請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101055完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡明哲 | zh_TW |
| dc.contributor.advisor | Ming-Che Hu | en |
| dc.contributor.author | 李明熹 | zh_TW |
| dc.contributor.author | Ming-Xi Li | en |
| dc.date.accessioned | 2025-11-26T16:38:09Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-11-12 | - |
| dc.identifier.citation | [1] A. Ang and G. Bekaert. Regime switches in interest rates. Journal of Business & Economic Statistics, 20(2): 163–182, 2002.
[2] A. Ang and G. Bekaert. Short rate nonlinearities and regime switches. Journal of Economic Dynamics & Control, 26(7–8): 1243–1274, 2002. [3] A. Ang and M. Piazzesi. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables. Journal of Monetary Economics, 50(4): 745–787, 2003. [4] N. Antonakakis, I. Chatziantoniou, and D. Gabauer. Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4): 84, 2020. [5] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference under Order Restrictions. Wiley, 1972. [6] J. H. E. Christensen, F. X. Diebold, and G. D. Rudebusch. The affine arbitrage-free class of nelson–siegel term structure models. Journal of Econometrics, 164(1): 4–20, 2011. [7] T. E. Clark and K. D. West. Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138(1): 291–311, 2007. [8] Q. Dai and K. J. Singleton. Specification analysis of affine term structure models. Journal of Finance, 55(5): 1943–1978, 2000. [9] Q. Dai, K. J. Singleton, and W. Yang. Regime shifts in a dynamic term structure model of U.S. treasury bond yields. Review of Financial Studies, 20(5): 1669–1706, 2007. [10] F. X. Diebold and C. Li. Forecasting the term structure of government bond yields. Journal of Econometrics, 130(2): 337–364, 2006. [11] F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3): 253–263, 1995. [12] G. R. Duffee. Term premia and interest rate forecasts in affine models. Journal of Finance, 57(1): 405–443, 2002. [13] F. J. Fabozzi. Bond Markets, Analysis, and Strategies. Pearson, Boston, 8th edition, 2012. [14] D. Gabauer, R. Gupta, H. A. Marfatia, and S. M. Miller. Estimating U.S. housing price network connectedness: Evidence from dynamic elastic net, lasso, and ridge vector autoregressive models, 2020. SSRN Working Paper No. 3660950. [15] S. F. Gray. Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1): 27–62, 1996. [16] J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2): 357–384, 1989. [17] D. I. Harvey, S. J. Leybourne, and P. Newbold. Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2): 281–291, 1997. [18] Y. Huang, G. Kou, and Y. Peng. Nonlinear manifold learning for early warning in financial markets. European Journal of Operational Research, 258(2): 692–702, 2017. [19] J. C. Hull. Options, Futures, and Other Derivatives. Pearson, Boston, 9th edition, 2015. [20] R. B. Litterman. Forecasting with bayesian vector autoregressions — five years of experience. Journal of Business & Economic Statistics, 4(1): 25–38, 1986. [21] R. B. Litterman and J. A. Scheinkman. Common factors affecting bond returns. Journal of Fixed Income, 1(1): 54–61, 1991. [22] R. Liu, H. Cai, and C. Luo. Clustering analysis of stocks of CSI 300 index based on manifold learning. Journal of Intelligent Learning Systems and Applications, 4(2): 120–126, 2012. [23] W. B. Nicholson, D. S. Matteson, and J. Bien. VARX-L: Structured regularization for large vector autoregressions with exogenous variables. International Journal of Forecasting, 33(3): 627–651, 2017. [24] J. C. Robertson and E. W. Tallman. Vector autoregressions: Forecasting and reality. Economic Review, Federal Reserve Bank of Atlanta, 84(1): 4–18, 1999. [25] T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference. Wiley, 1988. [26] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): 2319–2323, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101055 | - |
| dc.description.abstract | 殖利率曲線的預測攸關貨幣政策與資產配置,但因橫截面維度高且可能出現狀態變遷而具挑戰性。本文建構了一套可重現的端到端預測流程,並在零息領域中進行分析與評估。在資料處理方面,首先對美國財政部的每日殖利率資料進行嚴格到期對齊,並透過具備單調(不增)及二次差分平滑條件的無套利投影,將票面殖利率轉換為折現因子與零息利率;相同的轉換亦應用於預測輸出,以確保樣本外殖利率曲線滿足無套利约束。在模型方面,以主成分分析(PCA)提取三個潛在因子,並使用 DV01 加權的 Ridge 因子重建模型重建整條殖利率曲線。核心預測模型是以因子水準(Z(t-i))為輸入,對因子變化量(ΔZ(t,h)) 進行直接多步預測的 Ridge–VAR,其滯後階數亦由 DV01 加權的均方誤差(WMSPE)於驗證集中自動選定,使評估指標與模型選擇保持一致。此外,將核心模型與 PCA–AR 基準模型進行線性集成:在驗證期為每個預測地平線求得最適混合權重 λh⋆,並固定於測試期使用。評估方面,採用逐到期的 Diebold–Mariano(DM)檢定(包括 HLN 小樣本修正與 FDR 多重比較控制)、DV01 加權匯總的整體 DM 檢定,以及用於巢狀模型比較的 Clark–West 檢定,同時進行了 2021 年 12 月 6 日前後的事件研究。為強化對照,納入 Nelson–Siegel(DNS)、基於利率水準–斜率–曲率因子的 VAR 模型 (VAR(LSC))、隨機漫步 (RW) 等多種強力基準模型;HMM 則僅用於因子序列的敘事性分群分析。實證結果顯示,相較各項基準,核心模型在驗證期的 1 日與 5 日預測、以及測試期的 1 日預測上均實現了顯著更低的 DV01 加權誤差;而經驗證期優化的模型集成進一步提升了短期預測的精度。與 DNS、VAR(LSC) 和 RW 等模型的比較以及 Clark–West 檢定統計均嚴謹地支持了上述成果。將 PCA 替換為非線性降維的 Isomap 並未帶來樣本外表現的提升,這印證了線性三因子表示法的充分性。 | zh_TW |
| dc.description.abstract | Forecasting the yield curve is crucial for monetary policy and asset allocation, yet it remains challenging due to the high dimensionality of the cross-section and potential regime shifts. This paper develops a fully reproducible end-to-end forecasting pipeline operating in the zero-coupon domain. On the data side, we strictly align U.S. Treasury daily par yields across maturities and convert them into discount factors and zero rates via a no-arbitrage interpolation that enforces monotonicity and quadratic smoothness. The same transformation is applied to forecast outputs to ensure out-of-sample yield curves remain arbitrage-free. On the modeling side, three latent factors are extracted by principal component analysis (PCA), and a DV01-weighted Ridge reconstruction model is used to reconstruct the entire yield curve. The core forecasting model is a direct multi-step Ridge–VAR that uses factor levels (Z(t-i)) as predictors for future factor changes (ΔZ(t,h)), with the lag order also selected on a validation set by minimizing DV01-weighted mean squared prediction error (WMSPE), thus aligning the evaluation metric with model selection. Additionally, we form a linear ensemble of the core model with a PCA–AR benchmark: the optimal mixing weight λh⋆ for each horizon is determined on the validation period and then fixed for the test period. Evaluation includes maturity-specific Diebold–Mariano (DM) tests (with HLN small-sample adjustment and FDR control), a DV01-aggregated overall DM test, and Clark–West tests for nested comparisons, alongside an event study around December 6, 2021. Strong benchmark models—including Nelson–Siegel (DNS), a VAR on level–slope–curvature (VAR(LSC)), a random walk (RW)—are included for comparison, while an HMM on the factor series is used only for narrative regime segmentation. Empirically, the core model delivers significant DV01-weighted error reductions relative to the benchmarks at the 1-day and 5-day horizons on the validation set, and at the 1-day horizon on the test set; the validation-tuned ensemble further improves short-horizon accuracy. Comparisons against DNS, VAR(LSC), and RW baselines, along with Clark–West statistics, provide robust support for these gains. Replacing PCA with a nonlinear Isomap method yields no out-of-sample improvement, underscoring the sufficiency of a linear three-factor representation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:38:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:38:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgements ii 摘要 iv Abstract vi Contents ix List of Figures xiii List of Tables xv Chapter 1 引言 1 1.1 研究背景與重要性 1 1.2 預測挑戰 1 1.3 研究動機與主要問題 2 1.4 研究目標與貢獻 3 Chapter 2 文獻回顧 5 2.1 殖利率曲線中的主成分分析(PCA)與預測 5 2.2 金融建模中的非線性降維 6 2.3 多變量金融預測中的 Ridge–VAR(X) 模型 6 2.4 預測評估:Diebold–Mariano 檢定與 HLN 修正 7 2.5 利率狀態轉換模型與隱馬可夫模型(HMM) 7 2.6 無套利期限結構模型與動態 Nelson–Siegel 模型 8 2.7 機器學習在殖利率預測與多期預報中的應用 9 2.8 本研究之定位與文獻缺口 9 Chapter 3 研究方法 11 3.1 資料處理與殖利率曲線轉換 11 3.1.1 資料與嚴格對齊 11 3.1.2 樣本切割 11 3.1.3 折現因子空間之單調+平滑投影(輸入與預測輸出皆執行) 12 3.2 利率曲線的因子模型 14 3.2.1 因子萃取:PCA(主結果)與 Isomap(穩健性) 14 3.2.2 DV01 加權的線性因子重建模型(Ridge) 15 3.3 因子預測模型:直接多步 Ridge–VAR 16 3.3.1 兩階段超參數選擇 16 3.3.2 預測流程與無套利再投影 17 3.4 驗證期線性集成 17 3.5 基準模型組 18 3.6 HMM 狀態分析(敘事用途) 19 3.7 預測評估與統計檢定 19 3.7.1 損失度量 20 3.7.2 逐到期顯著性檢定(DM–HLN + FDR) 20 3.7.3 整體經濟顯著性檢定(DV01-weighted DM & CW) 21 3.8 本章小結 22 Chapter 4 實證結果與分析 23 4.1 資料描述與降維處理 23 4.2 模型超參數設定:驗證期擇優結果 25 4.3 核心預測表現:WMSPE 模型表現比較表 30 4.4 統計顯著性分析 (DM 與 CW 檢定) 33 4.5 穩健性分析 (一):事件研究 35 4.6 穩健性分析 (二):質化案例研究 36 4.7 穩健性分析 (三):非線性降維 (Isomap) 之檢驗 37 Chapter 5 結論 39 5.1 研究結論與實證意涵 39 5.2 研究限制 40 5.3 未來研究方向 41 References 43 Appendix A — DF 平滑參數 α 敏感度 47 A.1 DF 平滑參數 α 敏感度 47 Appendix B — PCA 因子分析 49 B.1 PCA 負荷與解釋變異 49 Appendix C — VAR 滯後階與網格結果 51 C.1 VAR zlags 網格搜尋結果 51 Appendix D — 重建模型 R2 +『替代權重』整體 DM 53 D.1 重建模型 R2 與替代權重下的整體 DM 53 D.1.1 模型重建 R2 53 D.1.2 替代重建權重之 DM 檢定 55 Appendix E — 敏感度分析(Isomap) 59 E.1 Isomap 穩健性分析 59 E.1.1 實驗設計 59 E.1.2 主要結果摘要(相對 PCA) 60 E.1.3 k(鄰居數)敏感度 61 E.1.4 因子詮釋與可視化 61 E.1.5 小結 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 經濟風險導向 | - |
| dc.subject | 殖利率曲線 | - |
| dc.subject | 零息利率 | - |
| dc.subject | 無套利投影 | - |
| dc.subject | DV01 加權 | - |
| dc.subject | 主成分分析 (PCA) | - |
| dc.subject | Ridge–VAR | - |
| dc.subject | 直接多步預測 | - |
| dc.subject | Diebold–Mariano 檢定 | - |
| dc.subject | Clark–West 檢定 | - |
| dc.subject | 事件研究 | - |
| dc.subject | Economic Risk-Driven | - |
| dc.subject | Yield Curve | - |
| dc.subject | Zero-Coupon Yields | - |
| dc.subject | No-Arbitrage Projection | - |
| dc.subject | DV01 Weighting | - |
| dc.subject | Principal Component Analysis (PCA) | - |
| dc.subject | Ridge-Regularized VAR | - |
| dc.subject | Direct Multi-step Forecasting | - |
| dc.subject | Diebold–Mariano Test | - |
| dc.subject | Clark–West Test | - |
| dc.subject | Event Study | - |
| dc.title | 經濟風險導向的殖利率曲線預測:以DV01加權為核 心的直接多步Ridge-VAR框架 | zh_TW |
| dc.title | Economic Risk-Driven Yield Curve Forecasting: A DV01-Weighted Direct Multi-Step Ridge-VAR Framework | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 溫在弘;陳郁蕙;何率慈 | zh_TW |
| dc.contributor.oralexamcommittee | Tzai-Hung Wen;Yu-Hui Chen;Shuay-Tsyr Ho | en |
| dc.subject.keyword | 經濟風險導向,殖利率曲線零息利率無套利投影DV01 加權主成分分析 (PCA)Ridge–VAR直接多步預測Diebold–Mariano 檢定Clark–West 檢定事件研究 | zh_TW |
| dc.subject.keyword | Economic Risk-Driven,Yield CurveZero-Coupon YieldsNo-Arbitrage ProjectionDV01 WeightingPrincipal Component Analysis (PCA)Ridge-Regularized VARDirect Multi-step ForecastingDiebold–Mariano TestClark–West TestEvent Study | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202504641 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-11-12 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| dc.date.embargo-lift | 2030-11-11 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
