Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101089
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘zh_TW
dc.contributor.advisorHsin-Min Luen
dc.contributor.author許方怡zh_TW
dc.contributor.authorFang-Yi Hsuen
dc.date.accessioned2025-11-27T16:13:44Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-09-07-
dc.identifier.citationBai, J., Zhou, C., Song, J., Qu, X., An, W., Li, Z., & Gao, J. (2019). Personalized Bundle List Recommendation. In The World Wide Web Conference (WWW '19), 60-71. https://doi.org/10.1145/3308558.3313568
Barkan, O. & Koenigstein, N. (2016). ITEM2VEC: Neural item embedding for collaborative filtering. 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), 1-6, https://doi.org/10.1109/MLSP.2016.7738886.
Bianchi, F., Yu, B., & Tagliabue, J. (2021). BERT Goes Shopping: Comparing Distributional Models for Product Representations. In Proceedings of the 4th Workshop on e-Commerce and NLP, 1-12. https://doi.org/10.18653/v1/2021.ecnlp-1.1
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3, 993-1022.
Chen, F., Liu, X., Proserpio, D., Troncoso, I., & Xiong, F. (2020). Studying Product Competition Using Representation Learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20), 1261–1268. https://doi.org/10.1145/3397271.3401041
Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020). Bundle Recommendation with Graph Convolutional Networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20), 1673–1676. https://doi.org/10.1145/3397271.3401198
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 4171-4186. https://doi.org/10.18653/v1/N19-1423
Elrod, T., Russell, G.J., Shocker, A.D., Andrews, R. L., Bacon, L., Bayus, B. L., Carroll, J. D., Johnson, R. M., Kamakura, W. A., Lenk, P., Mazanec, J. A., Rao, V. R., & Shankar, V. (2002). Inferring Market Structure from Customer Response to Competing and Complementary Products. Marketing Letters, 13, 221–232. https://doi.org/10.1023/A:1020222821774
Gabel, S., Guhl, D., & Klapper, D. (2019). P2V-MAP: Mapping Market Structures for Large Retail Assortments. Journal of Marketing Research, 56(4), 557-580. https://doi.org/10.1177/0022243719833631
Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., & Sharp, D. (2015). E-commerce in Your Inbox: Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15), 1809–1818. https://doi.org/10.1145/2783258.2788627
Hao, J., Zhao, T., Li, J., Dong, X. L., Faloutsos, C., Sun, Y., & Wang, W. (2020). P-Companion: A Principled Framework for Diversified Complementary Product Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM '20), 2517–2524. https://doi.org/10.1145/3340531.3412732
Holý, V., Sokol, O., & Černý, M. (2017). Clustering retail products based on customer behaviour. Applied Soft Computing, 60, 752-762. https://doi.org/10.1016/j.asoc.2017.02.004
Hou, Y., He, Z., McAuley, J., & Zhao, W. X. (2023). Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders. In Proceedings of the ACM Web Conference 2023 (WWW '23), 1162–1171. https://doi.org/10.1145/3543507.3583434
Hou, Y., Mu, S., Zhao, W. X., Li, Y., Ding, B., & Wen, J.-R. (2022). Towards Universal Sequence Representation Learning for Recommender Systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '22), 585–593. https://doi.org/10.1145/3534678.3539381
Kök, A.G., Fisher, M.L., Vaidyanathan, R. (2015). Assortment Planning: Review of Literature and Industry Practice. In: Agrawal, N., Smith, S. (Eds.), Retail Supply Chain Management (pp. 175-236). Springer. https://doi.org/10.1007/978-1-4899-7562-1_8
Mantrala, M. K., Levy, M., Kahn, B. E., Fox, E., Gaidarev, P., Dankworth, B., & Shah, D. (2009). Why is Assortment Planning so Difficult for Retailers? A Framework and Research Agenda. Journal of Retailing, 85(1), 71-83. https://doi.org/10.1016/j.jretai.2008.11.006
McAuley J., Pandey, R., & Leskovec, J. (2015). Inferring Networks of Substitutable and Complementary Products. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15), 785-794. https://doi.org/10.1145/2783258.2783381
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. https://doi.org/10.48550/arXiv.1301.3781
Ruiz, F. J. R., Athey, S., & Blei, D. M. (2020). SHOPPER: A probabilistic model of customer choice with substitutes and complements. The Annals of Applied Statistics, 14(1), 1-27. https://doi.org/10.1214/19-aoas1265
Shocker, A. D., Bayus, B. L., & Kim, N. (2004). Product Complements and Substitutes in the Real World: The Relevance of “Other Products”. Journal of Marketing, 68(1), 28-40. https://doi.org/10.1509/jmkg.68.1.28.24032
Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., & Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM '19), 1441–1450. https://doi.org/10.1145/3357384.3357895
Tian, Y., Lautz, S., Wallis, A.O.G., & Lambiotte, R. (2021). Extracting complements and substitutes from sales data: a network perspective. EPJ Data Science, 10, 45. https://doi.org/10.1140/epjds/s13688-021-00297-4
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30, 5998-6008.
Wang, J., Yuan, F., Cheng, M., Jose, J. M., Yu, C., Kong, B., Wang, Z., Hu, B., & Li, Z. (2024). TransRec: Learning Transferable Recommendation from Mixture-of-Modality Feedback. In Web and Big Data: 8th International Joint Conference, 193–208. https://doi.org/10.1007/978-981-97-7235-3_13
Wang, Z., Jiang, Z., Ren, Z., Tang, J., & Yin, D. (2018). A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM '18), 619–627. https://doi.org/10.1145/3159652.3159710
Xu, L., Tian, Z., Li, B., Zhang, J., Wang, D., Wang, H., Wang, J., Chen, S., & Zhao, W. X. (2024). Sequence-level Semantic Representation Fusion for Recommender Systems. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM '24), 5015–5022. https://doi.org/10.1145/3627673.3680037
Yuan, F., He, X., Karatzoglou, A., & Zhang, L. (2020). Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20), 1469–1478. https://doi.org/10.1145/3397271.3401156
Zhang, H., & Li, W. (2024). LSMRec: Leveraging Hash-Enhanced Semantic Mapping for Superior Sequential Recommendations. 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI), 166-173. https://doi.org/10.1109/ICTAI62512.2024.00032
Zhang, H., Wang, S., Zhang, K., Tang, Z., Jiang, Y., Xiao, Y., Yan, W., & Yang, W.-Y. (2020). Towards Personalized and Semantic Retrieval: An End-to-End Solution for E-commerce Search via Embedding Learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20), 2407–2416. https://doi.org/10.1145/3397271.3401446
Zhang, M., Wei, X., Guo, X., Chen, G., & Wei, Q. (2019). Identifying Complements and Substitutes of Products: A Neural Network Framework Based on Product Embedding. ACM Transactions on Knowledge Discovery Data 13(3), 1-29. https://doi.org/10.1145/3320277
Zhang, W., Chen, Z., Zha, H., & Wang, J. (2021). Learning from Substitutable and Complementary Relations for Graph-based Sequential Product Recommendation. ACM Transactions on Information System, 40(2), 1-28. https://doi.org/10.1145/3464302
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101089-
dc.description.abstract產品之間的關係形塑整體的市場結構,而顧客的消費行為正是這些關係建立的基礎。對零售商而言,掌握市場結構及產品間的互補性與替代性,有助於商品陳列規劃、促銷策略制定,以及競爭位置的判斷。過去許多研究多仰賴線上電商平台所提供的豐富顧客行為資料,例如瀏覽紀錄,以推論產品關係。然而,對於實體通路業者而言,這類資料通常難以取得,因此如何在僅有的交易資料中挖掘出有效的產品關係,成為一項重要的挑戰。
本研究參考自然語言處理領域的技術,將一筆交易視為段落,由其中的商品名稱短句組成,藉由微調預訓練語言模型(Pre-trained Language Model, PLM)BERT,從商品的共現關係和語意學習產品表徵。實驗設計包含三項任務評估模型能力:交易補全任務、互補品與替代品辨識、產品關係分群,前兩項任務中結果顯示模型能掌握商品間的共現關係,且透過先前文獻中提出的互補性與可交換性指標衡量產品間的關係,也顯示模型對互補品、替代品具有一定程度的辨識能力。最後,本研究提出一套基於互補性與可交換性所定義的產品相似度,基於相似度對商品進行分群與可視化,觀察模型對商品學習到的分佈情形,此方法比直接使用潛在空間表示分群效果更佳,亦能更直觀地反映產品間的替代與競爭關係,提供商家識別市場競品、了解市場結構的有效方式。
zh_TW
dc.description.abstractThe relationships among products shape the overall market structure, with customer purchasing behavior serving as the foundation for establishing such relationships. For retailers, understanding the market structure and identifying complementary and substitutable products is essential for product display planning, promotional strategies, and assessing competitive positioning. While several previous studies infer product relationships using rich customer behavior data such as browsing histories available on online platforms, such data is often inaccessible to brick-and-mortar retailers. As a result, uncovering meaningful product relationships using only transaction data poses a significant challenge.
This study draws on techniques from natural language processing by treating each transaction as a paragraph composed of short product name phrases. We fine-tune a pre-trained language model (PLM), specifically BERT, to learn product representations based on co-occurrence patterns and semantic information. The model is evaluated through three tasks: transaction completion, complements and substitutes identification, and product clustering. Results from the first two tasks show that the model effectively captures co-occurrence relationships and shows a certain ability to identify complements and substitutes using the complementarity and exchangeability metrics proposed in prior literature. Finally, we propose a similarity metric derived from these two metrics to perform product clustering and visualization. This similarity-based approach yields better clustering performance than directly applying latent space representations and offers a more intuitive and interpretable view of product relationships. It enables retailers to better understand competitive dynamics and identify key market competitors.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:13:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:13:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 6
2.1 Complements and Substitutes Identification 6
2.2 Product Representation Learning 8
2.2.1 Word2Vec 9
2.2.2 BERT 10
2.2.2.1 BERT Architecture 11
2.2.2.2 BERT in Product Representation Learning 12
2.3 Product Mapping and Clustering 13
2.4 Research Questions 16
Chapter 3 Methodology 17
3.1 Overview 17
3.2 Model 17
3.2.1 BERT Model 17
3.2.2 Price-aware BERT Model 20
3.3 Model Learning 21
3.4 Similarity-based Product Mapping and Clustering 22
Chapter 4 Experiments 25
4.1 Dataset 25
4.2 Transaction Completion Task 26
4.2.1 Task Setup 27
4.2.2 Evaluation Metrics 28
4.3 Complements and Substitutes Identification Task 28
4.3.1 Task Setup 29
4.3.2 Evaluation Metrics 30
4.3.3 Model Comparison 31
4.4 Product Mapping and Clustering Based on Similarity Metric 32
4.4.1 Task Setup 32
4.4.2 Evaluation Metrics 33
4.5 Results 34
4.5.1 Results of Predictive Tasks 34
4.5.2 Product Mapping and Clustering Results 38
Chapter 5 Conclusion 44
References 46
-
dc.language.isoen-
dc.subject產品關係建模-
dc.subject電子發票交易資料-
dc.subjectBERT-
dc.subject預訓練語言模型-
dc.subject市場結構-
dc.subjectProduct Relationship Modeling-
dc.subjectE-invoice Transaction Data-
dc.subjectBERT-
dc.subjectPre-trained Language Model-
dc.subjectMarket Structure-
dc.title基於電子發票交易數據之產品關係建模zh_TW
dc.titleProduct Relation Modeling Based on E-invoice Transaction Dataen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳以錚;蕭舜文zh_TW
dc.contributor.oralexamcommitteeYi-Cheng Chen;Shun-Wen Hsiaoen
dc.subject.keyword產品關係建模,電子發票交易資料BERT預訓練語言模型市場結構zh_TW
dc.subject.keywordProduct Relationship Modeling,E-invoice Transaction DataBERTPre-trained Language ModelMarket Structureen
dc.relation.page51-
dc.identifier.doi10.6342/NTU202504449-
dc.rights.note未授權-
dc.date.accepted2025-09-08-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
10.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved