請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林忠緯 | zh_TW |
| dc.contributor.advisor | Chung-Wei Lin | en |
| dc.contributor.author | 曾奕青 | zh_TW |
| dc.contributor.author | I-Ching Tseng | en |
| dc.date.accessioned | 2025-11-27T16:12:30Z | - |
| dc.date.available | 2025-11-28 | - |
| dc.date.copyright | 2025-11-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-09-17 | - |
| dc.identifier.citation | [1] M. Alshiekh, R. Bloem, R. Ehlers, B. K¨onighofer, S. Niekum, and U. Topcu, "Safe reinforcement learning via shielding," in AAAI Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference and AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI/IAAI/EAAI), pp. 2669--2678, 2018.
[2] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, "Control barrier functions: theory and applications," in European Control Conference (ECC), pp. 3420--3431, 2019. [3] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs for safety critical systems," IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861--3876, 2017. [4] D. A. Basin, F. Klaedtke, S. M¨uller, and E. Zalinescu, "Monitoring metric first order temporal properties," Journal of the ACM, vol. 62, no. 2, pp. 15:1--15:45, 2015. [5] D. A. Basin, F. Klaedtke, and E. Zalinescu, "The MonPoly monitoring tool," in International Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CuBES), vol. 3, pp. 19--28, 2017. [6] O. Bastani and S. Li, "Safe reinforcement learning via statistical model predictive shielding," in Robotics: Science and Systems, 2021. [7] J. Baumeister, B. Finkbeiner, F. Kohn, and F. Scheerer, "A tutorial on stream based monitoring," in International Symposium on Formal Methods (FM), vol. 14934, pp. 624--648, 2024. [8] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Sangiovanni-Vincentelli, "Contract-based design for computation and verification of a closed-loop hybrid system," in International Workshop on Hybrid Systems: Computation and Control (HSCC), vol. 4981, pp. 58--71, 2008. [9] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors," Communications of the ACM, vol. 13, no. 7, pp. 422--426, 1970. [10] A. Z. Broder and M. Mitzenmacher, "Network applications of Bloom filters: a survey," Internet Mathematics, vol. 1, no. 4, pp. 485--509, 2003. [11] K. X. Cai, T. Phan-Minh, S.-J. Chung, and R. M. Murray, "Rules of the road: formal guarantees for autonomous vehicles with behavioral contract design," IEEE Transactions on Robotics, pp. 1--20, 2023. [12] L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. N. Wegman, "Exact and approximate membership testers," in ACM Symposium on Theory of Computing (STOC), pp. 59--65, 1978. [13] K. K.-C. Chang, X. Liu, C.-W. Lin, C. Huang, and Q. Zhu, "A safety guaranteed framework for neural-network-based planners in connected vehicles under communication disturbance," in ACM/IEEE Design, Automation and Test in Europe Conference (DATE), pp. 1--6, 2023. [14] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, "Artificial intelligence empowered edge computing and caching for internet of vehicles," IEEE Wireless Communications, vol. 26, no. 3, pp. 12--18, 2019. [15] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, "Joint load balancing and offloading in vehicular edge computing and networks," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4377--4387, 2019. [16] A. Donz´e, T. Ferr`ere, and O. Maler, "Efficient robust monitoring for STL," in International Conference on Computer Aided Verification (CAV), vol. 8044, pp. 264--279, 2013. [17] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. L´opez, and V. Koltun, "CARLA: an open urban driving simulator," in Conference on Robot Learning (CoRL), vol. 78, pp. 1--16, 2017. [18] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, "Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization," IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1079--1092, 2019. [19] B. B. Elallid, N. Benamar, M. Bagaa, and Y. Hadjadj-Aoul, "Enhancing autonomous driving navigation using soft actor-critic," Future Internet, vol. 16, no. 7, p. 238, 2024. [20] J. Ferlez, M. Elnaggar, Y. Shoukry, and C. H. Fleming, "ShieldNN: a provably safe NN filter for unsafe NN controllers," CoRR, vol. abs/2006.09564, 2020. [21] S. Fr¨ohlich, D. Große, and R. Drechsler, "Error bounded exact BDD minimization in approximate computing," in IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp. 254--259, 2017. [22] S. Fujimoto, H. van Hoof, and D. Meger, "Addressing function approximation error in actor-critic methods," in International Conference on Machine Learning (ICML), vol. 80, pp. 1582--1591, 2018. [23] Google, "Google cluster workloads," https://github.com/google/cluster-data, 2016. [24] T. M. Graf and D. Lemire, "Xor filters: faster and smaller than Bloom and cuckoo filters," ACM Journal of Experimental Algorithmics (JEA), vol. 25, no. 1.5, pp. 1--16, 2020. [25] T. M. Graf and D. Lemire, "Binary fuse filters: fast and smaller than xor filters," ACM Journal of Experimental Algorithmics (JEA), vol. 27, no. 1.5, pp. 1--15, 2022. [26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor," in International Conference on Machine Learning (ICML), vol. 80, pp. 1856--1865, 2018. [27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R´ıo, M. Wiebe, P. Peterson, P. G´erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, "Array programming with NumPy," Nature, vol. 585, no. 7825, pp. 357--362, 2020. [28] A. U. Hassen and F. A. Khan, "An adaptive metric for node substitution based BDD minimization," in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1--5, 2021. [29] K. Havelund and D. Peled, "BDDs for representing data in runtime verification," in International Conference on Runtime Verification (RV), vol. 12399, pp. 107--128, 2020. [30] K. Havelund, D. Peled, and D. Ulus, "First-order temporal logic monitoring with BDDs," Formal Methods in System Design (FMSD), vol. 56, no. 1, pp. 1--21, 2020. [31] N. T. Hieu, M. D. Francesco, and A. Yl¨a-J¨a¨aski, "Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers," IEEE Transactions on Services Computing, vol. 13, no. 1, pp. 186--199, 2020. [32] Y. Hung, L.-K. Chou, H.-H. Tsai, H.-C. Wang, C.-W. Lin, and B. Kim, "Edge assisted service allocation and delivery for connected vehicles with variable velocities," in IEEE Vehicular Networking Conference (VNC), 2023. [33] I. Incer, "The algebra of contracts," Ph.D. dissertation, University of California, Berkeley, 2022. [34] D. Jin, P. O. Meredith, C. Lee, and G. Rosu, "JavaMOP: efficient parametric runtime monitoring framework," in International Conference on Software Engineering (ICSE), pp. 1427--1430, 2012. [35] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. K. Yogamani, and P. P´erez, "Deep reinforcement learning for autonomous driving: a survey," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909--4926, 2022. [36] B. K¨onighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem, "Online shielding for reinforcement learning," Innovations in Systems and Software Engineering, vol. 19, no. 4, pp. 379--394, 2023. [37] E. Leurent, "An environment for autonomous driving decision-making," https://github.com/eleurent/highway-env, 2018. [38] L. Li, W. Chu, J. Langford, and R. E. Schapire, "A contextual-bandit approach to personalized news article recommendation," in ACM International Conference on World Wide Web (WWW), pp. 661--670, 2010. [39] S. Li and O. Bastani, "Robust model predictive shielding for safe reinforcement learning with stochastic dynamics," in IEEE International Conference on Robotics and Automation (ICRA), pp. 7166--7172, 2020. [40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," in International Conference on Learning Representations (ICLR), 2016. [41] J. Liu, M. Ahmed, M. A. Mirza, W. U. Khan, D. Xu, J. Li, A. Aziz, and Z. Han, "RL/DRL meets vehicular task offloading using edge and vehicular cloudlet: a survey," IEEE Internet Things Journal, vol. 9, no. 11, pp. 8315--8338, 2022. [42] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, "Vehicular edge computing and networking: a survey," Mobile Networks and Applications, vol. 26, no. 3, pp. 1145--1168, 2021. [43] Y. Liu, S. Wang, J. Huang, and F. Yang, "A computation offloading algorithm based on game theory for vehicular edge networks," in IEEE International Conference on Communications (ICC), pp. 1--6, 2018. [44] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. Serbanuta, and G. Rosu, "RV-Monitor: efficient parametric runtime verification with simultaneous properties," in International Conference on Runtime Verification (RV), vol. 8734, pp. 285--300, 2014. [45] U. Mehmood, S. Roy, A. Damare, R. Grosu, S. A. Smolka, and S. D. Stoller, "A distributed simplex architecture for multi-agent systems," Journal of Systems Architecture, vol. 134, p. 102784, 2023. [46] U. Mehmood, S. Sheikhi, S. Bak, S. A. Smolka, and S. D. Stoller, "The blackbox simplex architecture for runtime assurance of autonomous CPS," in NASA Formal Methods (NFM), vol. 13260, pp. 231--250, 2022. [47] G. Mersy, Z. Wang, S. Sintos, and S. Krishnan, "Optimizing collections of Bloom filters within a space budget," Proceedings of the VLDB Endowment, vol. 17, no. 11, pp. 3551--3564, 2024. [48] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529--533, 2015. [49] E. M. Mohamed, S. Hashima, K. Hatano, S. A. Aldossari, M. Zareei, and M. Rihan, "Two-hop relay probing in WiGig device-to-device networks using sleeping contextual bandits," IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1581--1585, 2021. [50] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli, R. M. Murray, A. Donz´e, and S. A. Seshia, "A contract-based methodology for aircraft electric power system design," IEEE Access, vol. 2, pp. 1--25, 2014. [51] M. Odema, J. Ferlez, G. Vaisi, Y. Shoukry, and M. A. A. Faruque, "EnergyShield: provably-safe offloading of neural network controllers for energy efficiency," in ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), pp. 187--198, 2023. [52] T. Phan-Minh, K. X. Cai, and R. M. Murray, "Towards assume-guarantee profiles for autonomous vehicles," in IEEE Conference on Decision and Control (CDC), pp. 2788--2795, 2019. [53] T. Phan-Minh andR.M.Murray, "Contracts of reactivity," in European Control Conference (ECC), pp. 2611--2618, 2021. [54] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi, "Approximation and decomposition of binary decision diagrams," in ACM/IEEE Design Automation Conference (DAC), pp. 445--450, 1998. [55] G. Reger, H. C. Cruz, and D. E. Rydeheard, "MarQ: monitoring at runtime with QEA," in International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), vol. 9035, pp. 596--610, 2015. [56] A. L. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, "Taming Dr. Frankenstein: contract-based design for cyber-physical systems," European Journal of Control, vol. 18, no. 3, pp. 217--238, 2012. [57] A. Saoud, A. Girard, and L. Fribourg, "Contract based design of symbolic controllers for vehicle platooning," in International Conference on Hybrid Systems: Computation and Control (HSCC), pp. 277--278, 2018. [58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," CoRR, vol. abs/1707.06347, 2017. [59] D. Seto, B. Krogh, L. Sha, and A. Chutinan, "The simplex architecture for safe online control system upgrades," in American Control Conference (ACC), vol. 6, pp. 3504--3508, 1998. [60] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, "BDD minimization for approximate computing," in ACM/IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 474--479, 2016. [61] H. Su, S. Shankar, S. Pinisetty, P. S. Roop, and N. Zhan, "Runtime enforcement of CPS against signal temporal logic," in ACM International Conference on Hybrid Systems: Computation and Control (HSCC), pp. 18:1--18:11, 2025. [62] Y. Sun, C. M. Poskitt, X. Zhang, and J. Sun, "REDriver: runtime enforcement for autonomous vehicles," in IEEE/ACM International Conference on Software Engineering (ICSE), pp. 176:1--176:12, 2024. [63] L. T. Tan and R. Q. Hu, "Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning," IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10190--10203, 2018. [64] M. M. K. Tareq, O. Semiari, M. A. Salehi, and W. Saad, "Ultra reliable, low latency vehicle-to-infrastructure wireless communications with edge computing," in IEEE Global Communications Conference (GLOBECOM), pp. 1--7, 2018. [65] A. Wendler and O. Kesz¨ocze, "A fast BDD minimization framework for approximate computing," in ACM/IEEE Design, Automation and Test in Europe Conference (DATE), pp. 1372--1377, 2020. [66] T. Xu, Z. Meng, W. Lu, and Z. Tong, "End-to-end autonomous driving decision method based on improved TD3 algorithm in complex scenarios," Sensors, vol. 24, no. 15, p. 4962, 2024. [67] S. Yu, "Automating contract-based design for cyber-physical systems," Ph.D. dissertation, University of California, Berkeley, 2025. [68] S. Yu, I. Incer, and A. L. Sangiovanni-Vincentelli, "Constraint-behavior contracts: a formalism for specifying physical systems," in ACM/IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE), pp. 180--190, 2023. [69] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, "Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading," IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 36--44, 2017. [70] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, "Deep learning empowered task offloading for mobile edge computing in urban informatics," IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7635--7647, 2019. [71] Z. Zhou, P. Liu, Z. Chang, C. Xu, and Y. Zhang, "Energy-efficient workload offloading and power control in vehicular edge computing," in IEEE Wireless Communications and Networking Conference Workshops (WCNC), pp. 191196, 2018. [72] G. Zou, Y. He, F. R. Yu, L. Chen, W. Pan, and Z. Ming, "Multi-constraint deep reinforcement learning for smooth action control," in International Joint Conference on Artificial Intelligence (IJCAI), pp. 3802--3808, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101084 | - |
| dc.description.abstract | 大型網宇實體系統的設計因其異質性、多供應商分散式開發,以及對安全性與效能的嚴苛要求而變得複雜。契約式設計透過為元件指定對環境的假設以及行為的保證,來管理此複雜性。儘管基於「假設-保證」之契約式設計能在開發階段促進模組化設計與可擴展的系統整合,但若運行階段假設被違反,便無法提供保證。契約式設計之效益因現代網宇實體系統運行於動態且不確定的環境中而受限。本論文在契約式設計的基礎上,探討運行期監控與違規處理,以強化系統的可靠性。
本論文提出了適用於完全去中心化任務卸載的契約形式,並以車載邊緣運算為案例進行驗證。我們透過實驗結果展示,由契約引導的啟發式分散式方法能在大幅降低設計成本的同時,達到優於進階方法之效能。雖然此種契約式設計能在部署前提供嚴謹的推理,但仍會因運行階段假設違反而無法提供保證。為此,本論文基於現有的運行期監控和違規處理技術,開發適用於動態場景的機制,以應對契約式設計所面臨的挑戰。首先,本論文針對參數化監控在記憶體資源受限時之可擴展性問題進行改進,為基於二元決策圖的參數化監控設計只允許單向誤判之近似演算法,在動態調整記憶體用量的同時保證監控正確性。其次,本論文開發了基於布隆過濾器的運行期監控器生成工具,提供通用且可調適的輕量監控解決方案。最後,本論文將重點由違規偵測延伸至違規調適。在車載控制任務卸載延遲回應的情境中,本論文提出基於多項式的輕量預測與平滑方法,使車輛能在通訊延遲下仍維持穩定的自動駕駛效能。 透過提出形式化契約與運行期調適機制,本論文不僅發揮了契約式設計於設計階段的模組化設計與可擴展整合優勢,更進一步提升了網宇實體系統在動態與不確定環境中的系統表現。 | zh_TW |
| dc.description.abstract | The design of large-scale cyber-physical systems (CPS) is complicated by their heterogeneity, distributed development across multiple vendors, and stringent requirements on both safety and performance. Contract-based design has emerged as a promising methodology to manage this complexity by specifying each component with assumptions on its environment and guarantees on its behavior. While assume-guarantee contracts enable modular design and scalable system integration at design time, they provide no guarantees once assumptions are violated at runtime. As modern CPS operate in dynamic and uncertain environments, the effectiveness of contract-based design alone becomes limited. This dissertation builds on contract-based design and investigates runtime monitoring and violation handling to strengthen system dependability.
We present a contract formulation for fully decentralized task offloading. Using vehicular edge computing as a case study, we show that heuristic decentralized methods guided by contracts can achieve a task completion rate higher than the advanced approach while significantly reducing design cost. Although such contract-based design can provide rigorous reasoning before deployment, it fails to offer guarantees once assumptions are violated at runtime. To address this challenge, we extend existing runtime monitoring and violation handling techniques to develop mechanisms suitable for dynamic scenarios, thereby tackling the challenges faced by contract-based CPS. First, we investigate an existing parametric monitoring framework that employs binary decision diagrams (BDDs) and improve its scalability by introducing one-sided approximation algorithms that preserve soundness while adapting to dynamic memory constraints. Second, we develop a generic monitor generator that compiles annotated specifications into monitoring artifacts based on Bloom filters, xor filters, or binary fuse filters, providing lightweight and tunable monitoring solutions. Finally, we move beyond detection to violation adaptation. In the context of delayed responses in offloaded vehicular control, we propose polynomial-based prediction and smoothing methods that allow vehicles to maintain stable control performance despite communication delays. By introducing formal contracts and adaptive runtime mechanisms, this dissertation not only leverages the modular reasoning and scalable integration advantages of contract-based design at design time but also enhances the robustness and performance of CPS in dynamic and uncertain environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:12:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-27T16:12:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract (Chinese) i
Abstract iii Table of Contents v List of Figures viii List of Tables x Chapter 1. Introduction 1 1.1 Related Work 3 1.1.1 Contract-Based Design for Cyber-Physical Systems 3 1.1.2 Task Offloading for Vehicular Applications 4 1.1.3 Runtime Verification 5 1.1.4 Violation Handling for Cyber-Physical Systems 6 1.2 Contributions 7 1.3 Dissertation Organization 8 Chapter 2. Contract-Based Task Offloading 10 2.1 Overview 10 2.2 System Model 13 2.3 Problem Formulation 15 2.4 Proposed Methodology 16 2.4.1 Contracts 18 2.4.2 Design Guidelines 21 2.5 Case Study 24 2.5.1 Task Offloader 25 2.5.2 Resource Manager 25 2.5.3 Environmental Setup 27 2.5.4 Comparison Methods 29 2.5.5 Results 31 2.6 Sensitivity Study 34 2.6.1 Degree of Imbalance 34 2.6.2 System Load 35 2.6.3 Maximum Hops 37 2.7 Discussions 40 2.8 Summary 42 Chapter 3. Adaptive Runtime Verification 43 3.1 Overview 43 3.2 Problem Formulation 46 3.3 Proposed Methods 47 3.3.1 Fine-Grained Pruning Operator 48 3.3.2 Exact Enumeration 49 3.3.3 Fine-Grained Greedy Algorithm 50 3.3.4 Batch Greedy Algorithm 50 3.4 Experiments 53 3.4.1 Pareto Optimality 53 3.4.2 Pruning Efficiency 56 3.5 Case Study 58 3.6 Error Propagation 61 3.7 Summary 62 Chapter 4. Generic and Adaptive Monitor 63 4.1 Overview 63 4.2 Generic Specification Interface 65 4.3 Adaptive Runtime Monitor Generation 66 4.3.1 Supported Data Structures 66 4.4 Summary 69 Chapter 5. Violation Adaptation 70 5.1 Overview 70 5.2 System Model 72 5.3 Problem Formulation 76 5.4 Proposed Methodology 77 5.4.1 Consecutive Action Smoothing and Prediction 77 5.4.2 Polynomial Action Smoothing and Prediction 79 5.4.3 Mixed Action Smoothing and Prediction 82 5.5 Experiments 83 5.5.1 CARLA Benchmark Results 84 5.5.2 highway-env Benchmark Results 88 5.6 Summary 89 Chapter 6. Conclusions and Future Work 90 Bibliography 92 Appendix: Publication List 102 | - |
| dc.language.iso | en | - |
| dc.subject | 近似計算 | - |
| dc.subject | 自動駕駛 | - |
| dc.subject | 契約式設計 | - |
| dc.subject | 網宇實體系統 | - |
| dc.subject | 深度強化學習 | - |
| dc.subject | 運行期驗證 | - |
| dc.subject | 車載邊緣運算 | - |
| dc.subject | Approximate Computing | - |
| dc.subject | Autonomous Driving | - |
| dc.subject | Contract-Based Design | - |
| dc.subject | Cyber-Physical Systems | - |
| dc.subject | Deep Reinforcement Learning | - |
| dc.subject | Runtime Verification | - |
| dc.subject | Vehicular Edge Computing | - |
| dc.title | 基於設計期契約與運行期調適之系統最佳化 | zh_TW |
| dc.title | System Optimization Based on Design-Time Contracts and Runtime Adaptation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 江介宏;李念澤;巫芳璟;陳尚澤;魏宏宇 | zh_TW |
| dc.contributor.oralexamcommittee | Jie-Hong Roland Jiang;Nian-Ze Lee;Fang-Jing Wu;Shang-Tse Chen;Hung-Yu Wei | en |
| dc.subject.keyword | 近似計算,自動駕駛契約式設計網宇實體系統深度強化學習運行期驗證車載邊緣運算 | zh_TW |
| dc.subject.keyword | Approximate Computing,Autonomous DrivingContract-Based DesignCyber-Physical SystemsDeep Reinforcement LearningRuntime VerificationVehicular Edge Computing | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202504471 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-09-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 1.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
