Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101142
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author宋易哲zh_TW
dc.contributor.authorYi-Thiat Songen
dc.date.accessioned2025-12-31T16:05:56Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-29-
dc.identifier.citationRA Collacott, “Mechanical Fault Diagnosis”, Chapman and Hall London, A Halstead Press Book John Wiley & Sons, New York, 1977.
Mariela Cerrada, René-Vinicio Sánchez, Chuan Li, Fannia Pacheco, Diego Cabrera, José Valente de Oliveira, Rafael E. Vásquez, “A review on data-driven fault severity assessment in rolling bearings”, Mechanical Systems and Signal Processing, Volume 99, 2018, Pages 169-196, ISSN 0888-3270.
Chen Wang, Min Wang, Bin Yang, Kaiyu Song, Yiling Zhang, Liming Liu, “A novel for fault size estimation of ball bearing methodology using stator current signal”, Measurement, Volume 171, 2021, 108723, ISSN 0263- 2241.
Paul Krause, Oleg Wasynczuk, Scott Sudhoff, Steven Pekarek, " ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS (3rd ed.)", Chapter 2.4 "AIR-GAP MAGNATOMOTIVE ", John Wiley & Sons, Inc., 2013.
Mohammad F. Yakhni, Sebastien Cauet, Anas Sakout, Hassan Assoum, Erik Etien, Laurent Rambault, Mohamed El-Gohary, "Variable speed induction motors' fault detection based on transient motor current signatures analysis: A review", Mechanical Systems and Signal Processing, Volume 184, 2023, 109737, ISSN 0888-3270.
G. Niu, X. Dong and Y. Chen, "Motor Fault Diagnostics Based on Current Signatures: A Review", IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-19, 2023, Art no. 3520919.
Inaki Bravo-Imaz, Hossein Davari Ardakani, Zongchang Liu, Alfredo García-Arribas, Aitor Arnaiz, Jay Lee, "Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging", Mechanical Systems and Signal Processing, Volume 94, 2017, Pages 73-84, ISSN 0888-3270.
Ruiliang Zhang, Fengshou Gu, Haram Mansaf, Tie Wang, Andrew D. Ball, “Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis”, Mechanical Systems and Signal Processing, Volume 94, 2017, Pages 202- 213, ISSN 0888-3270.
A. Ibrahim, M. El Badaoui, F. Guillet and F. Bonnardot, "A New Bearing Fault Detection Method in Induction Machines Based on Instantaneous Power Factor", IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4252-4259, Dec. 2008.
M. Blodt, P. Granjon, B. Raison and G. Rostaing, "Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring," IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1813-1822, April 2008.
R. R. Schoen, T. G. Habetler, F. Kamran and R. G. Bartfield, "Motor bearing damage detection using stator current monitoring," IEEE Transactions on Industry Applications, vol. 31, no. 6, pp. 1274-1279, Nov.-Dec. 1995.
S. Singh and N. Kumar, "Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring," IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1341-1349, June 2017.
S. Nazari, S. Shokoohi and J. Moshtagh, "A Current Noise Cancellation Method Based on Integration of Stator Synchronized Currents for Bearing Fault Diagnosis," IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1-8, 2024, Art no. 3504208.
F. Dalvand, S. Dalvand, F. Sharafi and M. Pecht, "Current Noise Cancellation for Bearing Fault Diagnosis Using Time Shifting," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8138-8147, Oct. 2017.
Chen Wang, Min Wang, Bin Yang, Kaiyu Song, Yiling Zhang, Liming Liu, “A novel methodology for fault size estimation of ball bearings using stator current signal”, Measurement, Volume 171, 2021, 108723, ISSN 0263-2241.
E. Jacobsen and R. Lyons, "The sliding DFT," IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 74-80, March 2003, doi: 10.1109/MSP.2003.1184347.
Lyons, R. G., “Understanding Digital Signal Processing (3rd ed.)”, Chapter 11 “Signal Averaging”, Pearson, 2011.
Rulph Chassaing and Donald Reay, " Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK (2nd ed.) ", Appendix F "Goertzel Algorithm", John Wiley & Sons, Inc., 2008.
Kanti V. Mardia and Peter E. Jupp, " Directional Statistics ", Chapter 9.2 "Descriptive Measurement ", John Wiley & Sons, Inc., 2000.
M. Afshar, C. Li and B. Akin, "Real-Time Current-Based Distributed Bearing Faults Detection in Small Cooling Fan Motors," IEEE Transactions on Industry Applications, vol. 60, no. 2, pp. 3188-3199, March-April 2024.
P. Zhang, Y. Du, T. G. Habetler, and B. Lu, "A survey of condition monitoring and protection methods for medium-voltage induction motors," IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 34-46, 2011.
W. T. Thomson and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE Industry Applications Magazine, vol. 7, no. 4, pp. 26-34, 2001.
M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 984-993, 2000.
J. R. Rivera-Guillen et al., “Enhanced FFT-based method for incipient broken rotor bar detection in induction motors during the startup transient,” Measurement, vol. 124, pp. 277–285, 2018.
F. Dalvand, M. Kang, S. Dalvand and M. Pecht, "Detection of Generalized-Roughness and Single-Point Bearing Faults Using Linear Prediction-Based Current Noise Cancellation," in IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9728-9738, Dec. 2018.
K. C. D. Kompella et al., “Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2427–2439, 2018.
X. Song, Z. Wang, and J. Hu, “Detection of bearing outer race fault in induction motors using motor current signature analysis,” ICEMS, 2019.
Becker, Vincent, Thilo Schwamm, Sven Urschel, and Jose Alfonso Antonino-Daviu. "Two Current-Based Methods for the Detection of Bearing and Impeller Faults in Variable Speed Pumps" Energies 14, no. 15: 4514, 2021.
P. Doré et al., “New fault bearing system for proactive detection in induction machines based on variable projection method: A comparative study,” Advances in Mechanical Engineering, vol. 16, no. 9, 2024.
M. F. Yakhni et al., “Variable speed induction motors’ fault detection based on transient motor current signatures analysis: A review,” Mechanical Systems and Signal Processing, vol. 184, p. 109737, 2023.
X. Liu and Q. Sun, “Experimental fault diagnosis for cylindrical roller bearings in high-speed railway motors via stator current analysis and demodulation techniques,” Journal of Vibration and Control, 2025.
A. Soualhi et al., “Bearing Health Monitoring Based on Hilbert-Huang Transform, Support Vector Machine, and Regression,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 52–62, 2015.
H. Li et al., “A Normalized Frequency-Domain Energy Operator for Broken Rotor Bar Fault Diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.
D. M. Sonje, A. Chowdhury and P. Kundu, "Fault diagnosis of induction motor using parks vector approach," 2014 International Conference on Advances in Electrical Engineering (ICAEE), Vellore, India, 2014, pp. 1-4.
L. E. Rikam et al., “Quaternion Fourier Transform spectral analysis of electrical currents for bearing faults detection and diagnosis,” Mechanical Systems and Signal Processing, vol. 168, p. 108656, 2022.
H. Nakamura and Y. Mizuno, “Diagnosis for Slight Bearing Fault in Induction Motor Based on Combination of Selective Features and Machine Learning,” Energies, vol. 15, no. 2, p. 453, 2022.
M. Kang et al., “An FPGA-Based Multicore System for Real-Time Bearing Fault Diagnosis Using Ultrasampling Rate AE Signals,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2319–2329, 2015.
A. Ibrahim et al., “A New Bearing Fault Detection Method in Induction Machines Based on Instantaneous Power Factor,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4252–4259, 2008.
E. Elbouchikhi et al., “Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation,” ISA Transactions, vol. 63, pp. 413–424, 2016.
J. L. Contreras-Hernandez et al., “Quaternion Signal Analysis Algorithm for Induction Motor Fault Detection,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8843–8850, 2019.
I. Boldea and S. A. Nasar, The Induction Machine Handbook. Boca Raton, FL: CRC Press, 2001.
J. Hang et al., "Online Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using Zero-Sequence Components," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6731-6741, 2015.
S. Choi et al., "Inter-turn Short Fault Diagnosis of PMSM for Electric Vehicles based on Signal Injection," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8303-8312, 2017.
F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.
S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.
J. F. Kaiser, "On a simple algorithm to calculate the 'energy' of a signal," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 1990, pp. 381-384.
N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A, vol. 454, no. 1971, pp. 903-995, 1998.
J. R. Blaschke et al., "The influence of the load on the detection of broken rotor bars in induction motors," IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3253-3261, 2014.
R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, 1986.
A. J. M. Cardoso et al., "Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park's vector approach," IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 595-598, 1999.
O. Janssens et al., "Convolutional Neural Network Based Fault Detection for Rotating Machinery," Journal of Sound and Vibration, vol. 377, pp. 331-345, 2016.
R. Zhao et al., "Deep learning and its applications to machine health monitoring," Mechanical Systems and Signal Processing, vol. 115, pp. 213-237, 2019.
Y. Lei et al., "Applications of machine learning to machine fault diagnosis: A review and roadmap," Mechanical Systems and Signal Processing, vol. 138, p. 106587, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101142-
dc.description.abstract滾珠軸承為電機機械的關鍵元件,其故障將導致工業設備停機,甚至在車用領域引發嚴重事故。傳統的軸承故障診斷多依賴加速規量測振動訊號,但此類感測器不僅具有安裝受限的問題,亦伴隨較高的感測成本。基於上述動機,本研究提出一種基於電流訊號分析(Motor Current Signature Analysis, MCSA)的軸承故障診斷方法,旨在以低成本之32位元微控制器上實現即時軸承診斷。研究中利用永磁同步馬達(Permanent Magnet Synchronous Motor, PMSM)之相電流訊號作為故障特徵來源,並針對故障電流訊號之訊噪比(SNR)偏低的問題,提出三項改良方法以提升 MCSA 診斷效能:
(1)建立軸承故障電流之解析模型,用以評估馬達參數對 MCSA 診斷效能的敏感度。
(2)提出相電流同步技術以提升故障諧波之SNR,並透過「短路測試」量測感應電流,以避免PWM諧波對故障訊號的干擾。
(3)採用Goertzel演算法實現即時離散傅立葉轉換(DFT),使低成本微控制器能進行即時故障判別。
本研究於兩部參數不同的 PMSM上進行實驗驗證,所有診斷流程的演算邏輯僅需65kB記憶體,可有效實現於32位元微控制器中,並在10 kHz中斷服務例程(ISR)下僅佔用約2% 計算負載。結果證實所提出之方法可有效提升 MCSA 於低成本嵌入式系統上的即時軸承故障診斷能力。
zh_TW
dc.description.abstractBearings are critical components inside electric motors. Bearing failures cause the equipment downtown in industry or sever accidents in automobile. Traditional bearing fault diagnostic methods rely on vibrational signature detection through accelerometers. These sensors suffer from installation limitations and considerable sensor cost. Under this motivation, this paper proposes a bearing fault diagnostic method based on motor current signature analysis (MCSA). The purpose is to implement this MCSA of bearing fault on real-time 32-bit microcontrollers at low cost. On the basis, phase current signals inside permanent magnet synchronous motor (PMSM) are utilized for bearing fault detection. Because fault reflected current signatures typically contains insufficient signal-to-noise ratio (SNR), three improvements are used to improve the MCSA-based bearing fault detection using existing microcontroller.
1)An analytical model for bearing fault reflected current is developed to evaluate the motor parameter sensitivity on MCSA performance.
2)A phase current synchronization algorithm is proposed to increase the SNR of fault reflected current harmonics. Besides, the motor short-circuit current measurement is performed to eliminate PWM harmonics on fault currents.
3)A real-time Goertzel-based discrete Fourier transform (DFT) is used for real-time fault detection on a low-cost microcontroller.
The proposed MCSA fault detection is experimentally validated on two PMSMs with different parameters. All bearing diagnostic algorithms are implemented on a 32-bit microcontroller with only 65 kB memory size and 2% computation burden under 10kHz interrupt service routine (ISR).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:05:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:05:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
Abstract ii
Abstract in Chinese iv
Table of contents v
List of Figures vii
List of Tables x
Chapter 1 1
Introduction 1
1.1 Background 2
1.2 Literature review 3
1.3 Research opportunities 11
1.4 Dissertation outline 13
Chapter 2 15
Theory of Bearing Fault Diagnosis 15
2.1 Characteristics frequency of bearing fault 16
2.2 MCSA for bearing fault diagnosis 18
Chapter 3 41
Methodology for Bearing Fault Diagnosis with MCSA 41
3.1 Parameter Sensitivity Analysis 42
3.2 Discrete Fourier Transform for real-time diagnostics 45
3.2.1 Introduction of sliding-Discrete Fourier Transform (SDFT) 45
3.2.2 Proposed method for real-time diagnostic with Goertzel-based algorithm 50
3.3 Summation of Three-Phase Current Signatures 57
3.3.1 Rationale and theory of phase-aligned synchronous summation 57
3.3.2 Implement on MCU 61
3.4 Short-circuit Current Detection 65
3.5 Experimental setup 69
Chapter 4 73
Experimental Results 73
4.1 Fault reflected current signature verification 74
4.2 Phase current signatures summation improvement 76
4.3 Short-circuit current improvement 79
4.3 Bearing fault diagnosis for PMSM with FSCW 83
4.4.1 Short-circuit test result for PMSM with FSCW 84
4.4.2 Open-circuit test result for PMSM with FSCW 87
Chapter 5 91
Conclusion and Future Work 91
5.1 Conclusion 92
5.2 Future work 93
Bibliographies 99
-
dc.language.isoen-
dc.subject滾動軸承裂紋-
dc.subject軸承故障診斷-
dc.subject流特徵分析(MCSA)-
dc.subject預兆式管理系統(PMS)-
dc.subject早期故障診斷(EBD)-
dc.subjectrolling bearing cracks-
dc.subjectbearing fault diagnosis-
dc.subjectmotor current signature analysis (MCSA)-
dc.subjectprognostic management system (PMS)-
dc.subjectearly fault diagnosis (EBD)-
dc.title基於電流特定邊頻特徵之永磁同步馬達軸承故障診斷zh_TW
dc.titleBearing Fault Diagnosis Using the Side-band Based Current Signature Analysis for Permanent Magnet Synchronous Motoren
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡孟勳;蔡文彬;周志正;蔡一豪zh_TW
dc.contributor.oralexamcommitteeMeng-Shiun Tsai;Wen-Bin Tsai;Chih-Cheng Chou;I-Haur Tsaien
dc.subject.keyword滾動軸承裂紋,軸承故障診斷流特徵分析(MCSA)預兆式管理系統(PMS)早期故障診斷(EBD)zh_TW
dc.subject.keywordrolling bearing cracks,bearing fault diagnosismotor current signature analysis (MCSA)prognostic management system (PMS)early fault diagnosis (EBD)en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202504825-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-12-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-12-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
3.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved