Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉浩澧zh_TW
dc.contributor.advisorHao-Li Liuen
dc.contributor.author謝子涔zh_TW
dc.contributor.authorTzu-Tsen Hsiehen
dc.date.accessioned2025-11-26T16:37:54Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2024-
dc.date.submitted2025-09-09-
dc.identifier.citation[1] J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tanter, “Ultrafast compound doppler imaging: providing full blood flow characterization,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 58, no. 1, pp. 134–47, 2011.
[2] C.Tremblay-Darveau, R.Williams, L. Milot, M. Bruce, andP.N.Burns, “Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 61, no. 12, pp. 1988–2000, 2014.
[3] E. Macé, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, “Functional ultrasound imaging of the brain,” Nat Methods, vol. 8, no. 8, pp. 662–4, 2011.
[4] C. H. Fan, W. H. Lin, C. Y. Ting, W. Y. Chai, T. C. Yen, H. L. Liu, and C. K. Yeh, “Contrast-enhancedultrasoundimagingforthedetectionoffocusedultrasound induced blood-brain barrier opening,” Theranostics, vol. 4, no. 10, pp. 1014–25, 2014. Fan, Ching-Hsiang Lin, Wun-Hao Ting, Chien-Yu Chai, Wen-Yen Yen, Tzu Chen Liu, Hao-Li Yeh, Chih-Kuang eng Research Support, Non-U.S. Gov’t Australia 2014/08/28 Theranostics. 2014 Aug 1;4(10):1014-25. doi: 10.7150/thno.9575. eCollection 2014.
[5] Y.-C. JillKao and B.-Y. Hsieh, “Ultrafast doppler observation in rat stroke model comparison with high field magnetic resonance imaging,” in 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, 2018.
[6] C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive doppler,” Neuroimage, vol. 124, no. Pt A, pp. 752–761, 2016.
[7] “Sonovue- mims singapore.” https://www.mims.com/singapore/drug/info/sonovue?type=full. Accessed: 2024-06-29.
[8] C. Demene, M. Pernot, V. Biran, M. Alison, M. Fink, O. Baud, and M. Tanter, “Ultrafast doppler reveals the mapping of cerebral vascular resistivity in neonates,” J CerebBloodFlowMetab,vol.34,no.6,pp.1009–17,2014. Demene,CharliePernot, Mathieu Biran, Valerie Alison, Marianne Fink, Mathias Baud, Olivier Tanter, Mickael eng Clinical Trial Research Support, Non-U.S. Gov’t 2014/03/29 J Cereb Blood Flow Metab. 2014 Jun;34(6):1009-17. doi: 10.1038/jcbfm.2014.49. Epub 2014 Mar 26.
[9] C. Demene, T. Deffieux, M. Pernot, B. F. Osmanski, V. Biran, J. L. Gennisson, L. A. Sieu, A. Bergel, S. Franqui, J. M. Correas, I. Cohen, O. Baud, and M. Tanter, “Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fultrasound sensitivity,” IEEE Trans Med Imaging, vol. 34, no. 11, pp. 2271–85, 2015.
[10] P. Song, J. D. Trzasko, A. Manduca, B. Qiang, R. Kadirvel, D. F. Kallmes, and S. Chen, “Accelerated singular value-based ultrasound blood flow clutter filtering with randomized singular value decomposition and randomized spatial downsampling,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 64, no. 4, pp. 706–716, 2017.
[11] B.Pialot, L. Augeul, L. Petrusca, and F. Varray, “A simplified and accelerated implmentation of svd for filtering ultrafast power doppler images,” Ultrasonics, vol. 134, p. 107099, 2023.
[12] S. Yan, J. Shou, J. Yu, J. Song, Y. Mao, and K. Xu, “Ultrafast ultrasound vector doppler for small vasculature imaging,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 70, no. 7, pp. 613–624, 2023.
[13] B. Beliard, C. Ahmanna, E. Tiran, K. Kante, T. Deffieux, M. Tanter, F. Nothias, S. Soares, and S. Pezet, “Ultrafast doppler imaging and ultrasound localization microscopy reveal the complexity of vascular rearrangement in chronic spinal lesion,” Sci Rep, vol. 12, no. 1, p. 6574, 2022.
[14] C. Demene, J. Robin, A. Dizeux, B. Heiles, M. Pernot, M. Tanter, and F. Perren, “Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients,” Nat Biomed Eng, vol. 5, no. 3, pp. 219–228, 2021.
[15] A.Singh, J. Kusunose, M. A.Phipps, F. Wang, L. M.Chen, andC.F.Caskey, “Guiding and monitoring focused ultrasound mediated blood-brain barrier opening in rats using power doppler imaging and passive acoustic mapping,” Sci Rep, vol. 12, no. 1, p. 14758, 2022.
[16] C. Aurup, J. Bendig, S. G. Blackman, E. P. McCune, S. Bae, S. Jimenez-Gambin, R. Ji, and E. E. Konofagou, “Transcranial functional ultrasound imaging detects focused ultrasound neuromodulation induced hemodynamic changes in mouse and nonhuman primate brains in vivo,” bioRxiv, 2024.
[17] M. A. O’Reilly and K. Hynynen, “A super-resolution ultrasound method for brain vascular mapping,” Med Phys, vol. 40, no. 11, p. 110701, 2013.
[18] “Three-dimensional super resolution ultrasound imaging with a multi-frequency hemispherical phased array.,”
[19] J. Wiskin, B. Malik, C. Ruoff, N. Pirshafiey, M. Lenox, and J. Klock, “Whole-body imaging using low frequency transmission ultrasound,” Acad Radiol, vol. 30, no. 11, pp. 2674–2685, 2023.
[20] Z. Liu, Y. Shi, and C. Liu, “Emerging trends in drug-device combination for advanced disease diagnosis and therapy,” Nano Today, vol. 50, p. 101853, 2023.
[21] P.C.Chu,H.L.Liu,H.Y.Lai,C.Y.Lin,H.C.Tsai,andY.C.Pei,“Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening,” Sci Rep, vol. 5, p. 15477, 2015.
[22] N. Todd, Y. Zhang, M. Livingstone, D. Borsook, and N. McDannold, “The neurovascular response is attenuated by focused ultrasound-mediated disruption of the blood-brain barrier,” Neuroimage, vol. 201, p. 116010, 2019.
[23] J. Shin, C. Kong, J.S.Cho, J.Lee, C.S.Koh, M.S.Yoon, Y.C.Na, W.S.Chang,and J. W. Chang, “Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters,” Neurosurg Focus, vol. 44, no. 2, p. E15, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101054-
dc.description.abstract近年來,超快速超音波成像技術在醫學影像領域取得了顯著突破。除了實現即時資訊偵測,還能通過超快速成像的演進獲取更精細的影像。目前的高頻超音波探頭能夠觀測腦部微血管的細微影像,並隨著奇異值分解濾波技術的發展,提供更穩定且豐富的血流影像資訊,也在神經變化的觀察中有了新的進展。此外,超音波還能實現熱燒灼和血腦屏障開啟等功能,成為診斷與治療合一的工具。然而,由於超音波在穿透物質上會造成能量衰減,若需要藉由高頻影像探頭獲得腦部造影,除了透過較薄的區域進行照射外,目前尚無人進行直接對頭顱的照射。因此,本研究利用0.5MHz頻率探頭進行穿顱腦部實驗,藉由血腦屏障開啟作為治療方法,並基於相同頻率進行造影,以評估單一設備的治療及造影能力。本研究首先通過仿體實驗確認0.5MHz一維探頭的影像解析度及其對流體的偵測能力。接著在大鼠的動物實驗中,利用低頻影像觀察血腦屏障開啟的效果,並設計實驗序列比較血腦屏障開啟前後的情況。為實現超快速成像,設計了針對曲面探頭的延遲曲線以達到平面波的發射。基於低頻超音波對頭顱的穿透性,大鼠在實驗中不開顱進行超音波影像,並使用微氣泡顯影。通過超快速成像設計,在短時間內獲取足夠的影像資訊,應用於奇異值分解中進行訊號分離,觀察不同強度刺激下的血流變化。根據實驗結果,觀察到在血腦屏障開啟後,腦部區域出現血液抑制的現象,這與過去利用功能性磁振造影(fMRI)觀察血氧濃度相依對比(BOLD)訊號的趨勢相近。施打後在實驗組半腦也發現血流量下降,證實0.5MHz探頭在觀察血流變化方面的能力。zh_TW
dc.description.abstractIn recent years, ultrafast ultrasound imaging technology has achieved significant breakthroughs in medical imaging. In addition to real-time information detection, advancements in ultrafast imaging have enabled the acquisition of more detailed images. Current high-frequency ultrasound transducers can capture the information of cerebral microvessels, with the development of singular value decomposition (SVD) filtering, more stable and rich blood flow imaging information has become available, providing new progress in the observation of neural changes. Furthermore, ultrasound can facilitate procedures such as thermal ablation and blood-brain barrier (BBB) disruption, making it an integrated tool for diagnostic and therapeutic applications.
However, due to the attenuation of ultrasound energy when penetrating materials, obtaining brain imaging with high-frequency transducers typically requires targeting thinner regions, and direct transcranial ultrasound has not been widely attempted. Therefore, this study utilized a 0.5 MHz transducer for transcranial brain experiments, using BBB opening as a treatment method and performing imaging at the same frequency to evaluate the therapeutic and imaging capabilities of a single device.
Initially, phantom experiments were conducted to confirm the image resolution and flow detection capability of the 0.5 MHz one-dimensional transducer. Subsequently, animal experiments on rats were performed, using low-frequency imaging to observe the effects of BBB opening and designing experimental sequences to compare conditions before and after BBB opening. To achieve ultrafast imaging, delay curves were designed for the curved transducer for plane wave emission. Given the penetrative capability of low-frequency ultrasound, the rats were imaged without craniotomy, and microbubbles were used as contrast agents. Through the ultrafast imaging design, sufficient information was obtained within a short time frame, which was applied to SVD for signal separation and the observation of blood flow changes under different intensities of stimulation.
According to the experimental results, the brain region subjected to BBB opening displayed blood suppression, a trend that aligns with previous observations using functional magnetic resonance imaging (fMRI) to monitor blood-oxygen-level-dependent (BOLD) signals. The reduction in blood flow was observed in the experimental hemisphere, confirming the ability of the 0.5 MHz transducer to detect changes in blood flow.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:37:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:37:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee #
Acknowledgements i
摘要 iv
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Chapter 1 Introduction 1
1.1 Ultrasound Vascular Analysis . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ultrasound Functional Analysis based on Vascular Analysis . . . . . 2
1.3 The use of SVD theory for Vascular Analysis . . . . . . . . . . . . . 3
1.4 Transcranial CNS Functional Analysis . . . . . . . . . . . . . . . . . 4
1.5 Low-frequency ultrasound imaging . . . . . . . . . . . . . . . . . . 5
1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 2 Materials and Methods 8
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Plane-wave Beamforming for curved transducer . . . . . . . . . . . 8
2.2.1 Delay and Sum:Delay . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Delay and Sum:Sum . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Resolution Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Low-frequency ultrasound for brain vascula ranalysis . . . . . . . . . 13
2.3.1 Singular Value Decomposition Filter(SVDfilter) . . . . . . . . . . 13
2.3.2 Power Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Threshold Selection and Stack Number of SVD filter . . . . . . . . 16
2.3.4 Region of Interest(ROI) Selection for Vascular Analysis. . . . . . . 17
2.4 Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Full Width at Half Maximum(FWHM) . . . . . . . . . . . . . . . 18
2.4.2 Signal to Noise Ratio(SNR) . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Cerebral Blood Volume(CBV) . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Variation Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.5 Time-Intensity Curve(TIC) . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Ultrasound Imaging and Vascular Analysis Procedure. . . . . . . . . 21
2.6 Experimental Equipment . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 S-sharp Prodigy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 QPX600DPDC Power Supply . . . . . . . . . . . . . . . . . . . . 24
2.6.3 64-channel dual-mode phased array transducer. . . . . . . . . . . . 25
2.7 Phased Array Transducer Sequence Control . . . . . . . . . . . . . . 26
2.7.1 Focus-wave transmission . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Plane-wave transmission . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 Plane-wave compound transmission . . . . . . . . . . . . . . . . . 28
2.8 Acoustic Pressure Measurement . . . . . . . . . . . . . . . . . . . . 30
2.8.1 Acoustic Intensity Measurement System(AIMS) . . . . . . . . . . 30
2.8.2 Hydrophone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.3 Measurement of the Sound Pressure . . . . . . . . . . . . . . . . . 31
2.9 Experimental Materials . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9.1 Microbubble(MB) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9.2 Phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9.3 Animal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 BBBopening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11 Point Spread Function Experiment . . . . . . . . . . . . . . . . . . . 36
2.11.1 One Line Strip Experimental Setup . . . . . . . . . . . . . . . . . . 36
2.11.2 Multiple Line Strips Experimental Setup . . . . . . . . . . . . . . . 36
2.11.3 Experimental Procedure. . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Ultrafast Doppler In-Vitro Experiment . . . . . . . . . . . . . . . . . 38
2.12.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12.2 Experiment Procedure. . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Ultrafast Doppler Animal Experiment . . . . . . . . . . . . . . . . . 40
2.13.1 Animal Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.13.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.13.3 Transcranial Ultrafast Dopplerin Animals: Microbubble-Enhanced and Non-Enhanced Sequences . . . . . . . . . . . . . . . . . . . . 42
2.13.4 Ultrafast Doppler for Brain Stimulation: Varying Intensity Experiment Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 3 Experimental Result 46
3.1 Imaging and Focused Stimulation Capability of 0.5 MHz Phased Array Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.1 Point Spread Function Experiment- One Line Strip . . . . . . . . . 47
3.1.2 Point Spread Function Experiment- Multiple Line Strip . . . . . . . 48
3.1.3 Sound Pressure Field of 0.5 MHz Phased Array Transducer . . . . . 51
3.2 Ultrafast Doppler In-Vitro Experiment in Microvascular Speed . . . . 53
3.3 Transcranial Ultrafast Doppler in Animals: Microbubble-Enhanced and Non-Enhanced . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Ultrafast Doppler for Brain Stimulation: Varying Intensity Experiment 57
3.4.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Chapter 4 Discussion 62
Chapter 5 Conclusion 67
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Future Work 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
-
dc.language.isoen-
dc.subject經顱超音波-
dc.subject血腦屏障開啟-
dc.subject血管影像-
dc.subject低頻超音波影像-
dc.subject超快速督普勒成像-
dc.subject診治合一-
dc.subjecttranscranial ultrasound-
dc.subjectblood-brain barrier opening-
dc.subjectvasculature imaging-
dc.subjectlow-frequency ultrasound imaging-
dc.subjectultrafast Doppler imaging-
dc.subjecttheranostic-
dc.title雙模經顱聚焦超音波引發腦刺激之低頻血流分析zh_TW
dc.titleLow-Frequency Vascular Analysis of Dual-Mode Transcranial Focused Ultrasound Induced Brain Stimulationen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉秩光;范景翔;謝寶育zh_TW
dc.contributor.oralexamcommitteeChih-Kuang Yeh;Ching-Hsiang Fan;Bao-Yu Hsiehen
dc.subject.keyword經顱超音波,血腦屏障開啟血管影像低頻超音波影像超快速督普勒成像診治合一zh_TW
dc.subject.keywordtranscranial ultrasound,blood-brain barrier openingvasculature imaginglow-frequency ultrasound imagingultrafast Doppler imagingtheranosticen
dc.relation.page72-
dc.identifier.doi10.6342/NTU202402681-
dc.rights.note未授權-
dc.date.accepted2025-09-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
10.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved