請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李國譚 | zh_TW |
| dc.contributor.advisor | Kuo-Tan Li | en |
| dc.contributor.author | 呂愉寧 | zh_TW |
| dc.contributor.author | Yu-Ning Lu | en |
| dc.date.accessioned | 2025-12-31T16:10:15Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-14 | - |
| dc.identifier.citation | 李岱耘、李金龍、李國譚. 2023. 葉面噴施尿素促進‘Tifblue’兔眼藍莓落葉及其對萌芽、開花及結果之影響. 臺灣園藝. 69:23-40.
廖浩慶. 2015. ‘Merton Thornless’黑莓於台北地區花芽創始及發育之研究. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. Agehara, S., S.Y. Lin, and Z. Deng. 2024. Choosing the right blackberry cultivar in subtropical Florida. EDIS. HS1352. Andersen, P.C. and T.E. Crocker. 2011. The Blackberry: HS807 HS104, Rev. 5 2011. EDIS 2011 (5/6). Ben Mohamed, H., A.M. Vadel, J.M.C. Geuns, and H. Khemira. 2010. Biochemical changes in dormant grapevine shoot tissues in response to chilling: Possible role in dormancy release. Scientia Hort. 124:440-447. Black, B., J. Frisby, K. Kewers, F. Takeda, and C. Finn. 2008. Heat unit model for predicting bloom dates in Rubus. HortScience 43:2000-2004. Bradford, E., J.F. Hancock, and R.M. Warner. 2010. Interaction of temperature and photoperiod determine expression of repeat flowering in strawberry. Journal Amer. Soc. for Hort. Sci. 135:102-107. Brůna, T., R. Aryal, O. Dudchenko, D.J. Sargent, D. Mead, M. Buti, A. Cavallini, T. Hytönen, J. Andrés, M. Pham, D. Weisz, F. Mascagni, G. Usai, L. Natali, N. Bassil, G.E. Fernandez, A. Lomsadze, M. Armour, B. Olukolu, T. Poorten, C. Britton, J. Davik, H. Ashrafi, E.L. Aiden, M. Borodovsky, and M. Worthington. 2022. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. “Hillquist”), G3 Genes. Genomes. Genetics 13:jkac289. Campoy, J.A., D. Ruiz, and J. Egea. 2011. Dormancy in temperate fruit trees in a global warming context: A review. Scientia Hort. 130:357-372. Carew, J.G., T. Gillespie, J. White, H. Wainwright, R. Brennan, and N.H. Battey. 2000. The control of the annual growth cycle in raspberry. J. Hor. Sci. and Biotechnol. 75:495-503. Chica, E.J. and L.G. Albrigo. 2013. Expression of flower promoting genes in sweet orange during floral inductive water deficits. J. Amer. Soc. Hort. Sci. 138:88-94. Clark, J.R. and C.E. Finn. 2011. Blackberry breeding and genetics. Fruit, Veg. and Cereal Sci. and Biotechnol. 5:27-43. Deng, W., H. Ying, C.A. Helliwell, J.M. Taylor, W.J. Peacock, and E.S. Dennis. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. 108:6680-6685. Erez, A., Z. Yablowitz, A. Aronovitz, and A. Hadar. 2008. Dormancy breaking chemicals;efficiency with reduced phytotoxicity. Acta Hortic. 772:105-112. Faust, M., A. Erez, L.J. Rowland, S.Y. Wang, and H.A. Norman. 1997. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32:623-629. Ferreira, R.B., S. Leonel, G.P.P. Lima, M. Leonel, I.O. Minatel, J.M.A. Souza, G.C. Monteiro, and M.S. Silva. 2022. Contents of nitrogen compounds during bud break and peach tree performance in response to budburst-inducing products. Scientia Hort. 305:111388. Finn, C.E. and J.R. Clark. 2012. Blackberry, p. 151-190. In: Badenes, M.L. and D. Byrne (eds.). Fruit Breeding, Handbook of Plant Breeding 8. Springer New York, NY. USA. Foster, T.M., N.V. Bassil, M. Dossett, M.L. Worthington, and J.Graham. 2019. Genetic and genomic resources for Rubus breeding: a roadmap for the future. Hortic Res. 6:116. Foyer, C.H. and G. Hanke. 2022. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. Plant J. 111:642-661. Guillamón, J.G., F. Dicenta, and R. Sánchez-Pérez. 2022. Advancing endodormancy release in temperate fruit trees using agrochemical treatments. Front. Plant Sci. 12:812621. Heide, O.M., R. Rivero, and A. Sønsteb. 2020. Temperature control of shoot growth and floral initiation in apple (Malus × domestica Borkh.). CABI Agr. Bioscienc. 1:8. Heide, O.M., J.A. Stavang, and A. Sønsteby. 2013. Physiology and genetics of flowering in cultivated and wild strawberries – a review. J. Hort. Sci. Biotechnology. 88:1-18. Helliwell, C.A., R.S. Anderssen, M. Robertson, and E.J. Finnegan. 2015. How is FLC repression initiated by cold? Trends Plant Sci. 20:76-82. Hodnefjell, R. 2017. Growth and flower initiation in red raspberry (Rubus idaeus L.) cultivars. Norges miljø-og biovitenskapelige univ. Norwegian. Master’s Thesis. Hodnefjell, R., O.M. Heide, R. Rivero, S.F. Remberg, and A. Sønsteby. 2018. Control of growth cessation and floral initiation in red raspberry (Rubus idaeus L.) cultivars of diverse origin in controlled and natural environments. Scientia Hort. 233:412-420. Hummer, K.E. 2017. Blackberries: an introduction, p. 1–16. In: H.K. Hall and R.C. Funt (eds.). Blackberries and their hybrids. CAB Intl. Wallingford. UK. Hwang, H.S., H.W. Jeong, H.R. Lee, H.G. Jo, H.M. Kim, and S.J. Hwang. 2020. Acceleration of flower bud differentiation of runner plants in “Maehyang” Strawberries using nutrient solution resupply during the nursery period. Agronomy. 10:1127. Hykkerud, A.L., T. Woznicki, A. Sønsteby, and I. Martinussen. 2023. Effect of nitrogen fertilization on flowering of strawberry (Fragaria × ananassa ‘Sonata’). Acta Hortic. 1381:271-276. Ionescu, I.A., B.L. Møller, and R. Sánchez-Pérez. 2016. Chemical control of flowering time. J. Expt. Bot. 68:369-382. Jiang, X.D., M.C. Zhong, X. Dong, S.B. Li, and J.Y. Hu. 2022. Rosoideae-specific duplication and functional diversification of FT-like genes in Rosaceae, Hort. Res. 9:uhac059. Jibran, R., J. Spencer, G. Fernandez, A. Monfort, M. Mnejja, H. Dzierzon, J. Tahir, K. Davies, D. Chagné, and T.M. Foster. 2019. Two Loci, RiAF3 and RiAF4, Contribute to the annual-fruiting trait in Rubus. Front. Plant Sci. 10:1341. Kaume, L., L.R. Howard, and L. Devareddy. 2012. The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agr. and Food Chem. 60:5716-5727. Kocaman, B.H.D. and L. Demirsoy. 2020. Assessment of timing of bud differentiation and development stages of flower inflorescence in blackberry (Rubus spp.) cultivars in northern Turkey. Acta Sci. Pol. Hortorum Cultus. 19:13-22. Kurokura, T., N. Mimida, N.H. Battey, and T. Hytonen. 2013. The regulation of seasonal flowering in the Rosaceae. J. Experi. Bot. 64:4131-4141. Lang, G.A. 1987. Dormancy: a new universal terminology. HortScience 22:817-820. Liang, D., X. Huang, Y. Shen, T. Shen, H. Zhang, L. Lin, J. Wang, Q. Deng, X. Lyu, and H. Xia. 2019. Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling. BMC Genomics 20:1034. Lin, Y.L. and Y.F. Tsay. 2017. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Expt. Bot. 68:2603-2609. Lin, S.Y. and S. Agehara. 2021a. Foliar application of defoliants after winter chill accumulation changes phytohormone dynamics and improves budbreak in blackberry under subtropical climatic conditions. Plant Growth Regulat. 94:171-181. Lin, S.Y. and S. Agehara. 2021b. Foliar application of defoliants before winter chill accumulation advances budbreak and improves fruit earliness of blackberry under subtropical climatic conditions. HortScience 56:210-216. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. Mimida, N., S. Komori, A. Suzuki, and M. Wada. 2013. Functions of the apple TFL1/FT orthologs in phase transition. Scientia Hort. 156:106-112. Mohamed, A.K.A. 2008. The effect of chilling, defoliation and hydrogen cyanamide on dormancy release, bud break and fruiting of Anna apple cultivar. Scientia Hortic. 118:25-32. Moraes, T.S., M.C. Dornelas, and A.P. Martinelli. 2019. FT/TFL1: calibrating plant architecture. Front. Plant Sci. 10:97. Mouhu, K., T. Hytönen, K. Folta, M. Rantanen, L. Paulin, P. Auvinen, and P. Elomaa. 2009. Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biol. 9:122. Nakano, Y., Y. Higuchi, Y. Yoshida, and T. Hisamatsu. 2015. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria × ananassa. J. Plant Physiol. 177:60-66. Omori, M., C.C. Cheng, F.C. Hsu, S.J. Chen, H. Yamane, R. Tao, and K.T. Li. 2022. Off-season flowering and expression of flowering-related genes during floral bud differentiation of rabbiteye blueberry in a subtropical climate. Scientia Hort. 306:111458. Parcy, F. 2005. Flowering: a time for integration. Int J Dev Biol. 49:585-93. Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57:431-449. Sapkota, S., J. Liu, M.T. Islam, and S.M. Sherif. 2021. Changes in reactive oxygen species, antioxidants and carbohydrate metabolism in relation to dormancy transition and bud break in apple (Malus × domestica Borkh) cultivars. Antioxidants 10:1549. Segantini, D.M., S. Leonel, A.Kd.S. Ripardo, M.A. Tecchio, and M.E. Souza. 2015. Breaking dormancy of “Tupy” blackberry in subtropical conditions. Amer. J. plant sci. 6:1760-1767. Seif El-Yazal, M.A., S.A. Seif El-Yazal, and M.M. Rady. 2014. Exogenous dormancy-breaking substances positively change endogenous phytohormones and amino acids during dormancy release in ‘Anna’ apple trees. Plant Growth Regulat. 72:211-220. Shen, J., Q. Xiao, H. Qiu, C. Chen, and H. Chen. 2016. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis. Scientific Reports 6:32005. Song, G.Q., A. Walworth, D. Zhao, N. Jiang, and J.F. Hancock. 2013. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Reports 32:1759-1769. Sønsteby, A. and O.M. Heide. 2009. Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L.) cultivar ‘Polka’. J. Hort. Sci. and Biotechnology 84:439-446. Sønsteby, A. and O.M. Heide. 2023. Temperature and daylength effects on growth and floral initiation in biennial-fruiting blackberry. Horticulturae 9:1285. Spiers, J.M. 1972. Effects of defoliation and bud-scale removal on bud activity in tung1. J. Amer. Soc. Hort. Sci. 97:277-279. Stafne, E.T. and J.R. Clark. 2004. Genetic relatedness among eastern North American blackberry cultivars based on pedigree analysis. Euphytica 139: 95-104. Strik, B.C., J.R. Clark, C.E. Finn, and .P. Banados. 2007. Worldwide blackberry production. HortTechnology 17:205-213. Strik, B.C. 2017. Growth and development, p. 17-34. In: H.K. Hall and R.C. Funt. (eds.). Blackberries and their hybrids. CAB Intl. Wallingford. UK. Suzuki, N. and R. Mittler. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 126:45-51. Takeda, F., B.C. Strik, D. Peacock, and J.R. Clark. 2002. Cultivar differences and the effect of winter temperature on flower bud development in blackberry. J. Amer. Soc. Hort. Sci. 127:495-501. Takeda, F. and M. Wisniewski. 1989. Organogenesis and patterns of floral bud development in two eastern thornless blackberry cultivars. J. Amer. Soc. Hort. Sci. 114:528-531. Thitithanakul, S., P. Gilles, C. Michel, and B. François. 2012. Supplying nitrate before bud break induces pronounced changes in nitrogen nutrition and growth of young poplars. Functional Plant Biol. 39:795-803. Wan, C., L. Mi, B. Chen, J. Li, H. Huo, J. Xu, and X. Chen. 2018. Effects of nitrogen during nursery stage on flower bud differentiation and early harvest after transplanting in strawberry. Brazilian J. Bot. 41:1-10. Warmund, M.R. and J. Krumme. 2005. A chilling model to estimate rest completion of erect blackberries. HortScience 40:1259-1262. White, J.M., H. Wainwright, and C.R. Ireland. 1999. Endodormancy and paradormancy in the raspberry cultivar ‘Glen Clova’. Acta Hort. 505:199-205. Wu, X., Y. Li, S. Zhang, M. Qie, and X. Feng. 2025. Sucrose participates in the flower bud differentiation regulation promoted by short pruning in blueberry. Fruit Res. 5:e025. Wu, Y., H. Yang, C. Zhang, L. Lyu, W. Li, and W. Wu. 2021. Selection and validation of candidate reference genes for gene expression analysis by RT-qPCR in Rubus. Intl. J. Molecular Sci. 22:10533. Xu, G., X. Fan, and A.J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63:153-182. Yamane, H., T. Ooka, H. Jotatsu, Y. Hosaka, R. Sasaki, and R. Tao. 2011. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J. Expt. Bot. 62:3481-3488. Yamane, H. 2014. Regulation of bud dormancy and bud break in Japanese apricot (Prunus mume Siebold & Zucc.) and peach (Prunus persica (L.) Batsch): a summary of recent studies. J. Japanese Soc. Hort. Sci. 83:187-202. Genome Database for Rosaceae, GDR. 2024. <https://www.rosaceae.org/> The Arabidopsis Information Resource, TAIR. 2024. <https://www.arabidopsis.org> USDA. 2025. Berry annual voluntary. <https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Berry%20Annual%20Voluntary_Guadalajara_Mexico_MX2025-0005.pdf> | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101163 | - |
| dc.description.abstract | 黑莓(Rubus spp.)之消費量在近十年大幅增加,為一具經濟潛力的莓果類作物。黑莓的花芽分化時程與條件受品種與栽培地區影響,在臺灣等亞熱帶地區常因低溫不足導致花芽分化不良,產量有限。本研究以‘Merton Thornless’黑莓為試驗材料,期能釐清花芽誘導與創始之條件,改善黑莓於亞熱帶地區萌芽時間不一及花芽形成率低的問題。試驗假說以尿素作為催芽劑,可提早一年生枝條之腋芽萌發,而當年生枝條經適當涼溫誘導會由營養生長態轉換為生殖生長態,進行花芽創始與分化。本試驗比較葉面施用10%尿素水溶液與施用自來水,並將植株置於日夜溫35/30℃、25/20℃、20/15℃及15/13℃,自然光照條件之人工氣候室中,調查不同處理組合對萌芽率、當年生新梢後續生長、花芽形成及關鍵開花基因FLOWERING LOCUS T (FT)和TERMINAL FLOWER 1 (TFL1)表現量之影響。試驗結果顯示,尿素處理與15/13℃顯著提升黑莓之萌芽率,而尿素處理與35/30℃、25/20℃和20/15℃促進新梢生長平均長度。25/20℃尿素處理組之FT相對表現量高於對照組,且TFL1表現被抑制,具誘導花芽創始的潛力。15/13℃尿素處理之FT與 TFL1相對表現量整體低於對照組,不利於花芽分化。本研究指出當年生枝條經適當的涼溫誘導,配合妥善田間管理,可能使黑莓進入花芽創始及分化。未來可進一步延長觀察時間與增加調查頻率,結合分子與形態學調查,深入闡明黑莓花芽形成之分子機制與環境調控因素。 | zh_TW |
| dc.description.abstract | Consumption of blackberry (Rubus spp.) has markedly increased over the past decade, making it a berry crop with considerable economic potential. The timing and conditions required for floral bud initiation of blackberry vary with cultivar and cultivation region. In subtropical areas such as Taiwan, insufficient chilling often leads to poor floral bud differentiation and low yield. This study used ‘Merton Thornless’ blackberry as the experimental material and aimed to clarify the conditions for floral bud induction and initiation, in order to improve the inconsistent budbreak timing and low floral bud formation commonly observed in subtropical regions. We hypothesized that urea acts as a forcing agent capable of advancing the budbreak of lateral buds on one-year-old canes, and that current-season shoots subjected to appropriate cool-temperature induction would transition from vegetative to reproductive growth, thereby initiating and differentiating floral buds. Plants were subjected to a foliar application of 10% urea solution or tap water before placing to a phytotron under natural light at day/night temperatures of 35/30°C, 25/20°C, 20/15°C, or 15/13°C. Budbreak rate, subsequent shoot growth, floral bud formation, and the expression of key flowering genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) were recorded to evaluate the effects of different treatment combinations. Results showed that urea treatment and 15/13°C significantly enhanced budbreak rate, while urea combined with 35/30°C, 25/20°C, or 20/15°C promoted shoot elongation. In the 25/20°C urea treatment, FT exhibited higher relative expression than the control, whereas TFL1 was suppressed, suggesting a potential role in inducing floral bud initiation. In contrast, both FT and TFL1 relative expression levels were generally lower under urea treatment at 15/13°C, which was unfavorable for floral bud differentiation. This study indicates that current-season shoots exposed to appropriate cool-temperature induction, combined with proper field management, may enter floral bud initiation and differentiation. Future research may extend the observation period and increase sampling frequency, and integrate molecular and morphological approaches to further elucidate the molecular mechanisms and environmental regulatory factors involved in blackberry floral bud formation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:10:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:10:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 ix 第一章 前人研究 1 1.1 前言 1 1.2 黑莓簡介 1 1.3 黑莓的生長週期 2 1.4 溫度對二年結果型黑莓花芽創始及發育的影響 2 1.5 黑莓休眠現象 4 1.6 開花調控相關基因 7 1.7 研究假說 8 第二章 材料與方法 10 2.1 試驗地點與植物材料 10 2.2 田間栽培管理 10 2.3 尿素處理 10 2.4 溫度處理 10 2.5 營養生長調查 11 2.5.1 萌芽率 11 2.5.2 新生枝梢數 11 2.5.3 當年生新梢平均長度 11 2.5.4 當年生新梢累積長度 11 2.6 生殖生長調查 11 2.6.1 腋芽分化情形 11 2.6.2 物候調查 12 2.7 開花相關基因表現 12 2.8 氣候資料蒐集 13 2.9 統計分析及製圖 13 第三章 試驗結果 14 3.1 營養生長調查 14 3.1.1萌芽率 (%) 14 3.1.2 新生枝梢數 14 3.1.3 當年生新梢平均長度 14 3.1.4當年生新梢累積長度 15 3.2 生殖生長調查 15 3.2.1 腋芽分化情形 15 3.2.2 物候調查 16 3.3 開花相關基因表現 16 第四章 討論 37 4.1 營養生長 37 4.2開花相關基因相對表現量 38 第五章 結論 41 參考文獻 42 附錄 48 附錄1. 萌芽示意圖 48 附錄2. 石蠟包埋及基因表現量採樣位置示意圖 49 附錄3. 石蠟包埋切片製作步驟 50 附錄4. 黑莓芽體發育階段對照表 52 附錄5. RNA萃取步驟 53 附錄6. cDNA合成步驟 54 附錄7. qPCR步驟 55 附錄8. RT-qPCR使用之引子序列 (5’to 3’) 56 附錄9. RNA純化步驟 57 附錄10. 2025年1月22日至2025年4月3日104溫室之每日均溫、最高溫和最低溫 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 黑莓 | - |
| dc.subject | 花芽創始 | - |
| dc.subject | 尿素 | - |
| dc.subject | 涼溫 | - |
| dc.subject | FT基因 | - |
| dc.subject | TFL1基因 | - |
| dc.subject | 萌芽 | - |
| dc.subject | Blackberry | - |
| dc.subject | Flower bud initiation | - |
| dc.subject | Urea | - |
| dc.subject | Cool temperature | - |
| dc.subject | FT gene | - |
| dc.subject | TFL1 gene | - |
| dc.subject | Budbreak | - |
| dc.title | 溫度及尿素催芽對‘Merton Thornless’黑莓腋芽生長之影響 | zh_TW |
| dc.title | Effects of temperature and urea spray on axillary bud growth in ’Merton Thornless’ blackberry (Rubus spp.) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李金龍;陳香君;許富鈞 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Lung Lee;Shiang-Jiuun Chen;Fu-Chiun Hsu | en |
| dc.subject.keyword | 黑莓,花芽創始尿素涼溫FT基因TFL1基因萌芽 | zh_TW |
| dc.subject.keyword | Blackberry,Flower bud initiationUreaCool temperatureFT geneTFL1 geneBudbreak | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202504780 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-12-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2026-01-01 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
