Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101138
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳建彰zh_TW
dc.contributor.advisorJian-Zhang Chenen
dc.contributor.author吳幸真zh_TW
dc.contributor.authorHsing-Chen Wuen
dc.date.accessioned2025-12-31T16:05:00Z-
dc.date.available2026-01-01-
dc.date.copyright2025-12-31-
dc.date.issued2025-
dc.date.submitted2025-12-29-
dc.identifier.citation1. Morales-Guio, C.G., L.A. Stern, and X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev, 2014. 43(18): p. 6555-69.
2. Al-Naggar, A.H., et al., Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 2023. 474: p. 214864.
3. Wang, S., A. Lu, and C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg, 2021. 8(1): p. 4.
4. Zhu, K., et al., The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy, 2020. 73: p. 104761.
5. Chueh, C.C., et al., Enhanced Oxygen Evolution Reaction Performance of NiMoO(4)/Carbon Paper Electrocatalysts in Anion Exchange Membrane Water Electrolysis by Atmospheric-Pressure Plasma Jet Treatment. Langmuir, 2024. 40(46): p. 24675-24686.
6. Chiu, L.-D., et al., NiMoO4 Nanowires Supported on Stainless-Steel, Carbon, and Nickel Fiber Papers as Catalysts for the Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolysis. ACS Applied Nano Materials, 2025. 8(38): p. 18446-18457.
7. Chueh, C.-C., et al., Low-pressure-plasma-treated NiMoO4/Carbon paper for enhanced hydrogen evolution reaction in alkaline water electrolysis. Ceramics International, 2025. 51(16): p. 22707-22715.
8. Tseng, C.-Y., I.C. Cheng, and J.-Z. Chen, Low-pressure-plasma-processed NiFe-MOFs/nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(85): p. 35990-35998.
9. Su, Y.-L., et al., Low-Pressure Plasma-Processed NiCo Metal–Organic Framework for Oxygen Evolution Reaction and Its Application in Alkaline Water Electrolysis Module. Journal of Composites Science, 2024. 8(1): p. 19.
10. Whitehead, J.C., Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 2016. 49(24): p. 243001.
11. Neyts, E.C., et al., Plasma Catalysis: Synergistic Effects at the Nanoscale. Chem Rev, 2015. 115(24): p. 13408-46.
12. Samukawa, S., et al., The 2012 Plasma Roadmap. Journal of Physics D: Applied Physics, 2012. 45(25): p. 253001.
13. Li, G., et al., Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications. Journal of Alloys and Compounds, 2023. 948: p. 169773.
14. Dai, J., et al., High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. Journal of Alloys and Compounds, 2016. 685: p. 784-798.
15. Su, B., Z.C. Cao, and Z.J. Shi, Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc Chem Res, 2015. 48(3): p. 886-96.
16. Wang, Y., et al., Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017. 15: p. 26-55.
17. Yu, S.-E., et al., Microwave-plasma-processed self-catalyzed stainless steel fiber paper porous transport layer for anion exchange membrane water electrolysis. Journal of Power Sources, 2025. 640: p. 236735.
18. Dincer, I. and C. Acar, Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015. 40(34): p. 11094-11111.
19. Dawood, F., M. Anda, and G.M. Shafiullah, Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020. 45(7): p. 3847-3869.
20. Machiel Mulder, P.P. and J.L. Moraga, Outlook for a Dutch hydrogen market economic conditions and scenarios. 2019.
21. Anwar, S., et al., Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021. 46(63): p. 32284-32317.
22. Terlouw, T., et al., Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy & Environmental Science, 2022. 15(9): p. 3583-3602.
23. Shiva Kumar, S. and H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 2022. 8: p. 13793-13813.
24. https://www.thermofisher.com/blog/identifying-threats/hydrogen-goes-green-the-role-of-on-line-gas-analysis-in-supporting-a-clean-energy-future/.
25. https://planet-a.medium.com/unveiling-hydrogens-true-colors-how-clean-is-it-really-209480d130b6.
26. Chi, J. and H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 2018. 39(3): p. 390-394.
27. Grigoriev, S.A., et al., Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy, 2020. 45(49): p. 26036-26058.
28. Buttler, A. and H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 2018. 82: p. 2440-2454.
29. Schmidt, O., et al., Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 2017. 42(52): p. 30470-30492.
30. Sebbahi, S., et al., A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2024. 82: p. 583-599.
31. Xie, X., et al., Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022. 32(21).
32. Wang, X., et al., Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Adv Mater, 2022. 34(50): p. e2107956.
33. Tong, W., et al., Electrolysis of low-grade and saline surface water. Nature Energy, 2020. 5(5): p. 367-377.
34. Santoro, C., et al., What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future. ChemSusChem, 2022. 15(8): p. e202200027.
35. Liang, Q., G. Brocks, and A. Bieberle-Hütter, Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics: Energy, 2021. 3(2): p. 026001.
36. Wang, C., et al., Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. Nanomicro Lett, 2023. 15(1): p. 52.
37. Liu, X., et al., Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Materials Today Energy, 2020. 18: p. 100524.
38. Liang, X., et al., Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions. Angew Chem Int Ed Engl, 2019. 58(23): p. 7631-7635.
39. Rong, C., et al., Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway. Adv Mater, 2025. 37(9): p. e2416362.
40. Liu, X.-M., et al., Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021. 53: p. 290-302.
41. Vij, V., et al., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017. 7(10): p. 7196-7225.
42. Yoo, J.S., et al., Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on Perovskites. ACS Catalysis, 2018. 8(5): p. 4628-4636.
43. Yu, J., et al., Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019. 9(11): p. 9973-10011.
44. Guo, Y., et al., Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv Mater, 2019. 31(17): p. e1807134.
45. Wu, Z.P., et al., Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020. 30(15).
46. Wu, X.-K., et al., Theoretical design of bifunctional single-atom catalyst over g-C2N2 for oxygen evolution and reduction reactions. Catalysis Today, 2024. 433: p. 114657.
47. Zhao, G., et al., Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 2018. 28(43).
48. Strmcnik, D., et al., Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016. 29: p. 29-36.
49. Sagu, J.S., D. Mehta, and K.G.U. Wijayantha, Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochemistry Communications, 2018. 87: p. 1-4.
50. Suen, N.T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 2017. 46(2): p. 337-365.
51. Chen, D. and Z. Liu, Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. ChemSusChem, 2018. 11(19): p. 3438-3448.
52. Hou, X., et al., Grain-boundary-rich layered double hydroxides via a boron-assisted strategy for the oxygen evolution reaction††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2cc00867j. Chemical Communications, 2022. 58(37): p. 5646-5649.
53. Lu, F., et al., First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small, 2017. 13(45).
54. Zhu, P. and Y. Zhao, Cyclic voltammetry measurements of electroactive surface area of porous nickel: Peak current and peak charge methods and diffusion layer effect. Materials Chemistry and Physics, 2019. 233: p. 60-67.
55. Jeon, S.S., et al., Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances. ACS Catalysis, 2023. 13(2): p. 1186-1196.
56. Elgrishi, N., et al., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 2017. 95(2): p. 197-206.
57. Agrawal, K., et al., Prudent Practices in ex situ Durability Analysis Using Cyclic Voltammetry for Platinum-based Electrocatalysts. Chem Asian J, 2021. 16(21): p. 3311-3325.
58. Abdullah, M., et al., Facile fabrication of CuO/Ag2Se nanosized composite via hydrothermal approach for the electrochemical energy conversion system. Journal of Energy Storage, 2022. 56: p. 105929.
59. Morales, D.M. and M. Risch, Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. Journal of Physics: Energy, 2021. 3(3): p. 034013.
60. Je, H., K.-F. Chow, and B.-Y. Chang, Voltammetry of Constant Phase Elements: Analyzing Scan Rate Effects. Journal of Electrochemical Science and Technology, 2024. 15(3): p. 427-435.
61. Lazanas, A.C. and M.I. Prodromidis, Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas Sci Au, 2023. 3(3): p. 162-193.
62. Bredar, A.R.C., et al., Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials, 2020. 3(1): p. 66-98.
63. Anantharaj, S. and S. Noda, Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 2020. 7(10): p. 2297-2308.
64. Mei, B.-A., et al., Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C, 2017. 122(1): p. 194-206.
65. Anjum, N., et al., Electrochemical Impedance Analysis of Ti3C2Tx MXene for Pseudocapacitive Charge Storage. Journal of Composites Science, 2025. 9(3): p. 139.
66. Magar, H.S., R.Y.A. Hassan, and A. Mulchandani, Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors (Basel), 2021. 21(19).
67. Lee, H., et al., Dual properties of zirconia coated porous titanium for a stiffness enhanced bio-scaffold. Materials & Design, 2017. 132: p. 13-21.
68. Zhu, J., et al., Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018. 359: p. 80-101.
69. Zhang, L.-C., L.-Y. Chen, and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Advanced Engineering Materials, 2020. 22(5).
70. McEnaney, J.M., et al., Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry & Engineering, 2020. 8(7): p. 2672-2681.
71. Han, X., et al., Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces, 2023. 227: p. 113339.
72. Ran, Y., et al., Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries. Nano Research Energy, 2024. 3: p. e9120092.
73. Wang, Y.C., et al., NiFe(2)O(4) Material on Carbon Paper as an Electrocatalyst for Alkaline Water Electrolysis Module. Micromachines (Basel), 2023. 15(1).
74. Osgood, H., et al., Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016. 11(5): p. 601-625.
75. Gebreslase, G.A., et al., Transformation of CoFe(2)O(4) spinel structure into active and robust CoFe alloy/N-doped carbon electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci, 2022. 625: p. 70-82.
76. Pan, L., J. Tang, and Y. Chen, Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties. Science China Chemistry, 2012. 56(3): p. 362-369.
77. Li, M., et al., Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chemical Engineering Journal, 2021. 425: p. 130686.
78. Sakita, A.M.P., et al., Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Applied Surface Science, 2018. 434: p. 1153-1160.
79. Wang, S., et al., Self-supported low-crystallinity CoFe layered double hydroxide nanospheres on monolayer Ti3C2 electrode for oxygen evolution reaction. Journal of Alloys and Compounds, 2024. 992: p. 174614.
80. Gebreslase, G.A., M.V. Martínez-Huerta, and M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review. Journal of Energy Chemistry, 2022. 67: p. 101-137.
81. Tong, X., et al., CoFe LDH/Mo-Ni3S2 heterogeneous electrocatalyst for alkaline efficient oxygen evolution reaction. Surfaces and Interfaces, 2024. 48: p. 104345.
82. Farahmandjou, M., S. Honarbakhsh, and S. Behrouzinia, FeCo Nanorods Preparation Using New Chemical Synthesis. Journal of Superconductivity and Novel Magnetism, 2018. 31(12): p. 4147-4152.
83. Burke, M.S., et al., Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc, 2015. 137(10): p. 3638-48.
84. Han, S., et al., Optimizing the Synergistic Effect of Co and Fe for Efficient and Durable Oxygen Evolution under Alkaline Conditions. ACS Appl Mater Interfaces, 2024. 16(27): p. 35200-35207.
85. Chen, L.-H., et al., Flexible asymmetric supercapacitors based on zinc cobalt composites on stainless steel Fiber paper processed by atmospheric-pressure plasma jet. Journal of Electroanalytical Chemistry, 2025. 996: p. 119411.
86. Sui, D., et al., Atomic ruthenium doping in collaboration with oxygen vacancy engineering boosts the hydrogen evolution reaction by optimizing H absorption. Chemical Engineering Journal, 2024. 480: p. 148007.
87. Bhunia, K., et al., A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coordination Chemistry Reviews, 2023. 478: p. 214956.
88. Zhao, S., et al., Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting. Nat Commun, 2024. 15(1): p. 2728.
89. Yu, S.-E., et al., Characteristics of low-pressure-plasma-processed NiRu-MOFs/nickel foam for Hydrogen evolution reaction. Physica Scripta, 2024. 99(4): p. 045605.
90. Tang, J., et al., Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction. Nat Commun, 2025. 16(1): p. 801.
91. Chen, X., et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat Commun, 2023. 14(1): p. 5289.
92. Liao, K.-W., et al., Novel ruthenium-based catalysts with atomic dispersion for oxygen evolution reaction in water electrolysis. Materials Today Chemistry, 2024. 35: p. 101857.
93. Wang, Z., et al., Catalyst Preparation with Plasmas: How Does It Work? ACS Catalysis, 2018. 8(3): p. 2093-2110.
94. Bogaertsa, A., et al., Gas discharge plasmas and their applications. 2001: p. 609–658.
95. Witvrouwen, T., S. Paulussen, and B. Sels, The Use of Non‐Equilibrium Plasmas for the Synthesis of Heterogeneous Catalysts. Plasma Processes and Polymers, 2012. 9(8): p. 750-760.
96. Liston, E.M., Plasma Treatment for Improved Bonding: A Review. The Journal of Adhesion, 1989. 30(1-4): p. 199-218.
97. https://www.thoughtco.com/list-of-phase-changes-of-matter-608361.
98. Kortshagen, U.R., et al., Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem Rev, 2016. 116(18): p. 11061-127.
99. Adamovich, I., et al., The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal of Physics D: Applied Physics, 2022. 55(37): p. 373001.
100. Bruggeman, P.J., et al., Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 2016. 25(5): p. 053002.
101. Kählert, H., First-principle simulation of classical charged particles in traps. 2008.
102. Bruggeman, P.J., F. Iza, and R. Brandenburg, Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 2017. 26(12): p. 123002.
103. Raizer, Y.P., J.E. Allen, and V.I. Kisin, Gas Discharge Physics. 1991: Springer Berlin Heidelberg.
104. Liu, C.-j., G.P. Vissokov, and B.W.-L. Jang, Catalyst preparation using plasma technologies. 2001: p. 173–184.
105. Lu, X., et al., Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016. 630: p. 1-84.
106. Surowsky, B., O. Schlüter, and D. Knorr, Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews, 2014. 7(2): p. 82-108.
107. T, C., Introduction to semiconductor manufacturing technology. 2001.
108. Taghvaei, H., M. Heravi, and M.R. Rahimpour, Synthesis of supported nanocatalysts via novel non‐thermal plasma methods and its application in catalytic processes. Plasma Processes and Polymers, 2017. 14(6).
109. Go, D.B., The classical dc discharge. 2022: p. 10-1-10-13.
110. Laroussi, M. and T. Akan, Arc‐Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Processes and Polymers, 2007. 4(9): p. 777-788.
111. Kogelschatz, U., Dielectric-barrier Discharges: Their History,Discharge Physics, and Industrial Applications. 2002.
112. Shih, C.-Y., et al., Helium Dielectric Barrier Discharge Plasma Jet (DBD Jet)-Processed Graphite Foil as Current Collector for Paper-Based Fluidic Aluminum-Air Batteries. Energies, 2022. 15(16): p. 5914.
113. Bogaerts, A. and E.C. Neyts, Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Letters, 2018. 3(4): p. 1013-1027.
114. Khan, M.A., et al., Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles. Environ Res, 2023. 231(Pt 3): p. 116297.
115. Wallace, P., Hydra Plasma Focused Ion Beam.
116. Sun, H., et al., Experimental and numerical studies on carbon dioxide decomposition in atmospheric electrodeless microwave plasmas. Journal of Applied Physics, 2017. 122(3).
117. Liu, Y., et al., A comparative study on Ti/IrO2–Ta2O5 anodes prepared by microwave plasma-assisted sintering and conventional thermal decomposition methods. Journal of Materials Research and Technology, 2023. 23: p. 1447-1457.
118. Horikoshi, S. and P.D. Nick Serpone, F. EurASc, RF Power Semiconductor Generator Application in Heating and Energy Utilization. 2019.
119. Liston, E.M., L. Martinu, and M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology, 1993. 7(10): p. 1091-1127.
120. Petasch, W., et al., Low-pressure plasma cleaning: a process for precision cleaning applications. Surface and Coatings Technology, 1997: p. 176–181.
121. Mandracci, P., A Review of Experimental Investigations into the Time Evolution of Low-Pressure Capacitively Coupled Plasmas in Their Early Stages of Development. Plasma, 2024. 7(3): p. 531-565.
122. Zhang, L., et al., Carbon Surface Modifications by Plasma for Catalyst Support and Electrode Materials Applications. Topics in Catalysis, 2017. 60(12-14): p. 823-830.
123. Harrick Plasma Basic Plasma Cleaner PDC-32G https://www.smarteamsci.com/plasma-cleaner.html.
124. Tiwari, S., et al., Microwave Plasma-Enhanced and Microwave Heated Chemical Reactions. Plasma Chemistry and Plasma Processing, 2019. 40(1): p. 1-23.
125. Gude, V.G., et al., Microwave energy potential for biodiesel production. 2013.
126. Müller, A., D. Pozebon, and V.L. Dressler, Advances of nitrogen microwave plasma for optical emission spectrometry and applications in elemental analysis: a review. Journal of Analytical Atomic Spectrometry, 2020. 35(10): p. 2113-2131.
127. Altmannshofer, S., I. Eisele, and A. Gschwandtner, Hydrogen microwave plasma treatment of Si and SiO2. Surface and Coatings Technology, 2016. 304: p. 359-363.
128. Bai, X., et al., Microwave catalytic synthesis of ammonia from methane and nitrogen. Catalysis Science & Technology, 2018. 8(24): p. 6302-6305.
129. Liu, H., et al., Alginate-Stabilized Gold Nanoparticles Prepared Using the Microwave-Induced Plasma-in-Liquid Process with Long-Term Storage Stability for Potential Biomedical Applications. ACS Omega, 2022. 7(7): p. 6238-6247.
130. Hwang, J., et al., Microwave-assisted plasma ignition in a constant volume combustion chamber. Combustion and Flame, 2016. 167: p. 86-96.
131. Ho, G.S., H.M. Faizal, and F.N. Ani, Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria. Waste Manag, 2017. 69: p. 423-430.
132. Tung, J.-Y., K.-P. Huang, and M.-J. Wang, Microwave plasma enhanced chemical vapor deposited vertical carbon nanoflakes electrodes for electric double layer capacitors. Journal of the Taiwan Institute of Chemical Engineers, 2024. 163: p. 105663.
133. Wang, Y., et al., Microwave-Induced Plasma Synthesis of Defect-Rich, Highly Ordered Porous Phosphorus-Doped Cobalt Oxides for Overall Water Electrolysis. The Journal of Physical Chemistry C, 2020. 124(18): p. 9971-9978.
134. Muneekaew, S., et al., Microwave plasma treated composites of Cu/Cu2O nanoparticles on electrospun poly(N-vinylpyrrolidone) fibers as highly effective photocatalysts for reduction of organic dyes and 4-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 2020. 107: p. 171-181.
135. Hartanto, D.T., et al., Microwave plasma treated Sn/SnO(2) and graphite nanocomposites to synergistically promote electrochemical sensing performance toward dopamine and uric acid. Anal Chim Acta, 2025. 1343: p. 343668.
136. Lebedev, Y.A., Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Science and Technology, 2015. 24(5): p. 053001.
137. Dionísio, M. and J. Sotomayor, A Surface Chemistry Experiment Using an Inexpensive W Contact Angle Goniometer. Journal of Chemical Education, 2000.
138. Schuster, J.M., C.E. Schvezov, and M.R. Rosenberger, Construction and calibration of a goniometer to measure contact angles and calculate the surface free energy in solids with uncertainty analysis. International Journal of Adhesion and Adhesives, 2018. 87: p. 205-215.
139. Sindatek Instruments Co., Ltd. https://www.sindatek.com/100sb.htm.
140. Sharma, S., et al., Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering (Basel), 2019. 6(1).
141. Du, Z., et al., Laboratory application of imaging technology on pavement material analysis in multiple scales: A review. Construction and Building Materials, 2021. 304: p. 124619.
142. Prabhu, R.S., et al., Field Emission Scanning Electron Microscopy (Fesem) with A Very Big Future in Pharmaceutical Research. International Journal of Pharmacy and Biological Sciences-IJPBSTM, 2021: p. 183-187.
143. Gawas, U.B., V.K. Mandrekar, and M.S. Majik, Structural analysis of proteins using X-ray diffraction technique. 2019: p. 69-84.
144. Kot, M., In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014.
145. Yan, Y., et al., Study on the anodic behavior of AISI E52100 steel in two fluorine-containing ionic liquids. Research on Chemical Intermediates, 2021. 47(5): p. 2107-2123.
146. Darband, G.B., M. Aliofkhazraei, and S. Shanmugam, Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renewable and Sustainable Energy Reviews, 2019. 114: p. 109300.
147. Wu, L., et al., Efficient Alkaline Water/Seawater Hydrogen Evolution by a Nanorod-Nanoparticle-Structured Ni-MoN Catalyst with Fast Water-Dissociation Kinetics. Adv Mater, 2022. 34(21): p. e2201774.
148. Venkatasubramanian, R., K. Jin, and N.S. Pesika, Use of electrochemical deposition to create randomly rough surfaces and roughness gradients. Langmuir, 2011. 27(7): p. 3261-5.
149. Wu, K., et al., Defect engineering in transition‐metal (Fe, Co, and Ni)‐based electrocatalysts for water splitting. Carbon Energy, 2024. 6(6).
150. Xu, L., et al., Plasma-Engraved Co3 O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl, 2016. 55(17): p. 5277-81.
151. Dou, S., et al., Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Adv Mater, 2018. 30(21): p. e1705850.
152. Khosravi, M., et al., Investigation of photo-electrochemical response of iron oxide/mixed-phase titanium oxide heterojunction toward possible solar energy conversion. International Journal of Hydrogen Energy, 2021. 46(10): p. 7241-7253.
153. Song, L., Z. Chen, and B. Hou, The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light. Corrosion Science, 2015. 93: p. 191-200.
154. Yu, S.-E., et al., Microwave plasma treatments for solvothermally grown NiCo-metalorganic frameworks on flexible carbon paper substrate. Journal of the Taiwan Institute of Chemical Engineers, 2025. 169: p. 105973.
155. Duan, Y., et al., Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors. Journal of Alloys and Compounds, 2019. 771: p. 156-161.
156. Zhong, D., et al., Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Research, 2022. 15(1): p. 162-169.
157. Yang, F., et al., Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017. 10(1): p. 156-165.
158. Wang, H., et al., Iron–cobalt nanoparticles dispersed in indium-based MIL-68-derived carbon nanosticks for water oxidation. Catalysis Science & Technology, 2024. 14(15): p. 4132-4136.
159. Yu, S.E., et al., Direct Current Pulse Atmospheric Pressure Plasma Jet Treatment on Electrochemically Deposited NiFe/Carbon Paper and Its Potential Application in an Anion-Exchange Membrane Water Electrolyzer. Langmuir, 2024. 40(29): p. 14978-14989.
160. Alobaid, A., C. Wang, and R.A. Adomaitis, Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte. Journal of The Electrochemical Society, 2018. 165(15): p. J3395-J3404.
161. Ju, W., et al., Lab-Scale Alkaline Water Electrolyzer for Bridging Material Fundamentals with Realistic Operation. ACS Sustainable Chemistry & Engineering, 2018. 6(4): p. 4829-4837.
162. Mazloomi, S.K. and N. Sulaiman, Influencing factors of water electrolysis electrical efficiency. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 4257-4263.
163. Jang, D., et al., Investigation of the operation characteristics and optimization of an alkaline water electrolysis system at high temperature and a high current density. Journal of Cleaner Production, 2023. 424: p. 138862.
164. Pu, Z.-H., et al., Improved oxygen evolution reaction performance of NiCo-metal organic framework/carbon paper catalysts in anion exchange membrane water electrolysis via ultrafast atmospheric-pressure plasma jet processing. International Journal of Hydrogen Energy, 2025. 113: p. 429-440.
165. Selamet, Ö.F., et al., Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack. International Journal of Hydrogen Energy, 2011. 36(17): p. 11480-11487.
166. Kelly, N.A., Hydrogen production by water electrolysis. 2014: p. 159-185.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101138-
dc.description.abstract在淨零趨勢下,水電解為綠氫製備關鍵技術;其中陰離子交換膜水電解(Anion Exchange Membrane Water Electrolysis, AEMWE)具可使用非貴金屬催化劑等優勢,但陽極析氧反應(Oxygen Evolution Reaction, OER)動力學緩慢,常成為效率瓶頸,因此開發高效且可量產的OER催化劑相當重要。
本研究以電化學沉積法在鈦纖維紙(Titanium fiber Paper, TP)上沉積鐵鈷合金,製備ED-FeCo/TP,作為陰極乾端操作之AEMWE系統中的析氧反應OER陽極電催化劑。進一步施以15秒的氬氣微波電漿(Ar Microwave Plasma, ArMP)表面處理,其催化表現顯著提升。經處理之ED-FeCo/TP-ArMP15在100 mA/cm2電流密度下之過電位僅459 mV,並呈現較佳的塔弗斜率(211.1 mV/dec),顯示反應動力學獲改善;同時其電雙層電容Cdl提升至2.80 mF/cm2,電荷轉移阻抗(Rct)降至1.10 Ω,反映出更大的有效活性表面積與更快速的界面電荷傳輸。
材料分析結果指出,氬氣微波電漿處理具還原效應,可在ED-FeCo/TP-ArMP15中形成大量金屬態Fe0與Co0活性位點。進一步將其應用於陰極乾式陰離子交換膜水電解全電池中可發現,採用氬氣微波電漿之系統(Ru/CP(−) // ED-FeCo/TP-ArMP15(+))在高電流密度操作下,相較未經氬氣微波電漿處理之系統(Ru/CP(−) // ED-FeCo/TP(+))具有更佳之性能表現。於70 ℃、500 mA/cm2操作條件下,當ED-FeCo/TP作為陽極時,電池電壓由1.88 V降至1.79 V(ED-FeCo/TP-ArMP15),進一步驗證氬氣微波電漿能有效提升OER效率。
zh_TW
dc.description.abstractUnder the global net-zero transition, water electrolysis is essential for green hydrogen production. Anion exchange membrane water electrolysis (AEMWE) enables the use of non-precious-metal catalysts, yet its efficiency is often limited by sluggish anodic oxygen evolution reaction (OER) kinetics, highlighting the need for active and scalable OER catalysts.
ED-FeCo/TP is synthesized by the electrochemical deposition of FeCo on titanium fiber paper (TP) as the catalyst for the OER in cathode-dry operation AEMWE. With 15s Ar microwave plasma (ArMP) treatment, the catalytic performance is enhanced. The ED-FeCo/TP treated with ArMP (ED-FeCo/TP-ArMP15) exhibits a lower overpotential (459 mV@100 mA/cm2) and improved Tafel slope (211.1 mV/dec), indicating improved reaction efficacy. It also demonstrates a higher double-layer capacitance (2.80 mF/cm2), lower charge transfer resistance (1.10 Ω), and enhanced electrochemical activity.
ArMP treatment provides a reduction effect, leading to the formation of abundant metallic Fe0 and Co0 in ED-FeCo/TP-ArMP15. The cathode-dry AEMWE system with ArMP treatment (Ru/CP(-) // ED-FeCo/TP-ArMP15(+)) exhibits better performance at higher current densities than the system without ArMP treatment (Ru/CP(-) // ED-FeCo/TP(+)). When applied as the anode in a cathode-dry AEMWE system operating at 70 ℃, the cell voltage at a current density of 500 mA/cm2 decreases from 1.88 V for ED-FeCo/TP to 1.79 V for ED-FeCo/TP-ArMP15. These results indicate that ArMP treatment effectively enhances the OER efficiency.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:05:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-12-31T16:05:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 x
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文大綱 3
2 第二章 文獻回顧與理論介紹 4
2.1 氫能水電解技術 4
2.1.1 氫能介紹 4
2.1.2 水電解技術 5
2.1.3 析氧反應 8
2.1.4 析氫反應 10
2.1.5 材料電化學活性與塔佛斜率 12
2.1.6 循環伏安法與電化學活性表面積 14
2.1.7 電化學阻抗圖譜 16
2.2 觸媒材料 18
2.2.1 鈦基材料 18
2.2.2 鐵基材料 19
2.2.3 鈷基材料 19
2.2.4 貴金屬釕材料 20
2.3 電漿介紹 21
2.3.1 電漿概念與原理 21
2.3.2 電漿碰撞方式 25
2.3.3 電漿放電方式 29
3 第三章 實驗設備與製程流程 36
3.1 實驗材料與實驗設備 36
3.1.1 化學藥品與材料 36
3.1.2 實驗設備 38
3.2 製程設備 40
3.2.1 電漿清洗機 40
3.2.2 微波電漿系統 41
3.3 實驗步驟 44
3.3.1 基板材料介紹與預處理步驟 44
3.3.2 電鍍法沉積鐵鈷材料 45
3.3.3 利用微波電漿對觸媒材料進行表面改質 46
3.3.4 水熱法生長釕金屬在碳紙基材上 47
3.3.5 陰離子交換模水電解槽組裝 48
3.4 分析設備 51
3.4.1 接觸角測量儀 51
3.4.2 掃描式電子顯微鏡 53
3.4.3 X射線繞射分析儀 56
3.4.4 X射線光電子能譜儀 58
3.4.5 電化學工作站 60
3.4.6 陰離子交換膜水電解電池量測 61
4 第四章 結果與討論 63
4.1 水接觸角分析 63
4.2 表面型態與元素成分之觀察分析 64
4.3 材料晶體結構分析 67
4.4 表面元素組成與化學型態分析 69
4.5 電化學分析 72
4.5.1 線性掃描伏安法及塔弗斜率計算 72
4.5.2 循環伏安法 73
4.5.3 電化學阻抗圖譜分析 75
4.6 陰離子交換膜水電解系統測試 76
4.6.1 性能測試 76
4.6.2 室溫耐久性測試 80
5 第五章 結論 82
6 參考文獻 83
-
dc.language.isozh_TW-
dc.subject微波電漿-
dc.subject鈦纖維紙-
dc.subject鐵鈷-
dc.subject陰離子交換膜-
dc.subject水電解-
dc.subject電鍍-
dc.subjectmicrowave plasma-
dc.subjecttitanium paper-
dc.subjectiron cobalt-
dc.subjectanion exchange membrane-
dc.subjectelectrochemical deposition-
dc.title微波電漿處理鐵鈷/鈦纖維紙用於陰離子交換膜水電解模組zh_TW
dc.titleApplication of Microwave Plasma Processed FeCo/Ti Fiber Paper to Anion Exchange Membrane Water Electrolysis (AEMWE) Moduleen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;周佳靚;陳志鴻zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Chia-Ching Chou;Chih-Hung Chenen
dc.subject.keyword微波電漿,鈦纖維紙鐵鈷陰離子交換膜水電解電鍍zh_TW
dc.subject.keywordmicrowave plasma,titanium paperiron cobaltanion exchange membraneelectrochemical depositionen
dc.relation.page94-
dc.identifier.doi10.6342/NTU202504837-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-12-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2026-01-01-
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-114-1.pdf
Access limited in NTU ip range
10.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved