請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道 | zh_TW |
| dc.contributor.advisor | Yuh-Dauh Lyuu | en |
| dc.contributor.author | 蔡蔓萱 | zh_TW |
| dc.contributor.author | Man-Syuan Tsai | en |
| dc.date.accessioned | 2025-12-31T16:09:14Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-23 | - |
| dc.identifier.citation | [1] Babcock, B., Datar, M., & Motwani, R. (2002). Sampling from a moving window over streaming data. Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 633–634). Society for Industrial and Applied Mathematics. https://dl.acm.org/doi/10.5555/545381.545465
[2] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181. [3] Cai, X., Zhu, Y., Wang, X., & Yao, Y. (2024). MambaTS: Improved selective state space models for long-term time series forecasting. arXiv. https://doi.org/10.48550/arXiv.2405.16440 [4] Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (pp. 1724–1734). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1179 [5] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv. https://doi.org/10.48550/arXiv.1412.3555 [6] Cohen, G., & Aiche, A. (2023). Forecasting gold price using machine learning methodologies. Chaos, Solitons & Fractals, 175, 114079. https://doi.org/10.1016/j.chaos.2023.114079. [7] Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar—A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008 [8] Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day. [9] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. [10] Gu, A., & Dao, T. (2024). Mamba: Linear-time sequence modeling with selective state spaces. Proceedings of the First Conference on Language Modeling. https://openreview.net/forum?id=tEYskw1VY2#discussion [11] Gu, A., Dao, T., Ermon, S., Rudra, A., & Ré, C. (2020). HiPPO: Recurrent memory with optimal polynomial projections. Proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 1474–1487). Curran Associates. https://dl.acm.org/doi/10.5555/3495724.3495849 [12] Gu, A., Goel, K., & Ré, C. (2022). Efficiently modeling long sequences with structured state spaces. Proceedings of the Tenth International Conference on Learning Representations, ICLR 2022. https://openreview.net/forum?id=uYLFoz1vlAC [13] Hamilton, J. D. (1994). State-space models. In R. F. Engle & D. L. McFadden (Eds.), Handbook of Econometrics (Vol. 4, pp. 3039–3080). Elsevier. https://doi.org/10.1016/s1573-4412(05)80019-4 [14] Hastie, T., Friedman, J., & Tibshirani, R. (2001). The elements of statistical learning. Springer. https://doi.org/10.1007/978-0-387-21606-5 [15] Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall. [16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). IEEE. https://doi.org/10.1109/cvpr.2016.90. [17] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [18] Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001. [19] Jain, A. K., Jianchang Mao, & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31–44. https://doi.org/10.1109/2.485891 [20] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552 [21] Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using the artificial neural network–GARCH model. Expert Systems with Applications, 42(20), 7245–7251. https://doi.org/10.1016/j.eswa.2015.04.058 [22] Liu, M., Liu, Y., & Liu, J. (2025). Machine learning for infectious disease risk prediction: A survey. ACM Computing Surveys, 57(8), 1–39. https://doi.org/10.1145/3719663 [23] Liu, X., Zhang, C., & Zhang, L. (2024). Vision Mamba: A comprehensive survey and taxonomy. arXiv. https://doi.org/10.48550/arxiv.2405.04404 [24] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. https://dl.acm.org/doi/10.5555/1953048.2078195 [25] Prechelt, L. (1998). Early stopping–But when? In G. B. Orr & K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade (pp. 55–69). Springer. https://doi.org/10.1007/3-540-49430-8_3 [26] Primananda, S. B., & Isa, S. M. (2021). Forecasting gold price in Rupiah using multivariate analysis with LSTM and GRU neural networks. Advances in Science, Technology and Engineering Systems Journal, 6(2), 245–253. https://doi.org/10.25046/aj060227 [27] Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354. https://doi.org/10.1080/13658816.2014.885527 [28] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958. https://dl.acm.org/doi/10.5555/2627435.2670313 [29] Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16(4), 437–450. https://doi.org/10.1016/s0169-2070(00)00065-0 [30] Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103 [31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000–6010). Curran Associates. https://dl.acm.org/doi/10.5555/3295222.3295349 [32] Verma, S., Thampi, G. T., & Rao, M. (2020). ANN based method for improving gold price forecasting accuracy through modified gradient descent methods. IAES International Journal of Artificial Intelligence, 9(1), 46–57. https://doi.org/10.11591/ijai.v9.i1.pp46-57 [33] Yang, J., De Montigny, D., & Treleaven, P. (2022). ANN, LSTM, and SVR for gold price forecasting. Proceedings of the 2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (pp. 1–7). IEEE. https://doi.org/10.1109/cifer52523.2022.9776141 [34] Yang, X. (2019). The prediction of gold price using ARIMA model. Proceedings of the 2nd International Conference on Social Science, Public Health and Education (pp. 283–287). Atlantis Press. https://doi.org/10.2991/ssphe-18.2019.66 [35] Zhang, H., Zhu, Y., Wang, D., Zhang, L., Chen, T., Wang, Z., & Ye, Z. (2024). A survey on visual Mamba. Applied Sciences, 14(13), 5683. https://doi.org/10.3390/app14135683 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101158 | - |
| dc.description.abstract | 黃金作為全球重要的避險資產,其價格波動受多種經濟與政治因素影響,預測其走勢一直是金融領域的研究重點。本論文針對黃金價格的時間序列預測問題,探討三種深度學習模型——LSTM、GRU 與近期提出的 Mamba——在不同滑動視窗長度下的預測表現。所有模型均以過去 10 至 120 天的資料作為輸入,預測未來 365 個交易日的價格,並以平均絕對百分比誤差(MAPE)作為主要評估指標。
研究結果顯示,LSTM 在多數視窗設定下表現最佳,展現優異的預測能力;Mamba 次之,GRU 在短期視窗下誤差較大。儘管本研究僅針對 Mamba 進行超參數微調,LSTM 仍顯現出最佳的泛化能力。此結果顯示,LSTM 為三種黃金價格預測方法的首選。 | zh_TW |
| dc.description.abstract | As a key global safe-haven asset, gold is influenced by a variety of economic and political factors, making its price forecasting a long-standing focus in the financial domain. This thesis investigates the forecasting of gold prices using three deep learning models—LSTM, GRU, and the recently proposed Mamba—under different sliding window sizes. All models use historical data from the past 10 to 120 days as input to predict the next-day price over the following 365 trading days, with mean absolute percentage error (MAPE) as the evaluation metric.
The experimental results show that LSTM consistently achieves the best predictive performance across most window settings, demonstrating high forecasting accuracy. Mamba ranks second, while GRU performs relatively poorly at the shorter ends of sliding window sizes. Despite hyperparameters being set by the Mamba model, LSTM consistently outperforms both Mamba and GRU, except at the shortest sliding window size (10 days), where Mamba has a slight edge. These findings suggest that LSTM is the favored choice for gold price forecasting among the three. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:09:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:09:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iii 圖次 v 表次 vi 第1章 緒論 1 1.1 簡介 1 1.2 論文架構 2 第2章 背景 3 2.1 文獻回顧 3 2.2 RNN 4 2.3 LSTM 6 2.4 GRU 8 2.5 Mamba 11 2.5.1 SSM 11 2.5.2 HiPPO 11 2.5.3 S4 12 2.5.4 Mamba 12 第3章 實驗方法 14 3.1 資料來源與處理 14 3.2 實驗設計 15 3.3 訓練資料與驗證資料集 15 3.4 正規化 16 3.5 滾動窗口驗證 16 3.6 早停法 17 3.7 模型架構 17 第4章 實驗結果 18 4.1 評估指標 18 4.2 不同隱藏層維度對模型性能的影響 18 4.3 不同學習率對模型性能的影響 20 4.4 不同層數對模型性能的影響 22 4.5 滑動窗口大小與隱藏層維度設定對模型性能的影響 23 4.6 實驗結果 24 第5章 結論與展望 27 5.1 結論 27 5.2 未來展望 28 參考文獻 29 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 黃金價格預測 | - |
| dc.subject | 時間序列分析 | - |
| dc.subject | LSTM | - |
| dc.subject | GRU | - |
| dc.subject | Mamba | - |
| dc.subject | gold price forecasting | - |
| dc.subject | time series analysis | - |
| dc.subject | LSTM | - |
| dc.subject | GRU | - |
| dc.subject | Mamba | - |
| dc.title | Mamba 模型於黃金價格預測之應用:與 GRU、LSTM 之比較 | zh_TW |
| dc.title | Application of the Mamba Model for Gold Price Forecasting: A Comparison with GRU and LSTM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陸裕豪;張經略 | zh_TW |
| dc.contributor.oralexamcommittee | U-Hou Lok;Ching-Lueh Chang | en |
| dc.subject.keyword | 黃金價格預測,時間序列分析LSTMGRUMamba | zh_TW |
| dc.subject.keyword | gold price forecasting,time series analysisLSTMGRUMamba | en |
| dc.relation.page | 32 | - |
| dc.identifier.doi | 10.6342/NTU202504509 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-09-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 920.63 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
