Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王宗興zh_TW
dc.contributor.advisorTsung-Shing Andrew Wangen
dc.contributor.author蕭郁蓉zh_TW
dc.contributor.authorYu-Rong Hsiaoen
dc.date.accessioned2025-11-27T16:11:05Z-
dc.date.available2025-11-28-
dc.date.copyright2025-11-27-
dc.date.issued2025-
dc.date.submitted2025-10-13-
dc.identifier.citation1. Pohl, C.; Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 2019, 366 (6467), 818–822.
2. Roberts, B. L.; Ma, Z.-X.; Gao, A.; Leisten, E. D.; Yin, D.; Xu, W.; Tang, W. Two-stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem. Biol. 2020, 15 (6), 1487–1496.
3. Chen, C.; Yang, Y.; Wang, Z.; Li, H.; Dong, C.; Zhang, X. Recent advances in pro-PROTAC development to address on-target off-tumor toxicity. J. Med. Chem. 2023, 66 (13), 8428–8440.
4. Gabizon, R.; Shraga, A.; Gehrtz, P.; Livnah, E.; Shorer, Y.; Gurwicz, N.; Avram, L.; Unger, T.; Aharoni, H.; Albeck, S. Efficient targeted degradation via reversible and irreversible covalent PROTACs. J. Am. Chem. Soc. 2020, 142 (27), 11734–11742.
5. Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct. Target. Ther. 2022, 7 (1), 113.
6. Zhang, J.; Chen, C.; Chen, X.; Liao, K.; Li, F.; Song, X.; Liu, C.; Su, M.-Y.; Sun, H.; Hou, T. Linker-free PROTACs efficiently induce the degradation of oncoproteins. Nat. Commun. 2025, 16 (1), 4794.
7. Nguyen, T. M.; Sreekanth, V.; Deb, A.; Kokkonda, P.; Tiwari, P. K.; Donovan, K. A.; Shoba, V.; Chaudhary, S. K.; Mercer, J. A.; Lai, S. Proteolysis-targeting chimeras with reduced off-targets. Nat. Chem. 2024, 16 (2), 218–228.
8. Dale, B.; Cheng, M.; Park, K.-S.; Kaniskan, H. Ü.; Xiong, Y.; Jin, J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer. 2021, 21 (10), 638–654.
9. Liu, J.; Chen, H.; Liu, Y.; Shen, Y.; Meng, F.; Kaniskan, H. U.; Jin, J.; Wei, W. Cancer selective target degradation by folate-caged PROTACs. J. Am. Chem. Soc. 2021, 143 (19), 7380–7387.
10. Chen, H.; Liu, J.; Kaniskan, H. U.; Wei, W.; Jin, J. Folate-guided protein degradation by immunomodulatory imide drug-based molecular glues and proteolysis targeting chimeras. J. Med. Chem. 2021, 64 (16), 12273–12285.
11. Maneiro, M. a.; Forte, N.; Shchepinova, M. M.; Kounde, C. S.; Chudasama, V.; Baker, J. R.; Tate, E. W. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 2020, 15 (6), 1306–1312.
12. He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer‐PROTAC conjugates (APCs) for tumor‐specific targeting in breast cancer. Angew. Chem. Int. Ed. 2021, 133 (43), 23487–23493.
13. Naro, Y.; Darrah, K.; Deiters, A. Optical control of small molecule-induced protein degradation. J. Am. Chem. Soc. 2020, 142 (5), 2193–2197.
14. Xue, G.; Wang, K.; Zhou, D.; Zhong, H.; Pan, Z. Light-induced protein degradation with photocaged PROTACs. J. Am. Chem. Soc. 2019, 141 (46), 18370–18374.
15. Weng, W.; Xue, G.; Pan, Z. Development of visible-light-activatable photocaged PROTACs. Eur. J. Med. Chem. 2024, 265, 116062.
16. Shi, S.; Du, Y.; Zou, Y.; Niu, J.; Cai, Z.; Wang, X.; Qiu, F.; Ding, Y.; Yang, G.; Wu, Y. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J. Med. Chem. 2022, 65 (6), 5057–5071.
17. Dutta, R.; Devarajan, A.; Talluri, A.; Das, R.; Thayumanavan, S. Dual-Action-Only PROTACs. J. Am. Chem. Soc. 2025, 147 (11), 9074–9078.
18. Liu, H.; Ren, C.; Sun, R.; Wang, H.; Zhan, Y.; Yang, X.; Jiang, B.; Chen, H. Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation. Chem. Commun. 2022, 58 (72), 10072–10075.
19. Zhang, Q.; Kounde, C. S.; Mondal, M.; Greenfield, J. L.; Baker, J. R.; Kotelnikov, S.; Ignatov, M.; Tinworth, C. P.; Zhang, L.; Conole, D. Light-mediated multi-target protein degradation using arylazopyrazole photoswitchable PROTACs (AP-PROTACs). Chem. Commun. 2022, 58 (78), 10933–10936.
20. Wurz, R. P.; Dellamaggiore, K.; Dou, H.; Javier, N.; Lo, M.-C.; McCarter, J. D.; Mohl, D.; Sastri, C.; Lipford, J. R.; Cee, V. J. A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation. J. Med. Chem. 2018, 61 (2), 453–461.
21. Si, R.; Hai, P.; Zheng, Y.; Wang, J.; Zhang, Q.; Li, Y.; Pan, X.; Zhang, J. Discovery of intracellular self-assembly protein degraders driven by tumor-specific activatable bioorthogonal reaction. Eur. J. Med. Chem. 2023, 257, 115497.
22. Liu, J.; Chen, H.; Kaniskan, H. U.; Xie, L.; Chen, X.; Jin, J.; Wei, W. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 2021, 143 (23), 8902–8910.
23. Dirksen, A.; Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjugate Chem. 2008, 19 (12), 2543–2548.
24. Gui, W.; Kodadek, T. Applications and Limitations of Oxime‐Linked “Split PROTACs”. ChemBioChem 2022, 23 (18), e202200275.
25. Bhela, I. P.; Ranza, A.; Balestrero, F. C.; Serafini, M.; Aprile, S.; Di Martino, R. M. C.; Condorelli, F.; Pirali, T. A versatile and sustainable multicomponent platform for the synthesis of protein degraders: proof-of-concept application to BRD4-degrading PROTACs. J. Med. Chem. 2022, 65 (22), 15282–15299.
26. Shi, Y.; Fu, L.; Yang, J.; Carroll, K. S. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting. Nat. Chem. 2021, 13 (11), 1140–1150.
27. Alsibaee, A. M.; Aljohar, H. I.; Attwa, M. W.; Abdelhameed, A. S.; Kadi, A. A. Reactive intermediates formation and bioactivation pathways of spebrutinib revealed by LC-MS/MS: In vitro and in silico metabolic study. Heliyon 2023, 9 (6).
28. Wang, L.; Zhang, Z.; Yu, D.; Yang, L.; Li, L.; He, Y.; Shi, J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure–activity relationship. Bioorg. Chem. 2023, 138, 106577.
29. Roskoski Jr, R. Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs). Pharmacol Res. 2021, 165, 105422.
30. Chen, A.-L.; Lin, Z.-J.; Chang, H.-Y.; Wang, T.-S. A. Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo. J. Am. Chem. Soc. 2024, 147 (2), 1518–1528.
31. Huang, J.; Ma, Z.; Yang, Z.; He, Z.; Bao, J.; Peng, X.; Liu, Y.; Chen, T.; Cai, S.; Chen, J. Discovery of Ibrutinib-based BTK PROTACs with in vivo anti-inflammatory efficacy by inhibiting NF-κB activation. Eur. J. Med. Chem. 2023, 259, 115664.
32. Ning, X.; Temming, R. P.; Dommerholt, J.; Guo, J.; Ania, D. B.; Debets, M. F.; Wolfert, M. A.; Boons, G.-J.; Van Delft, F. L. Protein modification by strain-promoted alkyne–nitrone cycloaddition. Angew. Chem. Int. Ed. 2010, 49 (17), 3065.
33. MacKenzie, D. A.; Sherratt, A. R.; Chigrinova, M.; Cheung, L. L.; Pezacki, J. P. Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Curr. Opin. Chem. Biol. 2014, 21, 81–88.
34. Lin, S. T.; Wang, C. H.; Chen, A. L.; Andrew Wang, T. S. Utilizing Alkyne‐Nitrone Cycloaddition for the Convenient Multi‐Component Assembly of Protein Degraders and Biological Probes. Chem. Eur. J. 2025, 31 (3), e202403184.
35. 張曉瑜。「利用水相威悌和點擊化學反應多樣化組裝共價抑制劑及蛋白降解靶向嵌合體」。碩士論文,國立臺灣大學化學系,2023
36. Casey, J. R. Why bicarbonate? Biochem. Cell Biol. 2006, 84 (6), 930–939.
37. Sun, J.; Gu, M.; Peng, L.; Guo, J.; Chen, P.; Wen, Y.; Feng, F.; Chen, X.; Liu, T.; Chen, Y. A Self-Assembled Nano-Molecular Glue (Nano-mGlu) Enables GSH/H2O2-Triggered Targeted Protein Degradation in Cancer Therapy. J. Am. Chem. Soc. 2024, 147 (1), 372–383.
38. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3+ 2] azide− alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126 (46), 15046–15047.
39. Jewett, J. C.; Bertozzi, C. R. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 2011, 13 (22), 5937–5939.
40. Honigberg, L. A.; Smith, A. M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D. H.; Miller, R. A.; Buggy, J. J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. 2010, 107 (29), 13075–13080.
41. Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a series of 2, 5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J. Med. Chem. 2014, 57 (12), 5112–5128.
42. Lanning, B. R.; Whitby, L. R.; Dix, M. M.; Douhan, J.; Gilbert, A. M.; Hett, E. C.; Johnson, T. O.; Joslyn, C.; Kath, J. C.; Niessen, S. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 2014, 10 (9), 760–767.
43. Paggi, J. M.; Pandit, A.; Dror, R. O. The art and science of molecular docking. Annu. Rev. Biochem. 2024, 93 (1), 389–410.
44. Pinzi, L.; Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20 (18), 4331.
45. Pereira, G. P.; Jiménez-García, B.; Pellarin, R.; Launay, G.; Wu, S.; Martin, J.; Souza, P. C. Rational prediction of PROTAC-compatible protein–protein interfaces by molecular docking. J. Chem. Inf. Model. 2023, 63 (21), 6823–6833.
46. Ugurlu, S. Y.; McDonald, D.; Enisoglu, R.; Zhu, Z.; He, S. MEGA PROTAC, MEGA DOCK-based PROTAC mediated ternary complex formation pipeline with sequential filtering and rank aggregation. Sci. Rep. 2025, 15 (1), 5545.
47. Xie, L.; Xie, L. Elucidation of genome-wide understudied proteins targeted by PROTAC-induced degradation using interpretable machine learning. PLOS Comput. Biol. 2023, 19 (8), e1010974.
48. Li, T.; Zong, Q.; Dong, H.; Ullah, I.; Pan, Z.; Yuan, Y. Non-invasive in vivo monitoring of PROTAC-mediated protein degradation using an environment-sensitive reporter. Nat. Commun. 2025, 16 (1), 1892.
49. Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455–461.
50. Peng, L.; Zhang, Z.; Lei, C.; Li, S.; Zhang, Z.; Ren, X.; Chang, Y.; Zhang, Y.; Xu, Y.; Ding, K. Identification of new small-molecule inducers of estrogen-related receptor α (ERRα) degradation. ACS Med. Chem. Lett. 2019, 10 (5), 767–772.
51. Dussouy, C.; Dubreucq, E.; Chemardin, P.; Perrier, V.; Abadie, J.; Quiquampoix, H.; Plassard, C.; Behr, J.-B. A dansyl-derivatized phytic acid analogue as a fluorescent substrate for phytases: experimental and computational approach. Bioorg.Chem. 2021, 110, 104810.
52. Markham, T. E.; Codd, R. A Mild and Modular Approach to the Total Synthesis of Desferrioxamine B. J. Org. Chem. 2024, 89 (7), 5118–5125.
53. Maharvi, G. M.; Bharucha, A. E.; Fauq, A. H. Synthesis of a DOTA (Gd3+)-conjugate of proton-pump inhibitor pantoprazole for gastric wall imaging studies. Bioorg. Med. Chem. Lett. 2013, 23 (9), 2808–2811.
54. Wei, M.; Zhao, R.; Cao, Y.; Wei, Y.; Li, M.; Dong, Z.; Liu, Y.; Ruan, H.; Li, Y.; Cao, S. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur. J. Med. Chem. 2021, 209, 112903.
55. Wang, X.; Ma, N.; Wu, R.; Ding, K.; Li, Z. A novel reactive turn-on probe capable of selective profiling and no-wash imaging of Bruton's tyrosine kinase in live cells. Chem. Commun. 2019, 55 (24), 3473–3476.
56. Bollu, A.; Hassan, M. K.; Dixit, M.; Sharma, N. K. The 2′-caged-tethered-siRNA shows light-dependent temporal controlled RNAi activity for GFP gene into HEK293T cells. Bioorg. Med. Chem. 2021, 30, 115932.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101078-
dc.description.abstract蛋白質降解靶向嵌合體(proteolysis-targeting chimeras, PROTACs)是一類新興的治療策略,能選擇性誘導蛋白降解,具有廣泛潛力,但其開發受限於分子量大、細胞通透性不足以及對連接子特性的高度依賴。為解決這些問題,我們建立了多樣化且便利的化學策略,能由醛類構件快速組裝不同的 PROTAC。第一種策略利用 Wittig 反應,在溫和條件下生成含丙烯醯胺的 PROTAC。第二種策略為接續的威悌反應及環張力促進疊氮-炔烴環加成反應(strain-promoted azide-alkyne cycloaddition, SPAAC)反應,先由帶有疊氮基的醛與膦鹽生成含丙烯醯胺的共價抑制劑(targeted covalent inhibitor, TCI),再於細胞內與帶有 DBCO 基團的片段進行 SPAAC 反應,以降低分子量提升細胞穿膜性。第三種策略則結合硝酮生成(nitrone formation)與環張力促進炔烴-硝酮環加成反應(strain-promoted azide-nitrone cycloaddition , SPANC) 反應,透過醛與羥胺生成硝酮後,再與 DBCO 基團反應,構建多功能 PROTAC,並可修飾光敏保護基團以實現光控活性。綜合而言,這些方法提供了一個高效且靈活的平台,用於合成與功能篩選具治療潛力的PROTAC。zh_TW
dc.description.abstractProteolysis-targeting chimeras (PROTACs) are an emerging therapeutic strategy that selectively induces protein degradation, with broad potential but limited by large molecular weight, poor cell permeability, and strong dependence on linker properties. To address these issues, we developed convenient and versatile chemical strategies enabling rapid assembly of diverse PROTACs from aldehyde building blocks. The first strategy uses a Wittig reaction, generating acrylamide-containing PROTACs under mild conditions. The second employs a sequential Wittig–strain-promoted azide-alkyne cycloaddition (SPAAC) approach, where aldehydes bearing azides react with phosphonium salts to yield acrylamide-functionalized targeted covalent inhibitors (TCIs), which undergo intracellular strain-promoted azide-nitrone cycloaddition (SPANC) with DBCO fragments to improve permeability. The third combines nitrone formation with SPANC, where aldehydes and hydroxylamines form nitrones that react with DBCO groups to construct multifunctional PROTACs, allowing incorporation of photocaging groups for light-controlled activity. Together, these methods establish an efficient and flexible platform for the synthesis and functional screening of PROTACs with therapeutic potential.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:11:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-27T16:11:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Content

摘要 i
Abstract ii
謝誌 iii
Table of Content iv
Table of Figure viii
Table of Scheme xii
Abbreviations xiii
Chapter 1 Introduction 1
1.1. Proteolysis-Targeting Chimeras (PROTAC) 1
1.2. Multifunctional PROTACs 2
1.3. Rapid PROTAC Assembly via Click Reaction 4
1.4. The Application of Aldehyde-Containing Building Blocks 5
1.5. Convenient Multi-Functional PROTACs Assembly with Aldehyde Building Blocks 7
1.5.1. The Wittig Reaction Represents a Promising Strategy for PROTAC Assembly 9
1.5.2. Strain-Promoted Alkyne- Nitrone Cycloaddition (SPANC) Represent a Promising Strategy for Multi-Functional PROTAC 11
Chapter 2 Results and Discussions 13
2.1. WT-PROTACs (Wittig PROTACs) 13
2.1.1. Molecular Design of WT-PROTACs 13
2.1.2. Preparation of AldeX-TH 14
2.1.3. WT-PROTACs Assembling via Purified and Preassembled Method 16
2.1.4. Evaluation of WT-PROTACs in Ramos Cells 22
2.1.5. Synthesis of E-form Ibr-AAMPS-TH 26
2.1.6. Cell Viability Assay of WT-PROTACs 29
2.2. WT-SPA PROTACs (Wittig-SPAAC PROTACs) 30
2.2.1. Molecular Design of WT-SPA PROTAC 30
2.2.2. Evaluation of WT-TCIs in Ramos Cells 32
2.2.3. Evaluation of WT-SPA-PROTACs in Ramos cells 35
2.2.4. Cell Viability Assay of WT-SPA-PROTACs 44
2.3. SPN-PROTACs (SPANC-PROTACs) 45
2.3.1. Molecular Design of SPN-PROTACs 45
2.3.2. Preparation of DBCO-VHL and X-NHOH 46
2.3.3. SPN-PROTACs Assembly and Their Evaluation in MDA-MB-231 Cells 48
2.3.4. Cell Viability Assay of SPN-PROTACs 63
2.3.5. Molecular Docking of SPN-PROTACs via AutoDock Vina 63
Chapter 3 Conclusions and Perspectives 68
Chapter 4 Materials and Methods 71
4.1. General Synthetic Methods and Instrumentation 71
4.2. Synthesis and Characterization of Compounds 72
4.2.1. Preparation of AldeX-TH 72
4.2.2. Preparation of E-form Ibr-AAMPS-TH 82
4.2.3. Preparation of DBCO-VHL and X-NHOH 87
4.2.4. WT-PROTACs Assembly 93
4.2.5. SPN-PROTACs Assembly 93
4.2.6. Photolysis Assay 94
4.2.7. Molecular Docking 94
4.3. Biological Experiment 95
4.3.1. Cell Culture 95
4.3.2. Cell Treatment for Western Blot Analysis 95
4.3.4. Western Blot Analysis 97
4.3.5. Cell Viability Assay 97
References 100
Appendix 110
-
dc.language.isoen-
dc.subject蛋白質降解靶向嵌合體-
dc.subject醛類-
dc.subject威悌反應-
dc.subject疊氮–炔烴環加成-
dc.subject炔烴–亞硝基環加成-
dc.subject多重成分組裝-
dc.subject光保護基-
dc.subjectPROTAC-
dc.subjectaldehyde-
dc.subjectWittig reaction-
dc.subjectazide–alkyne cycloaddition-
dc.subjectalkyne–nitrone cycloaddition-
dc.subjectmulti-component assembly-
dc.subjectphotocage-
dc.title以含醛建構單元實現便利且多元組裝的多功能蛋白質降解靶向嵌合體zh_TW
dc.titleConvenient and Versatile Assembly of Multi-Functional PROTACs Using Aldehyde Containing Building Blocksen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱忠瀚;謝俊結zh_TW
dc.contributor.oralexamcommitteeJohn Chu;Jiun-Jie Shieen
dc.subject.keyword蛋白質降解靶向嵌合體,醛類威悌反應疊氮–炔烴環加成炔烴–亞硝基環加成多重成分組裝光保護基zh_TW
dc.subject.keywordPROTAC,aldehydeWittig reactionazide–alkyne cycloadditionalkyne–nitrone cycloadditionmulti-component assemblyphotocageen
dc.relation.page126-
dc.identifier.doi10.6342/NTU202504571-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-10-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2030-10-12-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  此日期後於網路公開 2030-10-12
6.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved