請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101065完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧南佑 | zh_TW |
| dc.contributor.advisor | Nan-You Lu | en |
| dc.contributor.author | 謝祥囿 | zh_TW |
| dc.contributor.author | Hsiang Yu Hsieh | en |
| dc.date.accessioned | 2025-11-27T16:07:44Z | - |
| dc.date.available | 2025-11-28 | - |
| dc.date.copyright | 2025-11-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-11 | - |
| dc.identifier.citation | [1] 行政院能源及減碳辦公室. 能源國家發展策略綱領, 2020. Retrieved Dec. 21,2024, from https://www.moeaea.gov.tw/ECW/populace/home/Home.aspx.
[2] Y.-L. Ma et al. The Jensen wind farm parameterization. Wind Energy Science,7(6):2407–2431, 2022. [3] N.O. Jensen. A note on wind generator interaction. Risø National Laboratory, 1983. [4] 黃爍. 測風塔及LIDAR 於離岸風力發展之應用. 博士論文, 國立成功大學機械工程學系, 臺南市, 2013. [5] A.L. Vöhringer et al. Comparison of horizontal wind speed and direction measurements from dual-doppler radar and profiling lidars. In Journal of Physics:Conference Series, volume 2767, page 092101. IOP Publishing, 2024. [6] N. G. Nygaard and A. C. Newcombe. Wake behind an offshore wind farm observed with dual-doppler radars. Journal of Physics: Conference Series, 1037(7):072008,2018. [7] L. Valldecabres et al. On the use of dual-doppler radar measurements for very shortterm wind power forecasts. Remote Sensing, 10(11):1701, 2018. [8] L. Cao et al. Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines. Applied Energy, 323:119599, 2022. [9] S. Frandsen et al. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 9(1-2):39–53, 2006. [10] R.J. Barthelmie et al. Flow and wakes in large wind farms in complex terrain and offshore. 2008. [11] M. Bastankhah and F. Porté-Agel. A new analytical model for wind-turbine wakes. Renewable energy, 70:116–123, 2014. [12] I. Katic et al. A Simple Model for Cluster Efficiency. Risø National Laboratory, 1987. [13] L. Tian et al. Prediction of multi-wake problems using an improved jensen wake model. Renewable energy, 102:457–469, 2017. [14] J. Ren et al. Wind turbine wake calculation model with exponential reciprocal attenuation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(12):6521–6529, 2022. [15] 張家修. 應用於離岸風機之jensen 尾跡流修正模型. 碩士論文, 國立臺灣大學工程科學及海洋工程學系, 臺北市, 2024. [16] H. Sun and H. Yang. Study on an innovative three-dimensional wind turbine wake model. Applied Energy, 226:483–493, 2018. [17] X.-X. Gao et al. Investigation and validation of 3d wake model for horizontal-axis wind turbines based on filed measurements. Applied Energy, 260:114272, 2020. [18] T. Burton et al. Wind Energy Handbook. John Wiley & Sons, 2nd edition, 2011. [19] TheWindPower.net. Retrieved Feb. 12, 2025, from https://www.thewindpower.net/turbine_en_957_siemens_swt-4.0-130.php?utm_source. [20] TheWindPower.net. Retrieved Feb. 12, 2025, from https://www.thewindpower.net/turbine_en_807_siemens_swt-6.0-154.php. [21] Siemens AG. Siemens 6.0 MW Offshore Wind Turbine. Technical Report Order No.E50001-G310-A186-X-7600, Siemens AG, Energy Sector, 2011. [22] 張上君等. 離岸風場海氣象觀測塔之規劃與設計技術. 中華技術, (103):72–85,7 2014. 民103.07. [23] E.W. Quon et al. Comparison of rotor wake identification and characterizationmethods for the analysis of wake dynamics and evolution. In Journal of Physics:Conference Series, volume 1452, page 012070. IOP Publishing, 2020. [24] R. Pokhrel and H. Lee. Estimation of the effective zone of sea/land breeze in a coastal area. Atmospheric Pollution Research, 2(1):106–115, 2011. [25] K.S. Cheng et al. Wind and sea breeze characteristics for the offshore wind farms in the central coastal area of taiwan. Energies, 15(3):992, 2022. [26] 中央氣象署. Retrieved May. 13, 2025, from https://opendata.cwa.gov.tw/dataset/astronomy?page=1. [27] Siemens AG. Siemens D6 Platform – 6.0-MW Direct Drive Wind Turbine: The New Standard for Offshore. Technical report, Siemens AG, Energy Sector, 2014. [28] Ørsted Taiwan Retrieved Oct. 15, 2024, from https://orsted.tw. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101065 | - |
| dc.description.abstract | 臺灣海峽風能資源豐富,近年來離岸風電產業快速發展,而風機尾流效應對風場發電效率與功率預測準確性具關鍵影響,值得深入探討。由於臺灣冬季盛行東北季風,具風速強勁、風向穩定之特性,本研究選取東北季風期間觀測資料,以呈現冬季典型風場。工程上常以 Jensen 模型描述尾流行為,惟多數研究僅依單點或二維風速量測分析,難以全面反映尾流結構與變化。本研究利用丹麥風電開發商沃旭(Ørsted)於臺灣竹南海洋風場所建置之雙都卜勒雷達系統,結合多角度風速量測與 Jensen 模型,探討 6 MW 風機在不同空間配置與風況條件下之尾流擴散行為與模型參數校準,涵蓋單風機尾流、上下游風機互擾與海陸風條件差異等情境。分析採用公稱轉子直徑與以相對風速閾值法估算之實測尾流直徑兩種假設,並分別以尾流中心風速與尾流擴散半徑推估擴散係數 k。結果顯示,實測直徑假設更適用於近場與尾流重疊情境,能有效提高模型擬合精度。單風機情境下,實測直徑假設的 k 值約為 0.06 至 0.10,邊界法約 0.07 至 0.09,略高於公稱直徑假設,能更準確反映尾流中心風速衰減與橫向擴張行為。雙風機分析中,下游風機尾流之 k 值平均約 0.18,顯示尾流重疊導致混合顯著增加。海陸風條件比較顯示,海風條件下紊流活躍,中心風速法 k 約為 0.09,邊界法約 0.03;陸風條件下大氣穩定度較高,紊流活動受抑制,中心風速法 k 下降至約 0.05,邊界法上升達 0.04至 0.05,顯示尾流在穩定環境中雖恢復較慢,但橫向擴張更為顯著。綜合而言,尾流擴散係數 k 具明顯的情境依賴性,隨風機佈局、大氣穩定度、紊流強度及尾流度量方式而變化。本研究成果可供離岸風場佈置設計與發電效率評估參考。 | zh_TW |
| dc.description.abstract | The Taiwan Strait possesses abundant wind energy resources, and in recent years, the offshore wind power industry has developed rapidly. The wake effect of wind turbines has a critical impact on wind farm power generation efficiency and the accuracy of power output prediction, making it an important topic for further investigation. During winter, Taiwan is dominated by the northeast monsoon characterized by strong wind speeds and stable wind directions. This study utilizes observational data collected during the northeast monsoon period to represent typical winter wind field conditions. In engineering applications, the Jensen model is commonly employed to describe wake behavior; however, most studies determine its parameters based solely on single-point or two-dimensional wind speed measurements, which limits the comprehensive representation of wake structures and their variations.This research employs dual-Doppler radar systems installed by Ørsted, a Danish wind power developer, at the Zhunan offshore wind farm in Taiwan. By integrating multi-angle wind speed observations with the Jensen model, this study investigates the wake expansion characteristics and parameter calibration of 6 MW wind turbines under different spatial configurations and wind conditions, encompassing single-turbine wakes, upstream–downstream turbine interactions, and sea–land breeze conditions. Two assumptions are adopted: one based on the nominal rotor diameter and another derived from measured wake diameters estimated using the relative wind speed threshold method. The wake expansion coefficient k is estimated using both the wake centerline wind speed and wake boundary radius approaches.The results indicate that the measured-diameter assumption is more suitable for near-wake and wake-overlapping conditions, effectively improving model fitting accuracy. For single-turbine cases, the k values based on the measured-diameter assumption range from approximately 0.06 to 0.10 using the centerline method and 0.07 to 0.09 using the boundary method, slightly higher than those obtained under the nominal-diameter assumption, and better capturing the wake centerline wind speed decay and lateral expansion behavior. In two-turbine analyses, the downstream turbine exhibited an average k value of about 0.18, indicating that wake overlap significantly enhances mixing intensity. The comparison under sea–land breeze conditions shows that during sea-breeze periods, turbulent activity is strong, with k values of about 0.09 and 0.03 for the centerline and boundary methods, respectively; whereas under land-breeze conditions, higher atmospheric stability suppresses turbulence, resulting in k decreasing to around 0.05 for the centerline method and increasing to 0.04–0.05 for the boundary method. These results indicate that under stable atmospheric conditions, wake recovery is slower but lateral expansion is more pronounced. Overall, the wake expansion coefficient k exhibits clear dependence on environmental conditions and varies with turbine layout, atmospheric stability, turbulence intensity, and wake evaluation method. The findings of this study can serve as valuable references for offshore wind farm layout design, wake effect assessment, and power generation efficiency evaluation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-27T16:07:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-27T16:07:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 圖次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 表次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 縮寫表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景與動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章 研究方法及流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 一維動量理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Jensen 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 風場介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 雙都卜勒雷達 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 風場資料處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 資料網格正規化 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 缺失資料修補 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 尾流分析方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.1 有效尾流邊界界定方法 . . . . . . . . . . . . . . . . . . . . . . . 16 2.6.2 尾流中心風速與擴散半徑 . . . . . . . . . . . . . . . . . . . . . . 17 2.6.3 風機尾流分析區域 . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 海陸風效應 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 研究流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第三章 單風機尾流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 水平方向尾流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.1 尾流擴散半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.2 尾流中心風速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 垂直方向尾流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第四章 雙風機尾流分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1 尾流擴散半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 C、D 位置風機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.2 C、A 位置風機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.3 E、D 位置風機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 尾流中心風速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 C、D 風機組 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 C、A 位置風機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 E、D 位置風機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 第五章 海陸風效應 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 海風 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.1 尾流擴散半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.2 尾流中心風速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 陸風 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 尾流擴散半徑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 尾流中心風速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 第六章 結論與建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.1 成果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 尾流 | - |
| dc.subject | 離岸風力發電機 | - |
| dc.subject | 雙都卜勒雷達 | - |
| dc.subject | Jensen 模型 | - |
| dc.subject | wake | - |
| dc.subject | offshore wind turbine | - |
| dc.subject | dual-Doppler radar | - |
| dc.subject | Jensen model | - |
| dc.title | 基於臺灣東北季風觀測資料之離岸風機尾流模型參數研究 | zh_TW |
| dc.title | Parameter Study on Offshore Wind Turbine Wake Models Using Northeast Monsoon Observations in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳亦莊;何正有;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Zhuang Wu ;Cheng-Yu Ho;Tsung-Yueh Lin | en |
| dc.subject.keyword | 尾流,離岸風力發電機雙都卜勒雷達Jensen 模型 | zh_TW |
| dc.subject.keyword | wake,offshore wind turbinedual-Doppler radarJensen model | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202504651 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-11-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-11-03 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 13.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
