Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張惠雯zh_TW
dc.contributor.advisorHui-Wen Changen
dc.contributor.author栗煒庭zh_TW
dc.contributor.authorWei-Ting Leeen
dc.date.accessioned2025-12-31T16:07:23Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-08-
dc.identifier.citation1. Fairbrother, J.M. and É. Nadeau, Colibacillosis, in Diseases of Swine. 2019. p. 807-834.
2. Luppi, A., Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porcine Health Manag, 2017. 3: p. 16.
3. Samie, A., Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications AU - Samie, Amidou. 2017, IntechOpen: Rijeka. p. 1–278.
4. Poirel, L., et al., Antimicrobial Resistance in Escherichia coli. Microbiol Spectr, 2018. 6(4).
5. Fairbrother, J.M., E. Nadeau, and C.L. Gyles, Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev, 2005. 6(1): p. 17-39.
6. Lee, I.K., et al., Stress, Nutrition, and Intestinal Immune Responses in Pigs - A Review. Asian-Australas J Anim Sci, 2016. 29(8): p. 1075-82.
7. Gimsa, U., M. Tuchscherer, and E. Kanitz, Psychosocial Stress and Immunity-What Can We Learn From Pig Studies? Front Behav Neurosci, 2018. 12: p. 64.
8. Johnson, T.J. and L.K. Nolan, Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev, 2009. 73(4): p. 750-74.
9. Nataro, J.P. and J.B. Kaper, Diarrheagenic Escherichia coli. Clin Microbiol Rev, 1998. 11(1): p. 142-201.
10. Makvana, S. and L.R. Krilov, Escherichia coli Infections. Pediatr Rev, 2015. 36(4): p. 167-70; quiz 171.
11. Kim, K., et al., Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol, 2022. 13: p. 885253.
12. Nagy, B. and P.Z. Fekete, Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res, 1999. 30(2-3): p. 259-84.
13. Dubreuil, J.D., R.E. Isaacson, and D.M. Schifferli, Animal Enterotoxigenic Escherichia coli. EcoSal Plus, 2016. 7(1).
14. Ruan, X. and W. Zhang, Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin-toxoid fusion (1FaeG-FedF-LTA₂:5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection. Vaccine, 2013. 31(11): p. 1458-63.
15. Fleckenstein, J.M., et al., Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect, 2010. 12(2): p. 89-98.
16. Frydendahl, K., Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol, 2002. 85(2): p. 169-82.
17. Hur, J. and J.H. Lee, Development of a novel live vaccine delivering enterotoxigenic Escherichia coli fimbrial antigens to prevent post-weaning diarrhea in piglets. Vet Immunol Immunopathol, 2012. 146(3-4): p. 283-8.
18. De Haan, L. and T.R. Hirst, Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol, 2004. 21(2): p. 77-92.
19. Duan, Q. and W. Zhang, Structure, Enterotoxicity, and Immunogenicity of Enterotoxigenic Escherichia coli Heat-Stable Type I Toxin (STa) and Derivatives, in Microbial Toxins, P. Gopalakrishnakone, et al., Editors. 2016, Springer Netherlands: Dordrecht. p. 1-22.
20. Chao, A.C., et al., Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. Embo j, 1994. 13(5): p. 1065-72.
21. Loos, M., A. Hellemans, and E. Cox, Optimization of a small intestinal segment perfusion model for heat-stable enterotoxin A induced secretion in pigs. Vet Immunol Immunopathol, 2013. 152(1-2): p. 82-6.
22. Dubreuil, J.D., A. Letellier, and J. Harel, A recombinant Escherichia coli heat-stable enterotoxin b (STb) fusion protein eliciting neutralizing antibodies. FEMS Immunol Med Microbiol, 1996. 13(4): p. 317-23.
23. Rousset, E., J. Harel, and J.D. Dubreuil, Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Infect Immun, 1998. 66(12): p. 5650-8.
24. Dreyfus, L.A., et al., Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc Natl Acad Sci U S A, 1993. 90(8): p. 3202-6.
25. Ngendahayo Mukiza, C. and J.D. Dubreuil, Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun, 2013. 81(8): p. 2819-27.
26. Schifferli, D.M., Adhesins of Enterotoxigenic Escherichia coli Strains That Infect Animals. EcoSal Plus, 2005. 1(2).
27. Rousset, E. and J.D. Dubreuil, [Bacterial enterotoxin receptors]. Vet Res, 2000. 31(4): p. 413-35.
28. Casey, T.A., B. Nagy, and H.W. Moon, Pathogenicity of porcine enterotoxigenic Escherichia coli that do not express K88, K99, F41, or 987P adhesins. Am J Vet Res, 1992. 53(9): p. 1488-92.
29. Ngeleka, M., et al., Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates. J Vet Diagn Invest, 2003. 15(3): p. 242-52.
30. Van den Broeck, W., E. Cox, and B.M. Goddeeris, Induction of immune responses in pigs following oral administration of purified F4 fimbriae. Vaccine, 1999. 17(15-16): p. 2020-9.
31. Dubreuil, J.D., Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins. Braz J Microbiol, 2021. 52(4): p. 2499-2509.
32. Oswald, I.P., Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet Res, 2006. 37(3): p. 359-68.
33. Vermeire, B., et al., Correction to: Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut. Vet Res, 2021. 52(1): p. 107.
34. Herath, M., et al., The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol, 2020. 10: p. 248.
35. Hansson, G.C. and M.E. Johansson, The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes, 2010. 1(1): p. 51-54.
36. Strugnell, R.A. and O.L. Wijburg, The role of secretory antibodies in infection immunity. Nat Rev Microbiol, 2010. 8(9): p. 656-67.
37. Kim, K., et al., 171 Young Scholar Presentation: Dietary supplementation of Bacillus subtilis influenced intestinal health and metabolomic profiles of weaned pigs experimentally infected with a pathogenic E. coli. J Anim Sci, 2020. 98(Suppl 3): p. 76-7.
38. Xue, Y., et al., Host inflammatory response inhibits Escherichia coli O157:H7 adhesion to gut epithelium through augmentation of mucin expression. Infect Immun, 2014. 82(5): p. 1921-30.
39. Sheikh, A., et al., Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infect Immun, 2022. 90(2): p. e0057221.
40. Baumgart, D.C. and A.U. Dignass, Intestinal barrier function. Curr Opin Clin Nutr Metab Care, 2002. 5(6): p. 685-94.
41. Bauer, H., et al., The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol, 2010. 2010: p. 402593.
42. Otani, T. and M. Furuse, Tight Junction Structure and Function Revisited. Trends Cell Biol, 2020. 30(10): p. 805-817.
43. Zihni, C., et al., Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol, 2016. 17(9): p. 564-80.
44. Berkes, J., et al., Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut, 2003. 52(3): p. 439-51.
45. Oami, T. and C.M. Coopersmith, Measurement of Intestinal Permeability During Sepsis. Methods Mol Biol, 2021. 2321: p. 169-175.
46. Hu, C., et al., Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br J Nutr, 2013. 110(4): p. 681-8.
47. McLamb, B.L., et al., Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One, 2013. 8(4): p. e59838.
48. Nagpal, R. and H. Yadav, Bacterial Translocation from the Gut to the Distant Organs: An Overview. Ann Nutr Metab, 2017. 71 Suppl 1: p. 11-16.
49. Balzan, S., et al., Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol, 2007. 22(4): p. 464-71.
50. Almeida, J.A., et al., Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs. J Anim Sci Biotechnol, 2013. 4(1): p. 52.
51. Luppi, A., et al., Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porcine Health Manag, 2016. 2: p. 20.
52. Fairbrother, J.M. and E.C. Nadeau, Diseases of swine. 2012, Zimmerman, J., Karriker, LA, Ramirez, A., Schwartz, KJ, Stevenson, GW, Zhang ….
53. Casey, T.A. and B.T. Bosworth, Design and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine. J Vet Diagn Invest, 2009. 21(1): p. 25-30.
54. Ståhl, M., et al., The use of quantitative PCR for identification and quantification of Brachyspira pilosicoli, Lawsonia intracellularis and Escherichia coli fimbrial types F4 and F18 in pig feces. Vet Microbiol, 2011. 151(3-4): p. 307-14.
55. Bywater, R.J., Diarrhoea treatments--fluid replacement and alternatives. Ann Rech Vet, 1983. 14(4): p. 556-60.
56. Thomson, J. and R.M. Friendship, Digestive System, in Diseases of Swine, J.J. Zimmerman, et al., Editors. 2012, Wiley-Blackwell. p. 199-226.
57. Roselli, M., et al., Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr, 2003. 133(12): p. 4077-82.
58. Yazdankhah, S., K. Rudi, and A. Bernhoft, Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis, 2014. 25.
59. Aarestrup, F.M., C. Oliver Duran, and D.G. Burch, Antimicrobial resistance in swine production. Anim Health Res Rev, 2008. 9(2): p. 135-48.
60. Vahjen, W., et al., High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog, 2015. 7: p. 23.
61. García-Meniño, I., et al., Clones of enterotoxigenic and Shiga toxin-producing Escherichia coli implicated in swine enteric colibacillosis in Spain and rates of antibiotic resistance. Vet Microbiol, 2021. 252: p. 108924.
62. Pissetti, C., et al., Antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. isolated from pigs subjected to different antimicrobial administration protocols. Res Vet Sci, 2021. 137: p. 174-185.
63. Holman, D.B. and M.R. Chénier, Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Can J Microbiol, 2015. 61(11): p. 785-98.
64. Ministério da Agricultura, P.e.A., Instrução Normativa nº 47, de 22 de novembro de 2016. 2016, Diário Oficial da União.
65. Do, K.H., J.W. Byun, and W.K. Lee, Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea. J Anim Sci Technol, 2020. 62(4): p. 543-552.
66. Collaborators, A.R., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 2022. 399(10325): p. 629-655.
67. Jiang, F., et al., Genotypes and Antimicrobial Susceptibility Profiles of Hemolytic Escherichia coli from Diarrheic Piglets. Foodborne Pathog Dis, 2019. 16(2): p. 94-103.
68. Rosager, W.N., et al., Comparison of antimicrobial resistance in E. coli isolated from rectal and floor samples in pens with diarrhoeic nursery pigs in Denmark. Prev Vet Med, 2017. 147: p. 42-49.
69. Stannarius, C., et al., Antimicrobial resistance in Escherichia coli strains isolated from Swiss weaned pigs and sows. Schweiz Arch Tierheilkd, 2009. 151(3): p. 119-25.
70. Zhang, W. and D.A. Sack, Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea. Clin Vaccine Immunol, 2015. 22(9): p. 983-91.
71. Liu, W., et al., Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Vet J, 2014. 199(2): p. 286-9.
72. Duan, Q., et al., Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol, 2019. 9: p. 292.
73. Bourgeois, A.L., T.F. Wierzba, and R.I. Walker, Status of vaccine research and development for enterotoxigenic Escherichia coli. Vaccine, 2016. 34(26): p. 2880-2886.
74. Svennerholm, A.M. and J. Holmgren, Oral vaccines against cholera and enterotoxigenic Escherichia coli diarrhea. Adv Exp Med Biol, 1995. 371b: p. 1623-8.
75. Dubreuil, J.D., Escherichia coli STb enterotoxin. Microbiology (Reading), 1997. 143 ( Pt 6): p. 1783-1795.
76. Mirhoseini, A., J. Amani, and S. Nazarian, Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microbial Pathogenesis, 2018. 117: p. 162-169.
77. Luise, D., et al., Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol, 2019. 10: p. 53.
78. Verdonck, F., et al., The polymeric stability of the Escherichia coli F4 (K88) fimbriae enhances its mucosal immunogenicity following oral immunization. Vaccine, 2008. 26(45): p. 5728-35.
79. Devriendt, B., et al., Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells. Vet Immunol Immunopathol, 2010. 135(3-4): p. 188-98.
80. Verdonck, F., et al., Different kinetic of antibody responses following infection of newly weaned pigs with an F4 enterotoxigenic Escherichia coli strain or an F18 verotoxigenic Escherichia coli strain. Vaccine, 2002. 20(23-24): p. 2995-3004.
81. Roesler, U., et al., Immunization of sows in an integrated pig-breeding herd using a homologous inactivated Salmonella vaccine decreases the prevalence of Salmonella typhimurium infection in the offspring. J Vet Med B Infect Dis Vet Public Health, 2006. 53(5): p. 224-8.
82. Hur, J. and J.H. Lee, Protection against neonatal Escherichia coli diarrhea by vaccination of sows with a novel multivalent vaccine candidate expressing E. coli adhesins associated with neonatal pig colibacillosis. Res Vet Sci, 2013. 94(2): p. 198-204.
83. Zhang, W., et al., Escherichia coli constructs expressing human or porcine enterotoxins induce identical diarrheal diseases in a piglet infection model. Appl Environ Microbiol, 2008. 74(18): p. 5832-7.
84. Zhang, W., et al., Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype MUC4 That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative. Appl Environ Microbiol, 2017. 83(3).
85. Jensen, G.M., et al., Experimental infection with Escherichia coli O149:F4ac in weaned piglets. Vet Microbiol, 2006. 115(1-3): p. 243-9.
86. Dahmer, P.L., et al., Summary of methodology used in enterotoxigenic Escherichia coli (ETEC) challenge experiments in weanling pigs and quantitative assessment of observed variability. Transl Anim Sci, 2023. 7(1): p. txad083.
87. Satam, H., et al., Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel), 2023. 12(7).
88. Veenemans, J., et al., Next-generation sequencing for typing and detection of resistance genes: performance of a new commercial method during an outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol, 2014. 52(7): p. 2454-60.
89. Clermont, O., D. Gordon, and E. Denamur, Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology (Reading), 2015. 161(Pt 5): p. 980-988.
90. Achtman, M., et al., Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog, 2012. 8(6): p. e1002776.
91. Ludden, C., et al., One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. mBio, 2019. 10(1).
92. Hu, J., et al., Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs. Front Microbiol, 2023. 14: p. 1244026.
93. Nammuang, D., et al., Isolation and evaluation of the pathogenicity of a hybrid shiga toxin-producing and Enterotoxigenic Escherichia coli in pigs. BMC Vet Res, 2024. 20(1): p. 480.
94. Robins-Browne, R.M., et al., Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front Cell Infect Microbiol, 2016. 6: p. 141.
95. Madoroba, E., et al., Prevalence of enterotoxigenic Escherichia coli virulence genes from scouring piglets in Zimbabwe. Trop Anim Health Prod, 2009. 41(7): p. 1539-47.
96. Paton, A.W. and J.C. Paton, Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol, 1998. 36(2): p. 598-602.
97. Bauer, A.W., et al., Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 1966. 45(4): p. 493-6.
98. Clinical and L.S. Institute, Performance standards for antimicrobial susceptibility testing. 30th ed, ed. Clinical and I. Laboratory Standards. 2020, Wayne, PA: Clinical and Laboratory Standards Institute.
99. Magiorakos, A.P., et al., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 2012. 18(3): p. 268-81.
100. Dubreuil, J.D., Escherichia coli STb toxin and colibacillosis: knowing is half the battle. FEMS Microbiol Lett, 2008. 278(2): p. 137-45.
101. Lothigius, A., et al., Enterotoxigenic Escherichia coli is detectable in water samples from an endemic area by real-time PCR. J Appl Microbiol, 2008. 104(4): p. 1128-36.
102. Botteldoorn, N., et al., Detection and characterization of verotoxigenic Escherichia coli by a VTEC/EHEC multiplex PCR in porcine faeces and pig carcass swabs. Res Microbiol, 2003. 154(2): p. 97-104.
103. Larsen, M.V., et al., Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol, 2012. 50(4): p. 1355-61.
104. Cosentino, S., et al., PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One, 2013. 8(10): p. e77302.
105. Zhang, Y., et al., Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes, 2022. 14(1): p. 2055943.
106. Hsueh, S.C., et al., Molecular Evidence for Intra- and Inter-Farm Spread of Porcine mcr-1-Carrying Escherichia coli in Taiwan. Front Microbiol, 2020. 11: p. 1967.
107. Duan, Q., et al., Heat-labile enterotoxin enhances F4-producing enterotoxigenic E. coli adhesion to porcine intestinal epithelial cells by upregulating bacterial adhesins and STb enterotoxin. Veterinary Research, 2022. 53(1): p. 88.
108. Shu, L.Z., et al., Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol, 2023. 16: p. 17562848231176427.
109. Syed, H.C. and J.D. Dubreuil, Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines. Microb Pathog, 2012. 53(3-4): p. 147-53.
110. Nassour, H. and J.D. Dubreuil, Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions. PLoS One, 2014. 9(11): p. e113273.
111. Faubert, C. and R. Drolet, Hemorrhagic gastroenteritis caused by Escherichia coli in piglets: Clinical, pathological and microbiological findings. Can Vet J, 1992. 33(4): p. 251-6.
112. Moxley, R.A., et al., Pathogenicity of an enterotoxigenic Escherichia coli hemolysin (hlyA) mutant in gnotobiotic piglets. Infect Immun, 1998. 66(10): p. 5031-5.
113. Xu, J., et al., Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms, 2023. 11(11).
114. Sha, W., et al., Swine Colibacillosis: Analysis of the Gut Bacterial Microbiome. Microorganisms, 2024. 12(6).
115. Boeckman, J.X., et al., Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci Rep, 2022. 12(1): p. 5024.
116. Farouk, W.I., et al., Warthin-Starry Staining for the Detection of Helicobacter pylori in Gastric Biopsies. Malays J Med Sci, 2018. 25(4): p. 92-99.
117. Tan, L. and P.S. Grewal, Comparison of two silver staining techniques for detecting lipopolysaccharides in polyacrylamide gels. J Clin Microbiol, 2002. 40(11): p. 4372-4.
118. Savadori, P., et al., A simplified method for detecting Gram-positive and Gram-negative bacteria in dental histological samples: A preliminary and comparative study. Acta Histochem, 2023. 125(1): p. 151992.
119. Shiomi, D., H. Mori, and H. Niki, Genetic mechanism regulating bacterial cell shape and metabolism. Commun Integr Biol, 2009. 2(3): p. 219-20.
120. Wang, M., et al., The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. J Anim Physiol Anim Nutr (Berl), 2020. 104(2): p. 606-615.
121. Arbuckle, J.B., The location of Escherichia coli in the pig intestine. J Med Microbiol, 1970. 3(2): p. 333-40.
122. Smith, T. and M.L. Orcutt, THE BACTERIOLOGY OF THE INTESTINAL TRACT OF YOUNG CALVES WITH SPECIAL REFERENCE TO THE EARLY DIARRHEA ("SCOURS"). J Exp Med, 1925. 41(1): p. 89-106.
123. Haley, B.J., et al., Genome-Wide Analysis of Escherichia coli Isolated from Dairy Animals Identifies Virulence Factors and Genes Enriched in Multidrug-Resistant Strains. Antibiotics (Basel), 2023. 12(10).
124. Hernandes, R.T., et al., Fimbrial adhesins produced by atypical enteropathogenic Escherichia coli strains. Appl Environ Microbiol, 2011. 77(23): p. 8391-9.
125. Alcántar-Curiel, M.D., et al., Emergence of IncFIA Plasmid-Carrying bla(NDM-1) Among Klebsiella pneumoniae and Enterobacter cloacae Isolates in a Tertiary Referral Hospital in Mexico. Microb Drug Resist, 2019. 25(6): p. 830-838.
126. Rebelo, A.R., et al., One Day in Denmark: Comparison of Phenotypic and Genotypic Antimicrobial Susceptibility Testing in Bacterial Isolates From Clinical Settings. Front Microbiol, 2022. 13: p. 804627.
127. Girija, A.S.S., J. Vijayashree Priyadharsini, and A. Paramasivam, Plasmid-encoded resistance to trimethoprim/sulfamethoxazole mediated by dfrA1, dfrA5, sul1 and sul2 among Acinetobacter baumannii isolated from urine samples of patients with severe urinary tract infection. J Glob Antimicrob Resist, 2019. 17: p. 145-146.
128. Mbanga, J., et al., Genomic Insights of Multidrug-Resistant Escherichia coli From Wastewater Sources and Their Association With Clinical Pathogens in South Africa. Front Vet Sci, 2021. 8: p. 636715.
129. Michelacci, V., et al., A new pathogenicity island carrying an allelic variant of the Subtilase cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clin Microbiol Infect, 2013. 19(3): p. E149-56.
130. Poonsuk, K. and J. Zimmerman, Historical and contemporary aspects of maternal immunity in swine. Anim Health Res Rev, 2018. 19(1): p. 31-45.
131. Moeser, A.J., C.S. Pohl, and M. Rajput, Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim Nutr, 2017. 3(4): p. 313-321.
132. Pluske, J., et al., Associations between gastrointestinal-tract function and the stress response after weaning in pigs. Animal Production Science, 2019. 59: p. 2015-2022.
133. Suiryanrayna, M.V. and J.V. Ramana, A review of the effects of dietary organic acids fed to swine. J Anim Sci Biotechnol, 2015. 6: p. 45.
134. Zeng, Z., et al., Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J Anim Sci Biotechnol, 2015. 6(1): p. 7.
135. Roselli, M., et al., Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Animal Feed Science and Technology, 2017. 233: p. 104-119.
136. Le Floc’h, N., et al., The relevance of functional amino acids to support the health of growing pigs. Animal Feed Science and Technology, 2018. 245: p. 104-116.
137. Waititu, S.M., et al., Dietary supplementation with a nucleotide-rich yeast extract modulates gut immune response and microflora in weaned pigs in response to a sanitary challenge. Animal, 2017. 11(12): p. 2156-2164.
138. Zhang, J., et al., Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J Anim Sci Biotechnol, 2015. 6(1): p. 39.
139. Jacobs, A.A., et al., Inhibition of adhesive activity of K88 fibrillae by peptides derived from the K88 adhesin. J Bacteriol, 1987. 169(2): p. 735-41.
140. Van den Broeck, W., et al., The F4 fimbrial antigen of Escherichia coli and its receptors. Vet Microbiol, 2000. 71(3-4): p. 223-44.
141. Francis, D.H., A.K. Erickson, and P.A. Grange, K88 adhesins of enterotoxigenic Escherichia coli and their porcine enterocyte receptors. Adv Exp Med Biol, 1999. 473: p. 147-54.
142. Grange, P.A., et al., Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli. Infect Immun, 1999. 67(1): p. 165-72.
143. Tusell, S.M., S.A. Schittone, and K.V. Holmes, Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol, 2007. 81(3): p. 1261-73.
144. Coddens, A., et al., Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli. PLoS One, 2011. 6(9): p. e23309.
145. Rippinger, P., et al., Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol, 1995. 45(4): p. 281-95.
146. Francis, D., Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. Journal of Swine Health and Production, 2002. 10: p. 171-175.
147. Nagy, B., et al., Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Microb Pathog, 1997. 22(1): p. 1-11.
148. Nagy, B. and P.Z. Fekete, Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol, 2005. 295(6-7): p. 443-54.
149. Smeds, A., et al., Characterization of the adhesin of Escherichia coli F18 fimbriae. Infect Immun, 2001. 69(12): p. 7941-5.
150. Coddens, A., et al., The age-dependent expression of the F18+ E. coli receptor on porcine gut epithelial cells is positively correlated with the presence of histo-blood group antigens. Vet Microbiol, 2007. 122(3-4): p. 332-41.
151. Willemsen, P.T. and F.K. de Graaf, Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog, 1992. 12(5): p. 367-75.
152. Conway, P.L., A. Welin, and P.S. Cohen, Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect Immun, 1990. 58(10): p. 3178-82.
153. Nadeau, É., et al., Efficacy of a single oral dose of a live bivalent E. coli vaccine against post-weaning diarrhea due to F4 and F18-positive enterotoxigenic E. coli. Vet J, 2017. 226: p. 32-39.
154. Jensen, M.L., et al., Escherichia coli challenge in newborn pigs. J Anim Sci, 2012. 90 Suppl 4: p. 43-5.
155. Bakker, D., et al., Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Mol Microbiol, 1992. 6(2): p. 247-55.
156. Smeds, A., et al., Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun, 2003. 71(4): p. 2163-72.
157. Tiels, P., et al., Monoclonal antibodies reveal a weak interaction between the F18 fimbrial adhesin FedF and the major subunit FedA. Vet Microbiol, 2007. 119(2-4): p. 115-20.
158. Verdonck, F., et al., Mucosal immunization of piglets with purified F18 fimbriae does not protect against F18+ Escherichia coli infection. Vet Immunol Immunopathol, 2007. 120(3-4): p. 69-79.
159. Vangroenweghe, F. and M. Boone, Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals (Basel), 2022. 12(17).
160. Correa, F., et al., Effect of an Escherichia coli F4/F18 bivalent oral live vaccine on gut health and performance of healthy weaned pigs. Animal, 2022. 16(11): p. 100654.
161. Makowska-Grzyska, M., et al., Protein production for structural genomics using E. coli expression. Methods Mol Biol, 2014. 1140: p. 89-105.
162. Donovan, R.S., C.W. Robinson, and B.R. Glick, Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol, 1996. 16(3): p. 145-54.
163. Bhatwa, A., et al., Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol, 2021. 9: p. 630551.
164. Mitraki, A., et al., Global suppression of protein folding defects and inclusion body formation. Science, 1991. 253(5015): p. 54-8.
165. Yang, X. and Y. Zhang, Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization. Appl Microbiol Biotechnol, 2013. 97(24): p. 10423-33.
166. Restrepo-Pineda, S., et al., Recombinant production of ESAT-6 antigen in thermoinducible Escherichia coli: the role of culture scale and temperature on metabolic response, expression of chaperones, and architecture of inclusion bodies. Cell Stress Chaperones, 2019. 24(4): p. 777-792.
167. de Groot, N.S. and S. Ventura, Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett, 2006. 580(27): p. 6471-6.
168. Imamoglu, R., et al., Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat Commun, 2020. 11(1): p. 365.
169. Peternel, S., et al., Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact, 2008. 7: p. 34.
170. Safarik, I. and M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol, 2004. 2(1): p. 7.
171. Porath, J., et al., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598-9.
172. Charlton, A. and M. Zachariou, Immobilized metal ion affinity chromatography of histidine-tagged fusion proteins. Methods Mol Biol, 2008. 421: p. 137-49.
173. Francis, D.M. and R. Page, Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci, 2010. Chapter 5(1): p. 5.24.1-5.24.29.
174. Bornhorst, J.A. and J.J. Falke, Purification of proteins using polyhistidine affinity tags. Methods Enzymol, 2000. 326: p. 245-54.
175. Qiagen, QIAexpress: Ni-NTA Technology for Reliable 6xHis-Tagged Protein Purification. 2001: Qiagen.
176. Malik, A., et al., Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli. Saudi J Biol Sci, 2016. 23(3): p. 410-9.
177. Rasooli, F. and A. Hashemi, Efficient expression of EpEX in the cytoplasm of Escherichia coli using thioredoxin fusion protein. Res Pharm Sci, 2019. 14(6): p. 554-565.
178. Grossman, T.H., et al., Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene, 1998. 209(1-2): p. 95-103.
179. Lewis, M., Allostery and the lac Operon. J Mol Biol, 2013. 425(13): p. 2309-16.
180. Oganesyan, N., et al., Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expr Purif, 2007. 52(2): p. 280-5.
181. Papp, E. and P. Csermely, Chemical chaperones: mechanisms of action and potential use. Handb Exp Pharmacol, 2006(172): p. 405-16.
182. Atroshenko, D.L., et al., Additivities for Soluble Recombinant Protein Expression in Cytoplasm of Escherichia coli. Fermentation, 2024. 10(3): p. 120.
183. Prasad, S., P.B. Khadatare, and I. Roy, Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol, 2011. 77(13): p. 4603-9.
184. Kaushik, J.K. and R. Bhat, Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem, 2003. 278(29): p. 26458-65.
185. Kusano, K., et al., Protein synthesis inhibitors and ethanol selectively enhance heterologous expression of P450s and related proteins in Escherichia coli. Arch Biochem Biophys, 1999. 367(1): p. 129-36.
186. Cao, H., et al., Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci Rep, 2017. 7: p. 44150.
187. Zheng, H., et al., Ethanol effects on the overexpression of heterologous catalase in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol, 2019. 103(3): p. 1441-1453.
188. Bushmarina, N.A., et al., Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci, 2006. 15(4): p. 659-71.
189. Pereira, D.A., et al., Humoral Immune Response of Immunized Sows with Recombinant Proteins of Enterotoxigenic Escherichia coli. World Journal of Vaccines, 2015. 5(1): p. 60-68.
190. Ruan, X., et al., A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection. Clin Vaccine Immunol, 2011. 18(10): p. 1593-9.
191. Liu, Y.Y., et al., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016. 16(2): p. 161-8.
192. Kuo, S.C., et al., Colistin resistance gene mcr-1 in Escherichia coli isolates from humans and retail meats, Taiwan. J Antimicrob Chemother, 2016. 71(8): p. 2327-9.
193. Duan, Q., et al., A multivalent vaccine candidate targeting enterotoxigenic Escherichia coli fimbriae for broadly protecting against porcine post-weaning diarrhea. Vet Res, 2020. 51(1): p. 93.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101149-
dc.description.abstract豬大腸桿菌病(swine colibacillosis)主要由腸毒性大腸桿菌(enterotoxigenic Escherichia coli ; ETEC)引起,於養豬產業中造成重大健康威脅,特別是在哺乳期豬隻造成早發型大腸桿菌下痢(neonatal diarrhea)及於離乳豬造成豬離乳後下痢(post-weaning diarrhea ; PWD)。早發型大腸桿菌下痢通常與母體移行抗體不足有關,豬離乳後下痢則發生於母乳轉換為固體飼料、移行抗體下降,加上免疫系統尚未成熟與環境壓力,使得仔豬特別容易受到腸道感染。ETEC菌株中,最常見的為表現出FaeG(F4 or K88)與FedF(F18)等菌毛黏附素的類型,兩者被認為與導致早發型(F4)及離乳後大腸桿菌(F4/F18)有關。菌株帶有這些貼附因子可附著於腸道上皮細胞,並分泌熱不穩定(heat-labile ; LT)與熱穩定(heat-stable ; STs)等腸毒素,導致體液平衡失調,進而引發分泌型下痢、脫水、生長遲滯甚至死亡。儘管已有包括抗生素與飼料添加劑等多項介入策略,但因抗生素抗藥性日益嚴重及歐美各國減少使用抗生素策略而更加棘手。近年來,針對F4與F18菌毛抗原所設計的疫苗,尤其是可誘導黏膜免疫的口服疫苗,被視為具潛力的防治策略。
雖然腸毒性大腸桿菌致病機轉及腸道貼附向性在離乳豬及田間豬隻已有多年之研究,然而帶有F4之腸毒性大腸桿菌對於新生仔豬動物模式和在不同腸道貼附向性研究有限,因此在第二章中,本研究首先以一株田間分離之 F4⁺ ETEC 菌株(PT4357),進行全基因定序,結果顯示,該菌株為 O8:H7 血清型,序列型別為 ST2521,且帶有多重毒力與抗藥性基因,包括 mcr-1。以ETEC PT4357對四日齡仔豬進行口服攻菌實驗,以評估其致病性及於不同腸道貼附向性,發現所有受試仔豬皆於接種後六小時內出現急性水樣下痢,這些豬隻於組織染色(H&E)檢查下無顯著組織病變,但可見細菌附著於十二指腸、空腸及迴腸全段小腸絨毛表面,且於Warthin-Starry與 Brown and Hopps染色下觀察更為顯著。腸道中也可重新分離出具有溶血特性的 ETEC,並經多重 PCR (multiplex PCR) 確認帶有與原接種菌株相同之F4、LT與STb基因。本研究不僅建立了一套可重現的新生仔豬 ETEC攻毒模型,了解早發型ETEC腸道組織向性,並提供該菌株於台灣流行之遺傳特徵與腸道定殖行為的重要資訊。
在第三章中,為進一步產製菌毛黏附素以做為未來疫苗候選,本研究進行ETEC F4的主要黏附亞基FaeG 與 F18的次要黏附亞基FedF的基因構築、表現與純化。經西方墨點法(Western blot)確認兩者皆有成功表現。此研究展示了表現與純化 FaeG 與 FedF 的可行性與挑戰,為未來開發診斷工具或免疫防治策略奠定基礎。
總結而言,本研究成功建立以田間分離 F4⁺ ETEC 菌株為基礎的新生仔豬攻毒模型,並研究其腸道向性為全段小腸。同時,本研究亦完成兩項關鍵黏附素 FaeG 與 FedF 的重組表現,可供未來驗證其作為次單位疫苗候選抗原之潛力。這些成果不僅提供評估 ETEC 致病性與防治策略的實驗平台,亦為未來針對豬隻新生仔豬下痢及斷奶後下痢之標靶疫苗與診斷工具開發奠定重要基礎。
zh_TW
dc.description.abstractSwine colibacillosis, primarily caused by enterotoxigenic Escherichia coli (ETEC), represents a significant health threat in pig farming, particularly leading to neonatal diarrhea in suckling piglets and post-weaning diarrhea (PWD) in weaned piglets. Neonatal diarrhea is typically associated with insufficient maternally derived antibodies, whereas PWD often occurs due to the transition from milk to solid feed, concurrent decline in passive immunity, immature immune function, and increased environmental stress, rendering piglets more susceptible to enteric infections. Among ETEC strains, those expressing fimbrial adhesins FaeG (F4 or K88) and/or FedF (F18) are most frequently identified and are considered major contributors to neonatal (F4) and post-weaning (F4/F18) colibacillosis. These adhesins facilitate bacterial adherence to the intestinal epithelium, followed by the secretion of enterotoxins, including heat-labile toxin (LT) and heat-stable toxins (STs), which disrupt fluid homeostasis, leading to secretory diarrhea, dehydration, growth retardation, and even death. Despite the use of antibiotics and feed additives as control measures, the growing concern over antimicrobial resistance and reduced antibiotic usage policies in Europe and other regions has made disease control increasingly challenging. Recently, vaccines targeting F4 and F18 fimbriae, particularly oral vaccines capable of inducing mucosal immunity, have been considered promising alternatives.
Although the pathogenesis and intestinal tropism of ETEC have been extensively studied in weaned or field piglets, research focusing on F4⁺ ETEC in neonatal piglets remains limited. Therefore, in the Chapter II of this study, a field isolate of F4⁺ ETEC (PT4357) was characterized. Whole-genome sequencing revealed that the strain belongs to the O8:H7 serotype, sequence type ST2521, and harbors multiple virulence and antimicrobial resistance genes, including mcr-1. A challenge experiment was conducted by orally inoculating 4-day-old piglets with the ETEC PT4357 to evaluate its pathogenicity and intestinal adhesion pattern. All ETEC PT4357 inoculated piglets developed acute watery diarrhea within six hours post-infection. Although no significant histological lesions were observed by H&E staining, extensive adherence of bacteria to the villous surface across the duodenum, jejunum, and ileum was noted, which became more prominent under Warthin-Starry and Brown and Hopps staining. Hemolytic ETEC was successfully re-isolated from intestinal contents and confirmed by multiplex PCR to carry F4, LT, and STb genes. This study successfully established a reproducible neonatal piglet ETEC challenge model and provided insights into the intestinal tropism and genomic characteristics of a field-derived ETEC strain prevalent in Taiwan.
In Chapter III, to facilitate the development of potential vaccine candidates, we cloned, expressed, and purified the major fimbrial adhesin FaeG (F4) and the minor adhesin FedF (F18). Western blotting confirmed successful expression of both recombinant proteins. The study demonstrated the feasibility and challenges of expressing and purifying FaeG and FedF, and laid a foundation for future development of diagnostic tools and immunoprophylactic strategies.
In conclusion, this study established a neonatal piglet challenge model based on a field-isolated F4⁺ ETEC strain and confirmed its intestinal tropism encompassing the entire small intestine. Furthermore, two key recombinant fimbrial adhesins, FaeG and FedF, were successfully constructed and generated. Their potential as subunit vaccine candidates should be further investigated in the future. These findings provide not only an experimental platform for evaluating ETEC pathogenicity and intervention strategies but also a solid basis for the development of targeted vaccines and diagnostic tools against neonatal and post-weaning diarrhea in pigs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:07:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:07:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Table of Contents vii
List of Tables x
List of Figures xi
Chapter I. Introduction 1
1. Overview 2
2. Taxonomy and Classification of Escherichia coli 3
3. Pathogenic E. coli in Swine and Their Economic Importance 4
4. Pathotypes 4
5. Enterotoxigenic E. coli (ETEC) 4
5.1 Clinical signs 4
5.2 Neonatal diarrhea 5
5.3 Post-weaning diarrhea (PWD) 5
5.4 Toxins of ETEC 6
5.5 Adhesins of ETEC 8
6. Disruption of the Intestinal Barrier During ETEC Infection 9
6.1 Mucus 10
6.2 Tight junction and epithelial barrier 11
7. Diagnosis 12
8. Bacteriology and Characterization of Bacterial Isolates 13
9. Histopathology 15
10. Differential Diagnosis 15
11. Treatments of Enteric Colibacillosis 16
11.1 Zinc Oxide: Therapeutic Benefits and Regulatory Concerns 16
11.2 Antimicrobial Prevalence in Enteric Colibacillosis Treatment 17
11.3 Vaccines 19
12. Challenges in Enterotoxin-Based Vaccine Development 20
13. Aim of the Study 21
Chapter II. Experimental characterization of the pathogenicity and intestinal tropisms of a neonatal Enterotoxigenic Escherichia coli in piglets 24
Summary 25
1. Introduction 26
2. Material and methods 30
2.1 Bacterial strain and detection of virulence genes 30
2.2 F4+ ETEC strain inoculation in an early-weaning piglet model 31
2.2.1 Animals 31
2.2.2 Bacterial strain and animal inoculation procedures 31
2.3 Whole genome sequencing 33
2.4 Antimicrobial susceptibility 33
3. Results 35
3.1 Determination of virulence factors of the pathogenic E. coli strain 35
3.2 Pathogenicity evaluation of the F4+ ETEC in piglets 35
3.3 Bacterial re-isolation 36
3.4 Next-generation sequencing of the F4+ ETEC strain 36
4. Discussion 38
Tables 44
Figures 45
Chapter III. Construction of Fimbrial Adhesins of Porcine Enterotoxigenic Escherichia coli 52
Summary 53
1. Introduction 54
2. Material and methods 57
2.1 Construction of recombinant plasmids encoding the main adhesin of ETEC fimbriae 57
2.2 Small-scale expression of recombinant plasmids 58
2.3 Western blot analysis 59
2.4 Large-scale protein expression and purification 61
3. Results 64
3.1 Construction of recombinant plasmids encoding adhesins of ETEC fimbriae 64
3.2 Detection of protein expression 64
4. Discussion 65
Chapter IV. General Discusssions and Conclusions 77
References 81
-
dc.language.isoen-
dc.subjectF4⁺ ETEC-
dc.subject新生仔豬攻毒模型-
dc.subject菌毛黏附素-
dc.subject次單位疫苗-
dc.subject重組蛋白表現-
dc.subject全基因定序-
dc.subjectF4⁺ ETEC-
dc.subjectneonatal piglet challenge model-
dc.subjectfimbrial adhesins-
dc.subjectsubunit vaccine-
dc.subjectrecombinant protein expression-
dc.subjectwhole-genome sequencing-
dc.title豬腸毒性大腸桿菌線毛之主要黏附素之產製及試驗評估田間分離株於哺乳豬致病性及腸道趨向zh_TW
dc.titleGeneration of Fimbrial Main Adhesins and Characterization of the Pathogenicity and Intestinal Tropisms of a Field Isolated Enterotoxigenic Escherichia coli in Neonatal Pigletsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張晏禎;張佳瑜;邱慧英zh_TW
dc.contributor.oralexamcommitteeYen-Chen Chang;Chia-Yu Chang;Hue-Ying Chiouen
dc.subject.keywordF4⁺ ETEC,新生仔豬攻毒模型菌毛黏附素次單位疫苗重組蛋白表現全基因定序zh_TW
dc.subject.keywordF4⁺ ETEC,neonatal piglet challenge modelfimbrial adhesinssubunit vaccinerecombinant protein expressionwhole-genome sequencingen
dc.relation.page96-
dc.identifier.doi10.6342/NTU202504758-
dc.rights.note未授權-
dc.date.accepted2025-12-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept分子暨比較病理生物學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved