magnesium die-casting alloys. Journal of Magnesium and Alloys 2021, 9, 102-111.
[19] Li, T.; Song, J.; Zhang, A.; You, G.; Yang, Y.; Jiang, B.; Qin, X.; Xu, C.; Pan, F. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components. Journal of Magnesium and Alloys 2023, 11, 4166-4180.
[20] Ma, H.-T.; Yuan, R.; Xie, Y.-P.; Gao, H.; Hu, L.-J.; Li, X.-D.; Qian, Y.-C.; Dai, Z.-H. The role of Ag, Ca, Zr and Al in strengthening effects of ZK series alloys by altering GP zones stability. Acta Materialia 2018, 147, 42-50.
[21] Murugesan, R.; Venkataramana, S.H.; Marimuthu, S.; Anand, P.B.; Nagaraja, S.; Isaac, J.S.; Sudharsan, R.R.; Yunus Khan, T.; Almakayeel, N.; Islam, S. Influence of alloying materials Al, Cu, and ca on microstructures, Mechanical Properties, and corrosion resistance of mg alloys for Industrial Applications: a review. ACS omega 2023, 8, 37641-37653.
[22] Gao, L.; Chen, R.; Han, E. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. Journal of Alloys and Compounds 2009, 481, 379-384.
[23] Chen, Y.; Wu, G.; Liu, W.; Zhang, L.; Zhang, H.; Cui, W. Effects of minor Y addition on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy. Journal of Materials Research 2017, 32, 3712-3722.
[24] Kulekci, M.K. Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology 2008, 39, 851-865.
[25] Calado, L.M.; Carmezim, M.J.; Montemor, M.F. Rare earth based magnesium alloys—a review on WE series. Frontiers in Materials 2022, 8, 804906.
[26] Gialanella, S.; Malandruccolo, A. Aerospace alloys; Springer: 2020.
[27] Wang, G.G.; Weiler, J. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys 2023, 11, 78-87.
[28] Khademian, N.; Peimaei, Y. Magnesium alloys and applications in automotive industry. In Proceedings of the Proceedings of the 5th International Conference on Science and Development of Nanotechnology, Tbilisi, Georgia, 2021; pp. 1-23.
[29] Karaguiozova, Z.; Miteva, A.; Ciski, A.; Cieślak, G. Magnesium application in aerospace industry. In Proceedings of the Twelfth scientific conference with international participation, 2016; pp. 385-390.
[30] Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. Journal of Magnesium and Alloys 2023, 11, 3609-3619.
[31] Soni, R.; Verma, R.; Garg, R.K.; Sharma, V. A critical review of recent advances in the aerospace materials. Materials Today: Proceedings 2024, 113, 180-184.
[32] Wang, J.; Chang, Z.; Liu, B.; Li, Y.; Sun, Y.; Li, H. Effect of Y alloying on microstructure and mechanical properties of AZ61 magnesium alloy sheets applied as 3C electronic product shells. Crystals 2022, 12, 1643.
[33] Monteiro, W.A. The influence of alloy element on magnesium for electronic devices applications—a review. Light Metal Alloys Applications 2014, 12, 229.
[34] He, M.; Chen, L.; Yin, M.; Xu, S.; Liang, Z. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. Journal of Materials Research and Technology 2023, 23, 4396-4419.
[35] Wu, J.; Cheng, X.; Wu, J.; Chen, J.; Pei, X. The development of magnesium‐based biomaterials in bone tissue engineering: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2024, 112, e35326.
[36] Nordlien, J.H.; Ono, S.; Masuko, N.; Nis, K. Morphology and structure of oxide films formed on magnesium by exposure to air and water. Journal of the Electrochemical Society 1995, 142, 3320.
[37] Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Advanced engineering materials 1999, 1, 11-33.
[38] Liang, J.; Hou, Z.; Babu, R.P.; Xu, X.; Liu, K.; Huang, X. Effect of surface nanocrystallization on microstructure, mechanical property and corrosion resistance of Mg and its alloys: A perspective review. Journal of Magnesium and Alloys 2025.
[39] Perrault, G. The potential-pH diagram of the magnesium-water system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1974, 51, 107-119.
[40] Vaira Vignesh, R.; Sathiya, P. Sacrificial anode materials to protect marine grade steel structures: a review. Corrosion Reviews 2024, 42, 303-330.
[41] Campos, M.d.R.S.; del Rosario, M. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys. Technische Universität Hamburg-Harburg Hamburg, Germany, 2016.
[42] Wei, L.; Gao, Z. Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review. RSC advances 2023, 13, 8427-8463.
[43] Mohamad, M.S.N. Cathodic protection of underground steel pipelines by using sacrificial anodes. UMP, 2009.
[44] Song, G.; Atrens, A. Recent insights into the mechanism of magnesium corrosion and research suggestions. Advanced Engineering Materials 2007, 9, 177-183.
[45] Nyokana, A.A. Effect of concrete quality and cover depth on the efficiency of impressed anodic current to induce corrosion of steel in concrete; University of the Witwatersrand, Johannesburg (South Africa): 2018.
[46] Yavuzyegit, B.; Karali, A.; De Mori, A.; Smith, N.; Usov, S.; Shashkov, P.; Bonithon, R.; Blunn, G. Evaluation of corrosion performance of AZ31 Mg alloy in physiological and highly corrosive solutions. ACS Applied Bio Materials 2024, 7, 1735-1747.
[47] Yin, Z.; He, R.; Chen, Y.; Yin, Z.; Yan, K.; Wang, K.; Yan, H.; Song, H.; Yin, C.; Guan, H. Effects of surface micro–galvanic corrosion and corrosive film on the corrosion resistance of AZ91–xNd alloys. Applied Surface Science 2021, 536, 147761.
[48] Hsieh, C.-Y.; Huang, S.-Y.; Chu, Y.-R.; Yen, H.-W.; Lin, H.-C.; Shih, D.S.; Kawamura, Y.; Lee, Y.-L. Role of second phases in the corrosion resistance and cerium conversion coating treatment of as-extruded Mg–8Al–4Ca magnesium alloy. Journal of Materials Research and Technology 2023, 22, 2343-2359.
[49] Zeng, R.-C.; Yin, Z.-Z.; Chen, X.-B.; Xu, D.-K. Corrosion types of magnesium alloys. Magnesium alloys-selected issue 2018, 29-53.
[50] Williams, G.; Grace, R. Chloride-induced filiform corrosion of organic-coated magnesium. Electrochimica Acta 2011, 56, 1894-1903.
[51] Gray, J.; Luan, B. Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds 2002, 336, 88-113.
[52] Blawert, C.; Dietzel, W.; Ghali, E.; Song, G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced engineering materials 2006, 8, 511-533.
[53] Advincula, R.C. Conducting polymers with superhydrophobic effects as anticorrosion coating. In Intelligent coatings for corrosion control; Elsevier: 2015; pp. 409-430.
[54] Chu, Y.-R.; Lee, Y.-L.; Lin, C.-S. Inorganic Conversion Coatings: Composition, Mechanism, and Paint Adhesion. In Conversion Coatings for Magnesium and its Alloys; Springer: 2022; pp. 29-47.
[55] Chen, X.B.; Birbilis, N.; Abbott, T.B. Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion 2011, 67, 035005-035001-035005-035016.
[56] Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative conversion coatings to chromate for the protection of magnesium alloys. Corrosion Science 2014, 84, 135-146.
[57] Jacobs, J.A.; Testa, S.M. Overview of chromium (VI) in the environment: background and history. Chromium (VI) handbook 2005, 1-21.
[58] Tabish, M.; Zhao, J.; Anjum, M.J.; Jingbao, W.; Yasin, G. Self-Healing Chromate-Free Conversion Coatings. In Conversion Coatings for Magnesium and its Alloys; Springer: 2022; pp. 299-314.
[59] Kumar, L.G.S.; Thirumalaikumarasamy, D.; Karthikeyan, K.; Mathanbabu, M.; Ashokkumar, M.; Ramachandran, C. An overview of recent trends and challenges of post treatments on magnesium alloys. Materials Today: Proceedings 2023, 78, 700-707.
[60] Chen, X.; Yang, H.; Abbott, T.B.; Easton, M.A.; Birbilis, N. Magnesium: engineering the surface. Jom 2012, 64, 650-656.
[61] C.E.F, G.S. A new pretreatment cycle for Plating Magnesium Alloys. Technical Artical 2008.
[62] Chen, X.; Yang, H.Y.; Abbott, T.; Easton, M.A.; Birbilis, N. Corrosion-resistant electrochemical platings on magnesium alloys: a state-of-the-art review. Corrosion 2012, 68, 518-535.
[63] Hoche, H.; Schmidt, J.; Groß, S.; Troßmann, T.; Berger, C. PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys. Surface and Coatings Technology 2011, 205, S145-S150.
[64] Hoche, H.; Groß, S.; Troßmann, T.; Schmidt, J.; Oechsner, M. PVD coating and substrate pretreatment concepts for magnesium alloys by multinary coatings based on Ti (X) N. Surface and Coatings Technology 2013, 228, S336-S341.
[65] Hussein, R.; Nie, X.; Northwood, D.; Yerokhin, A.; Matthews, A. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics 2010, 43, 105203.
[66] Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to plasma electrolytic oxidation—An overview of the process and applications. Coatings 2020, 10, 628.
[67] Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma electrolytic oxidation (PEO) process—processing, properties, and applications. Nanomaterials 2021, 11, 1375.
[68] Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The effects of nano-and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surfaces and Interfaces 2020, 21, 100659.
[69] Famiyeh, L.; Huang, X. Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Mod. Concepts Mater. Sci 2019, 2, 000526.
[70] Yao, W.; Wu, L.; Wang, J.; Jiang, B.; Zhang, D.; Serdechnova, M.; Shulha, T.; Blawert, C.; Zheludkevich, M.L.; Pan, F. Micro‐arc oxidation of magnesium alloys: A review. Journal of Materials Science & Technology 2022, 118, 158-180.
[71] Fattah‐alhosseini, A.; Fardosi, A.; Askari, A.; Karbasi, M.; Dikici, B.; Kaseem, M. Enhancing Plasma Electrolytic Oxidation (PEO) Coatings on Magnesium Alloys: The Critical Role of Surface Pretreatments. Advanced Materials Interfaces 2025, 2500192.
[72] Bittencourt, J.A. Fundamentals of plasma physics; Springer Science & Business Media: 2013.
[73] Jiang, B.L.; Ge, Y.F. Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys. In Corrosion prevention of magnesium alloys; Elsevier: 2013; pp. 163-196.
[74] Hussein, R.; Nie, X.; Northwood, D. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochimica Acta 2013, 112, 111-119.
[75] Yerokhin, A.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S. Plasma electrolysis for surface engineering. Surface and coatings technology 1999, 122, 73-93.
[76] Li, Q.; Liu, C.; Yang, W.; Liang, J. Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering 2017, 33, 760-766.
[77] Golubkov, P.; Pecherskaya, E.; Shepeleva, Y.; Martynov, A.; Zinchenko, T.; Artamonov, D. Methods of applying the reliability theory for the analysis of micro-arc oxidation process. In Proceedings of the Journal of Physics: Conference Series, 2018; p. 081014.
[78] Zou, Y.; Wang, Y.; Sun, Z.; Cui, Y.; Jin, T.; Wei, D.; Ouyang, J.; Jia, D.; Zhou, Y. Plasma electrolytic oxidation induced ‘local over-growth’characteristic across substrate/coating interface: Effects and tailoring strategy of individual pulse energy. Surface and coatings technology 2018, 342, 198-208.
[79] Hussein, R.; Zhang, P.; Nie, X.; Xia, Y.; Northwood, D. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surface and Coatings Technology 2011, 206, 1990-1997.
[80] Gnedenkov, S.; Khrisanfova, O.; Zavidnaya, A.; Sinebryukhov, S.; Egorkin, V.; Nistratova, M.; Yerokhin, A.; Matthews, A. PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes. Surface and Coatings Technology 2010, 204, 2316-2322.
[81] Yao, J.-t.; Wang, S.; Zhou, Y.; Dong, H. Effects of the power supply mode and loading parameters on the characteristics of micro-arc oxidation coatings on magnesium alloy. Metals 2020, 10, 1452.
[82] Lee, S.-J.; Lee, J.-L.; Chen, C.-Y.; Peng, H.-C. Effects of pulsed unipolar and bipolar current regimes on the characteristics of micro-arc oxidation coating on LZ91 magnesium-lithium alloy. International Journal of Electrochemical Science 2018, 13, 2705-2717.
[83] Wang, S.; Xia, Y.; Liu, L.; Si, N. Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte. Ceramics International 2014, 40, 93-99, doi:https://doi.org/10.1016/j.ceramint.2013.05.108.
[84] Xin, S.; Song, L.; Zhao, R.; Hu, X. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films 2006, 515, 326-332.
[85] Yerokhin, A.L.; Snizhko, L.O.; Gurevina, N.L.; Leyland, A.; Pilkington, A.; Matthews, A. Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics 2003, 36, 2110-2120, doi:10.1088/0022-3727/36/17/314.
[86] Khan, R.; Yerokhin, A.; Pilkington, T.; Leyland, A.; Matthews, A. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface and Coatings Technology 2005, 200, 1580-1586.
[87] Wang, Z.-X.; Zhang, J.-W.; Ye, F.; Lv, W.-G.; Lu, S.; Sun, L.; Jiang, X.-Z. Properties of micro-arc oxidation coating fabricated on magnesium under two steps current-decreasing mode. Frontiers in Materials 2020, 7, 261.
[88] Yang, M.; Huang, T.; Wang, D.; Liu, W.; Liu, Y.; Yang, H.; Yu, S. Effects of duty ratio on properties of micro-arc film on Ti–3Zr–2Sn–3Mo–25Nb. Transactions of the IMF 2018, 96, 269-274.
[89] Lee, J.-H.; Jung, K.-H.; Kim, S.-J. Characterization of ceramic oxide coatings prepared by plasma electrolytic oxidation using pulsed direct current with different duty ratio and frequency. Applied Surface Science 2020, 516, 146049.
[90] Gębarowski, W.; Pietrzyk, S. Influence of the cathodic pulse on the formation and morphology of oxide coatings on aluminium produced by plasma electrolytic oxidation. Archives of metallurgy and materials 2013, 58, 241-245.
[91] Rogov, A.; Shayapov, V. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra. Applied surface science 2017, 394, 323-332.
[92] Tsai, D.-S.; Chou, C.-C. Review of the soft sparking issues in plasma electrolytic oxidation. Metals 2018, 8, 105.
[93] Rogov, A.B.; Matthews, A.; Yerokhin, A. Role of cathodic current in plasma electrolytic oxidation of Al: A quantitative approach to in-situ evaluation of cathodically induced effects. Electrochimica Acta 2019, 317, 221-231.
[94] Arrabal, R.; Matykina, E.; Hashimoto, T.; Skeldon, P.; Thompson, G. Characterization of AC PEO coatings on magnesium alloys. Surface and coatings technology 2009, 203, 2207-2220.
[95] Rogov, A.B.; Matthews, A.; Yerokhin, A. Relaxation kinetics of plasma electrolytic oxidation coated Al electrode: Insight into the role of negative current. The Journal of Physical Chemistry C 2020, 124, 23784-23797.
[96] Rogov, A.B.; Yerokhin, A.; Matthews, A. The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft sparking” mode. Langmuir 2017, 33, 11059-11069.
[97] Nominé, A.; Martin, J.; Noël, C.; Henrion, G.; Belmonte, T.; Bardin, I.; Kovalev, V.; Rakoch, A. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process. Applied Physics Letters 2014, 104.
[98] Lee, K.M.; Lee, B.U.; Yoon, S.I.; Lee, E.S.; Yoo, B.; Shin, D.H. Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles. Electrochimica Acta 2012, 67, 6-11.
[99] Yeshmanova, G.; Blawert, C.; Serdechnova, M.; Starykevich, M.; Wu, T.; Kakimov, U.; Kasneryk, V.; Shulha, T.; Smagulov, D.; Zheludkevich, M.L. Influence of different Si sources on plasma electrolytic oxidation coating formation, morphology and composition. Journal of Alloys and Compounds 2025, 181845.
[100] Lee, H.-J.; Kim, S.-W.; Ryu, S.-S. Sintering behavior of aluminum nitride ceramics with MgO–CaO–Al2O3–SiO2 glass additive. International Journal of Refractory Metals and Hard Materials 2015, 53, 46-50.
[101] Montanaro, L.; Perrot, C.; Esnouf, C.; Thollet, G.; Fantozzi, G.; Negro, A. Sintering of industrial mullites in the presence of magnesia as a sintering aid. Journal of the American Ceramic Society 2000, 83, 189-196.
[102] Pal, U.; Woolley, D.; Krishnan, A.; Keenan, T.; Manning, C.; Kenney, G. Solid-Oxide-Oxygen-Ion-Conducting Membrane (SOM) Technology for Green Synthesis of Magnesium from Its Oxides. Magnesium Technology TMS 2002.
[103] Gu, F.; Peng, Z.; Tang, H.; Ye, L.; Tian, W.; Liang, G.; Rao, M.; Zhang, Y.; Li, G.; Jiang, T. Preparation of refractory materials from ferronickel slag. In Proceedings of the TMS Annual Meeting & Exhibition, 2018; pp. 633-642.
[104] Hussein, R.; Nie, X.; Northwood, D. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surface and Coatings Technology 2010, 205, 1659-1667.
[105] Terleeva, O.P.; Oh, Y.-j.; Slonova, A.I.; Kireenko, I.B.; Ok, M.-R.; Ha, H.-P. Quantitative parameters and definition of stages of anodic-cathodic microplasma processes on aluminum alloys. Materials transactions 2005, 46, 2077-2082.
[106] Timoshenko, A.V.; Magurova, Y.V. Application of oxide coatings to metals in electrolyte solutions by microplasma methods. Revista de metalurgia 2000, 36, 323-330.
[107] Pensado‐Rodriguez, O.; Flores, J.R.; Urquidi‐Macdonald, M.; Macdonald, D.D. Electrochemical behavior of lithium in alkaline aqueous electrolytes. II. Point defect model. Journal of the Electrochemical Society 1999, 146, 1326.
[108] Macdonald, D.D. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta 2011, 56, 1761-1772.
[109] Sakaguchi, C.; Nara, Y.; Hashishin, T.; Abe, H.; Matsuda, M.; Tsurekawa, S.; Kubota, H. Direct observation of potential phase at joining interface between p-MgO and n-MgFe2O4. Scientific Reports 2020, 10, 17055.
[110] Wheeler, J.; Curran, J.; Shrestha, S. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052. Surface and Coatings Technology 2012, 207, 480-488.
[111] Blawert, C.; Sah, S.P.; Liang, J.; Huang, Y.; Höche, D. Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy. Surface and Coatings Technology 2012, 213, 48-58.
[112] Dilimon, V.S.; Shibli, S.M.A. A Review on the Application‐Focused Assessment of Plasma Electrolytic Oxidation (PEO) Coatings Using Electrochemical Impedance Spectroscopy. Advanced Engineering Materials 2023, 25, 2201796.
[113] Mompean, F.J.; Perrone, J.; Illemassène, M. Chemical thermodynamics of zirconium. 2005.
[114] Lide, D. CRC Handbook of Chemistry and Physics 85th Ed CRC Press. Boca Raton 2004, 8-141.
[115] Wang, Y.; Zhang, Q.; Zhang, P.; Du, Y.; Liu, K.; He, P.; Li, C. Influence of MgF2/MgO Mass Ratios on the Microstructure and Corrosion Properties of Micro-arc Oxidation Coatings on Magnesium Alloys. JOM 2025, 1-11.
[116] Ryu, H.S.; Mun, S.-J.; Lim, T.S.; Kim, H.-C.; Shin, K.-S.; Hong, S.-H. Microstructure evolution during plasma electrolytic oxidation and its effects on the electrochemical properties of AZ91D Mg alloy. Journal of The Electrochemical Society 2011, 158, C266.
[117] Booster, J.; Van Sandwijk, A.; Reuter, M. Conversion of magnesium fluoride to magnesium hydroxide. Minerals engineering 2003, 16, 273-281.
[118] Wu, L.; Liu, C.; Wei, J.; Dong, J.; Zhao, L.; Li, C.; Ke, W.; Chen, Y.; Wang, C. Influence of pH on the Formation, Composition and Protectiveness of Fluoride Conversion Film Deposited on AZ31 Magnesium Alloy in KF Solution. Acta Metallurgica Sinica (English Letters) 2023, 36, 1397-1408.
[119] Rostami Osanloo, M.; Oyekan, K.A.; Vandenberghe, W.G. A first-principles study on the electronic, thermodynamic and dielectric properties of monolayer Ca (OH) 2 and Mg (OH) 2. Nanomaterials 2022, 12, 1774.
[120] Shannon, R.; Rossman, G. Dielectric constant of MgAl2O4 spinel and the oxide additivity rule. Journal of Physics and Chemistry of Solids 1991, 52, 1055-1059.
[121] Kazanski, B.; Kossenko, A.; Lugovskoy, A.; Zinigrad, M. Fluoride influence on the properties of oxide layer produced by plasma electrolytic oxidation. In Proceedings of the Defect and Diffusion Forum, 2012; pp. 498-503.
[122] Ghali, E. Activity and passivity of magnesium (Mg) and its alloys. In Corrosion of Magnesium alloys; Elsevier: 2011; pp. 66-114.
[123] Jiang, Q.; Lu, D.; Liu, C.; Liu, N.; Hou, B. The Pilling-Bedworth ratio of oxides formed from the precipitated phases in magnesium alloys. Frontiers in Materials 2021, 8, 761052.
[124] Wang, Y.; Zhang, P.; Du, Y.; Zhang, W.; Cao, H. Correlations between the Growth Mechanism and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31B Magnesium Alloy. International Journal of Electrochemical Science 2019, 14, 10465-10479.
[125] Wang, J.-H.; Du, M.-H.; Han, F.-Z.; Yang, J. Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys. Applied Surface Science 2014, 292, 658-664.
[126] Yerokhin, A.; Shatrov, A.; Samsonov, V.; Shashkov, P.; Pilkington, A.; Leyland, A.; Matthews, A. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology 2005, 199, 150-157.
[127] Melhem, A.; Henrion, G.; Czerwiec, T.; Briançon, J.; Duchanoy, T.; Brochard, F.; Belmonte, T. Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys. Surface and Coatings Technology 2011, 205, S133-S136.
[128] Samir, H. Study the Properties of Microplasma Oxidation Coatings (MPO) Deposited on Aluminum Alloy under Modified Conditions. Journal of Kerbala University 2009, 7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101169-
dc.description.abstract本研究旨在探討雙脈衝模式下微弧氧化 (Micro-arc oxidation, MAO) 膜層的生長機制,並據此調整製程參數以提升能源使用效率與膜層性能。實驗採用矽酸鹽系統之電解液,雙脈衝定電流模式,並以商用 AZ31B 鎂合金為基材。研究分為兩個階段:第一階段探討陽極與陰極停滯時間對膜層的影響;第二階段則針對調整陰極電流密度進行膜層生長分析。
在第一階段中,於固定陽極與陰極輸入條件下調整停滯時間,製程時間設定為 10 分鐘。結果顯示,具有陰極停滯時間的試樣橫截面缺陷較多,其交流阻抗值約為 105 Ω·cm2,明顯低於僅具陽極停滯時間試樣的 106 Ω·cm2,顯示陰極停滯時間對膜層品質具有負面影響。基於此觀察,第二階段將原有的四個時間區段波形簡化為三個時間區段,移除陰極停滯時間;同時,考量第一階段中推測氫氣相關效應可能與近界面之膜層中缺陷有關,因此近一步探討陰極對膜層特性的影響。
在移除陰極停滯時間的新波形下,第二階段實驗分別對陰極電荷量與陰極電流密度進行討論,並在陰極電荷量實驗中發現,其輸入量與陽極相同時,MAO膜層有較好的抗蝕能力,因此將陰極與陽極電荷量固定等量的條件下,討論陰極電流密度所帶來的影響。結果顯示,當陽極電流密度大於或等於陰極電流密度時,膜層表現出相似的表面形貌與良好的抗蝕性;但當陰極電流密度超過陽極時,膜層孔洞減少卻在基材與膜層界面形成非典型結構,導致阻抗值下降至少一個數量級。
綜合兩階段實驗結果可知,MAO 製程中的電性參數對膜層的生長機制與耐蝕性能具有關鍵影響。本研究提出一個新的波形設定準則,用以兼顧效能與性能。陰極停滯時間宜自波形設計中移除,以避免提供非成膜物質擴散時間而引發缺陷累積與抗蝕能力下降之情況;陰極電荷量與陰極電流密度皆不宜超過陽極,以避免界面非典型膜層形成,維持膜層之抗蝕能力。此準則可讓MAO製程在不增加輸入能量的條件下,即可實現更穩定的屏蔽腐蝕因子效果,為鎂合金雙脈衝MAO製程應用與發展提供新的方向。
zh_TW
dc.description.abstractThis study investigates the underlying mechanisms of micro-arc oxidation (MAO) coatings produced under pulsed bipolar, constant-current mode and uses those insights to tune electrical parameters for better energy efficiency and coating performance. Experiments were carried out in a silicate-based electrolyte on commercial AZ31B magnesium alloy. This study proceeded in two stages. In the first stage, the effects of anodic and cathodic pause times—defined as the periods following anodic and cathodic pulses, respectively—were systematically examined. Due to the complex interactions associated with bipolar pulse power in MAO, clarifying these mechanisms is essential for further process optimization. The results showed that cathodic pause time had a detrimental effect on coating growth and properties. Based on this finding, a modified three-section waveform, excluding the cathodic pause period, was proposed to improve the MAO process. This adjustment was followed by a focused examination of cathodic input, as hydrogen-related processes during the cathodic input half-cycle were suspected to contribute to near-interface defect formation.
Using this three-section waveform, the second stage first evaluated the effect of cathodic charge quantities and observed that corrosion resistance was maximized when the cathodic and anodic charge quantities were matched. Accordingly, subsequent experiments fixed the anodic and cathodic charge quantities to be equal in order to isolate the influence of cathodic current density.
Under these conditions, when the anodic current density was greater than or equal to the cathodic current density, the coatings exhibited uniform morphology and superior corrosion resistance. In contrast, when the cathodic current density exceeded the anodic current density, smaller surface pores were observed, but atypical interfacial structures formed at the coating/substrate interface, resulting in a reduction in impedance by at least one order of magnitude.
These findings indicate that electrical parameters critically govern the growth mechanisms and corrosion resistance of MAO coatings on magnesium alloys. Excluding cathodic pause time helps prevent defect accumulation, while careful control of cathodic current density is required to avoid structural degradation. The proposed bipolar pulse strategy effectively balances energy efficiency and coating performance, offering new opportunities for the surface modification of magnesium alloys.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:11:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:11:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 II
中文摘要 III
ABSTRACT IV
目次 VI
圖次 X
表次 XVI
第一章 前言 1
第二章 文獻回顧 3
2.1 鎂合金簡介 3
2.1.1 鎂合金常見系統 4
2.1.2 鎂合金應用 6
2.2 鎂合金的腐蝕行為 7
2.3 鎂合金表面處理 14
2.3.1 陽極處理 14
2.3.2 化成處理 15
2.3.3 電鍍處理 17
2.3.4 物理氣相沉積 18
2.4 微弧氧化 18
2.4.1 什麼是電漿 20
2.4.2 微弧氧化原理 21
2.4.3 影響微弧氧化膜之參數 29
2.4.4 軟火花(Soft sparking)現象 34
第三章 實驗方法及步驟 37
3.1 實驗流程 37
3.2 試片前處理 38
3.3 微弧氧化製程 38
3.3.1 微弧氧化設備 38
3.3.2 電解液選擇 39
3.3.3 微弧氧化電參數設定 40
3.4 微弧氧化膜微結構及成分分析 46
3.4.1 微結構分析試樣前處理 46
3.4.2 掃描式電子顯微鏡 50
3.4.3 穿透式電子顯微鏡 52
3.4.4 X光繞射分析儀 53
3.4.5 雷射共軛焦顯微鏡 54
3.5 微弧氧化膜抗蝕能力分析 55
3.5.1 開路電位分析 55
3.5.2 交流阻抗分析 55
第四章 實驗結果 58
4.1 第一階段:停滯時間對微弧氧化影響之實驗結果 58
4.1.1 微弧氧化製程電壓對時間曲線分析 58
4.1.2 微弧氧化膜表面與橫截面微結構觀察 59
4.1.3 微弧氧化膜成分與相組成分析 63
4.1.4 微弧氧化膜腐蝕行為分析 66
4.2 第二階段:不同電源波形對微弧氧化影響之實驗結果 70
4.2.1 微弧氧化製程電壓對時間曲線分析—不同陰極電荷量 70
4.2.2 微弧氧化膜表面與橫截面微結構觀察—不同陰極電荷量 77
4.2.3 微弧氧化膜腐蝕行為分析—不同陰極電荷量 82
4.2.4 微弧氧化製程電壓對時間曲線分析—不同陰極電流密度 87
4.2.5 微弧氧化製程放電行為分析—不同陰極電流密度 89
4.2.6 微弧氧化膜表面與橫截面微結構觀察—不同陰極電流密度 90
4.2.7 微弧氧化膜表面粗糙度觀察—不同陰極電流密度 94
4.2.8 微弧氧化膜成分與相組成分析—不同陰極電流密度 96
4.2.9 微弧氧化膜腐蝕行為分析—不同陰極電流密度 98
4.2.10 4N試樣之非典型膜層微結構與相組成分析 101
第五章 討論 106
5.1 停滯時間對微弧氧化機制的影響探討 106
5.1.1 陽極停滯時間的影響 106
5.1.2 陰極停滯時間的影響 109
5.2 調整雙脈衝電源波形後之微弧氧化膜特性 112
5.2.1 電荷量對膜層抗蝕能力影響討論 112
5.2.2 膜層生長機制討論 113
5.2.3 膜層腐蝕機制討論 119
5.2.4 比較鎂合金與鋁合金soft sparking製程之膜層差異 121
第六章 結論 124
第七章 未來展望 126
參考文獻 127
-
dc.language.isozh_TW-
dc.subject微弧氧化-
dc.subject鎂合金-
dc.subject陽極/陰極停滯時間-
dc.subject陰極電流密度-
dc.subject抗蝕性-
dc.subjectMicro-arc oxidation-
dc.subjectMagnesium alloy-
dc.subjectAnodic/cathodic pause time-
dc.subjectCathodic current density-
dc.subjectCorrosion resistance-
dc.title電性參數對AZ31B鎂合金微弧氧化膜顯微結構及抗蝕性質之研究zh_TW
dc.titleElectrical Parameter Effects on Microstructure and Corrosion Resistance of MAO Coatings on AZ31B Magnesium Alloyen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊舜涵;李志偉;郭俞麟;鍾仁傑;歐士輔zh_TW
dc.contributor.oralexamcommitteeShun-Han Yang;Jyh-Wei Lee;Yu-Lin Kuo;Ren-Jei Chung;Shih-Fu Ouen
dc.subject.keyword微弧氧化,鎂合金陽極/陰極停滯時間陰極電流密度抗蝕性zh_TW
dc.subject.keywordMicro-arc oxidation,Magnesium alloyAnodic/cathodic pause timeCathodic current densityCorrosion resistanceen
dc.relation.page134-
dc.identifier.doi10.6342/NTU202504791-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-12-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf7.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved