Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101053
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志zh_TW
dc.contributor.advisorYing-Chih Liaoen
dc.contributor.author劉以增zh_TW
dc.contributor.authorI-Tseng Liuen
dc.date.accessioned2025-11-26T16:37:39Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-08-
dc.identifier.citation[1] M. K. Verma, S. Shakya, P. Kumar, J. Madhavi, J. Murugaiyan, M. V. R. Rao, J Food Sci Technol 2021, 58, 4069.
[2] a) K. Marsh, B. Bugusu, J Food Sci 2007, 72, R39; b) E. J. R. Phua, M. Liu, B. Cho, Q. Liu, S. Amini, X. Hu, C. L. Gan, Materials & Design 2018, 141, 202; c) Y.-J. Wan, G. Li, Y.-M. Yao, X.-L. Zeng, P.-L. Zhu, R. Sun, Composites Communications 2020, 19, 154.
[3] B. A. Morris, in The Science and Technology of Flexible Packaging, DOI: 10.1016/b978-0-323-24273-8.00001-0 2017, p. 3.
[4] a) E. Romeo-Arroyo, H. Jensen, A. Hunneman, C. Velasco, International Journal of Gastronomy and Food Science 2023, 31; b) J. Troiville, Journal of Business Research 2024, 177; c) F. Wang, Y. Wang, Y. Han, J. H. Cho, Heliyon 2024, 10, e25484.
[5] a) V. S. Cecon, P. F. Da Silva, G. W. Curtzwiler, K. L. Vorst, Resources, Conservation and Recycling 2021, 167; b) M. Liu, S. H. Brandsma, E. Schreder, Chemosphere 2024, 365, 143319.
[6] M. Asgher, S. A. Qamar, M. Bilal, H. M. N. Iqbal, Food Res Int 2020, 137, 109625.
[7] X. Zhao, Y. Wang, X. Chen, X. Yu, W. Li, S. Zhang, X. Meng, Z.-M. Zhao, T. Dong, A. Anderson, A. Aiyedun, Y. Li, E. Webb, Z. Wu, V. Kunc, A. Ragauskas, S. Ozcan, H. Zhu, Matter 2023, 6, 97.
[8] M. M. H. Parvez, S. M. Nur Rupom, M. M. Adil, T. Tasnim, M. S. Rabbi, I. Ahmed, Results in Materials 2023, 19.
[9] Z. Li, C. Chen, R. Mi, W. Gan, J. Dai, M. Jiao, H. Xie, Y. Yao, S. Xiao, L. Hu, Adv Mater 2020, 32, e1906308.
[10] P. Cazón, M. Vázquez, Food Hydrocolloids 2021, 113.
[11] a) E. Rigo, V. Ladmiral, S. Caillol, P. Lacroix-Desmazes, RSC Sustainability 2023, 1, 788; b) Y. Xie, S. Gao, D. Zhang, C. Wang, F. Chu, Resources Chemicals and Materials 2023, 2, 223; c) W. Yang, H. Ding, D. Puglia, J. M. Kenny, T. Liu, J. Guo, Q. Wang, R. Ou, P. Xu, P. Ma, P. J. Lemstra, SusMat 2022, 2, 535.
[12] a) Y. Van der Meer, in Proceedings of the Biotech France 2017 International Conference, DOI: 10.26799/cp-biotechfrance2017, Paris, France 2017; b) M. Mujtaba, J. Lipponen, M. Ojanen, S. Puttonen, H. Vaittinen, Sci Total Environ 2022, 851, 158328; c) N. Rinke Dias de Souza, M. Groenestege, J. Spekreijse, C. Ribeiro, C. T. Matos, M. Pizzol, F. Cherubini, WIREs Energy and Environment 2024, 13.
[13] G. Faber, C. Mangin, V. Sick, Frontiers in Sustainability 2021, 2.
[14] a) D. Quiroz, J. M. Greene, B. J. Limb, J. C. Quinn, Environ Sci Technol 2023, 57, 11541; b) S. Masoumi, A. K. Dalai, Biomass and Bioenergy 2021, 151; c) D. Mu, C. Xin, W. Zhou, in Microalgae Cultivation for Biofuels Production, DOI: 10.1016/b978-0-12-817536-1.00018-7 2020, p. 281.
[15] a) Y. Liu, Advances in Economics, Business and Management Research 2022, 656, 816; b) C. A. Magni, The Engineering Economist 2010, 55, 150; c) D. A. Mellichamp, Computers & Chemical Engineering 2017, 106, 396.
[16] J. T. McNamara, J. L. Morgan, J. Zimmer, Annu Rev Biochem 2015, 84, 895.
[17] M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L. A. Berglund, J. Wohlert, Cellulose 2021, 29, 1.
[18] P. Zugenmaier, Progress in Polymer Science 2001, 26, 1341.
[19] D. Srivastava, M. S. Kuklin, J. Ahopelto, A. J. Karttunen, Carbohydr Polym 2020, 243, 116440.
[20] W. Cheng, Y. Zhu, G. Jiang, K. Cao, S. Zeng, W. Chen, D. Zhao, H. Yu, Progress in Materials Science 2023, 138.
[21] a) J.-F. Revol, D. A. I. Goring, Journal of Applied Polymer Science 1981, DOI: doi.org/10.1002/app.1981.0702604191275; b) D. V. Zlenko, D. N. Vtyurina, S. V. Usachev, A. A. Skoblin, M. G. Mikhaleva, G. G. Politenkova, S. N. Nikolsky, S. V. Stovbun, Sci Rep 2021, 11, 8765.
[22] a) G. Nocca, A. Arcovito, N. A. Elkasabgy, M. Basha, N. Giacon, E. Mazzinelli, M. S. Abdel-Maksoud, R. Kamel, Pharmaceutics 2023, 15; b) S. Liyanage, S. Acharya, P. Parajuli, J. L. Shamshina, N. Abidi, Polymers (Basel) 2021, 13.
[23] C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger, A. Gong, T. Li, L. Berglund, S. J. Eichhorn, L. Hu, Nature Reviews Materials 2020, 5, 642.
[24] I. T. Liu, P. Meemai, Y. H. Lin, C. J. Fang, C. C. Huang, C. Y. Li, M. Phisalaphong, J. L. You, S. H. Tung, R. Balaji, Y. C. Liao, Int J Biol Macromol 2024, 281, 135804.
[25] M. Mariana, T. Alfatah, A. K. H.P.S, E. B. Yahya, N. G. Olaiya, A. Nuryawan, E. M. Mistar, C. K. Abdullah, S. N. Abdulmadjid, H. Ismail, Journal of Materials Research and Technology 2021, 15, 2287.
[26] O. Gordobil, R. Delucis, I. Egüés, J. Labidi, Industrial Crops and Products 2015, 72, 46.
[27] A. Gregorová, B. Košíková, R. Moravčík, Polymer Degradation and Stability 2006, 91, 229.
[28] H. Sadeghifar, A. Ragauskas, Polymers (Basel) 2020, 12.
[29] C. Pouteau, S. Baumberger, B. Cathala, P. Dole, C R Biol 2004, 327, 935.
[30] M. Fache, B. Boutevin, S. Caillol, European Polymer Journal 2015, 68, 488.
[31] M. N. Mohamad Ibrahim, R. B. Sriprasanthi, S. Shamsudeen, F. Adam, S. A. Bhawani, BioResources 2012, 7, 4377.
[32] N. Kumar, V. Pruthi, Biotechnol Rep (Amst) 2014, 4, 86.
[33] a) B. M. Upton, A. M. Kasko, Chem Rev 2016, 116, 2275; b) A. Eraghi Kazzaz, Z. Hosseinpour Feizi, P. Fatehi, Green Chemistry 2019, 21, 5714.
[34] a) C. Huang, Z. Peng, J. Li, X. Li, X. Jiang, Y. Dong, Industrial Crops and Products 2022, 187; b) V. K. Ponnusamy, D. D. Nguyen, J. Dharmaraja, S. Shobana, J. R. Banu, R. G. Saratale, S. W. Chang, G. Kumar, Bioresour Technol 2019, 271, 462; c) S. Wang, J. Bai, M. T. Innocent, Q. Wang, H. Xiang, J. Tang, M. Zhu, Green Energy & Environment 2022, 7, 578.
[35] a) C. Scarica, R. Suriano, M. Levi, S. Turri, G. Griffini, ACS Sustainable Chemistry & Engineering 2018, 6, 3392; b) Y. Xu, K. Odelius, M. Hakkarainen, ACS Sustainable Chemistry & Engineering 2019, 7, 13456; c) W. Wang, F. Wang, C. Zhang, J. Tang, X. Zeng, X. Wan, Chemical Engineering Journal 2021, 404.
[36] a) Y. Cao, Z. Liu, B. Zheng, R. Ou, Q. Fan, L. Li, C. Guo, T. Liu, Q. Wang, Composites Part B: Engineering 2020, 200; b) X. Zhang, Y. Kim, I. Elsayed, M. Taylor, T. L. Eberhardt, E. I. B. Hassan, R. Shmulsky, Industrial Crops and Products 2019, 141; c) B.-L. Xue, J.-L. Wen, R.-C. Sun, ACS Sustainable Chemistry & Engineering 2014, 2, 1474.
[37] a) C. Gioia, M. Colonna, A. Tagami, L. Medina, O. Sevastyanova, L. A. Berglund, M. Lawoko, Biomacromolecules 2020, 21, 1920; b) C. Gioia, G. Lo Re, M. Lawoko, L. Berglund, J Am Chem Soc 2018, 140, 4054; c) E. Feghali, D. J. van de Pas, K. M. Torr, Biomacromolecules 2020, 21, 1548.
[38] a) T. V. Lourençon, S. Alakurtti, T. Virtanen, A.-S. Jääskeläinen, T. Liitiä, M. Hughes, W. L. E. Magalhães, G. I. B. Muniz, T. Tamminen, Holzforschung 2020, 74, 175; b) L. Wang, L. Lagerquist, Y. Zhang, R. Koppolu, T. Tirri, I. Sulaeva, S. v. Schoultz, L. Vähäsalo, A. Pranovich, T. Rosenau, P. C. Eklund, S. Willför, C. Xu, X. Wang, ACS Sustainable Chemistry & Engineering 2020, 8, 13517; c) S. Chen, Y. Xin, C. Zhao, ACS Sustainable Chemistry & Engineering 2021, 9, 15653.
[39] a) A. Adjaoud, L. Puchot, C. E. Federico, R. Das, P. Verge, Chemical Engineering Journal 2023, 453; b) S. Nalakathu Kolanadiyil, M. Minami, T. Endo, Macromolecules 2020, 53, 6866; c) Z. Zhu, H. Chen, X. Zhu, Z. Sang, S. A. Sukhishvili, S. Uenuma, K. Ito, M. Kotaki, H.-J. Sue, Composites Science and Technology 2023, 235.
[40] B. Zhang, G. Qiang, K. Barta, Z. Sun, The Innovation Materials 2024, 2.
[41] M. M. Abu-Omar, K. Barta, G. T. Beckham, J. S. Luterbacher, J. Ralph, R. Rinaldi, Y. Román-Leshkov, J. S. M. Samec, B. F. Sels, F. Wang, Energy & Environmental Science 2021, 14, 262.
[42] a) Y. Ding, Z. Pang, K. Lan, Y. Yao, G. Panzarasa, L. Xu, M. Lo Ricco, D. R. Rammer, J. Y. Zhu, M. Hu, X. Pan, T. Li, I. Burgert, L. Hu, Chem Rev 2023, 123, 1843; b) M. Zhu, T. Li, C. S. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, L. Hu, Nano Energy 2016, 26, 332.
[43] a) Q. Chu, R. Wang, W. Tong, Y. Jin, J. Hu, K. Song, ACS Sustainable Chemistry & Engineering 2020, 8, 17967; b) Z. Li, B. Fei, Z. Jiang, BioResources 2014, 10; c) E. Brännvall, BioResources 2017, 12, 2801.
[44] a) C. P. Pappa, S. Torofias, K. S. Triantafyllidis, ChemSusChem 2023, 16, e202300076; b) G. Tofani, E. Jasiukaitytė-Grojzdek, M. Grilc, B. Likozar, Green Chemistry 2024, 26, 186; c) J. Zhang, Y. Jiang, L. F. Easterling, A. Anstner, W. Li, K. Z. Alzarieni, X. Dong, J. Bozell, H. I. Kenttämaa, Green Chemistry 2021, 23, 983.
[45] a) H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Y. Zhu, G. Henriksson, M. E. Himmel, L. Hu, Chem Rev 2016, 116, 9305; b) M. Frey, D. Widner, J. S. Segmehl, K. Casdorff, T. Keplinger, I. Burgert, ACS Appl Mater Interfaces 2018, 10, 5030.
[46] J. Ruwoldt, F. H. Blindheim, G. Chinga-Carrasco, RSC Adv 2023, 13, 12529.
[47] a) A. M. Douglas M. Smith, Ulrich Boes, J. Non-Cryst. 1998, 225, 254; b) G. Wei, Y. Liu, X. Zhang, F. Yu, X. Du, Int. J. Heat Mass Transf. 2011, 54, 2355.
[48] J. S. Tian Li, Xinpeng Zhao, Zhi Yang, Glenn Pastel, Shaomao Xu, Chao Jia, Jiaqi Dai, Chaoji Chen, Amy Gong, Feng Jiang, Yonggang Yao, Tianzhu Fan, Bao Yang, Lars Wågberg, Ronggui Yang, Liangbing Hu, Sci. Adv. 2018, 4.
[49] O. V. Kharissova, L. M. Torres-Martínez, B. I. Kharisov, Eds., in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, DOI: 10.1007/978-3-030-11155-7, Springer, 2021.
[50] Z.-Y. Li, C.-Y. Zhu, X.-P. Zhao, Int. J. Heat Mass Transf. 2017, 108, 1982.
[51] X. L. J. Fricke, P. Wang, D. Büttner, U. Heinemann, Int. J. Heat Mass Transf. 1992, 35, 2305.
[52] a) T. Standau, C. Zhao, S. Murillo Castellon, C. Bonten, V. Altstadt, Polymers (Basel) 2019, 11; b) S. Suethao, D. U. Shah, W. Smitthipong, Materials (Basel) 2020, 13.
[53] J. W. S. Lee, C. B. Park, Macromolecular Materials and Engineering 2006, 291, 1233.
[54] L. Li, D. Xu, S. Bai, N. Chen, Q. Wang, Journal of Polymer Science 2023, 62, 3122.
[55] B. Jeon, H. K. Kim, S. W. Cha, S. J. Lee, M.-S. Han, K. S. Lee, International Journal of Precision Engineering and Manufacturing 2013, 14, 679.
[56] L. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, Composites Science and Technology 2005, 65, 2344.
[57] a) J. Banhart, Advanced Engineering Materials 2006, 8, 781; b) N. Babcsán, D. Leitlmeier, J. Banhart, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 261, 123; c) A. H. Brothers, D. C. Dunand, Scripta Materialia 2006, 54, 513.
[58] a) P. Colombo, Key Engineering Materials 2001, 206-213, 1913; b) P. Colombo, J. R. Hellmann, Materials Research Innovations 2016, 6, 260; c) H. Wang, Z. Chen, L. Liu, R. Ji, X. Wang, Ceramics International 2018, 44, 10078.
[59] a) T. M. Bennett, J. F. Allan, J. A. Garden, M. P. Shaver, Glob Chall 2022, 6, 2100110; b) A. M. Hassan, N. M. Bunnori, S. Ramesh, C. Y. Tan, K. H. Mo, Construction and Building Materials 2024, 427; c) O. V. Suvorova, D. V. Makarov, Glass and Ceramics 2019, 76, 188.
[60] a) Y. Ma, Y. Li, X. Zhao, L. Zhang, B. Wang, A. Nie, C. Mu, J. Xiang, K. Zhai, T. Xue, F. Wen, J. Alloys Compd. 2022, 919; b) J. Gu, R. Fu, S. Kang, X. Yang, Q. Song, C. Miao, M. Ma, Y. Wang, H. Sai, Constr. Build Mater. 2022, 341; c) J. Li, L. Zhang, Y. Pang, X. Wang, B. Bai, W. Zhang, C. Luo, W. Liu, L. Zhang, Compos. A: Appl. Sci. Manuf. 2022, 161.
[61] Y.-L. Li, I. A. Kinloch, A. H. Windle, science 2004, 304.
[62] Juuso T. Korhonen, Panu Hiekkataipale, Jari Malm, Maarit Karppinen, Olli Ikkala, Robin H. A. Ras, acs Nano 2011, 5, 1967.
[63] a) N. Hüsing, U. Schubert, Angewandte Chemie International Edition 1998, DOI: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I22; b) G. M. Pajonk, E. Elaloui, P. Achard, B. Chevalier, J.-L. Chevalier, M. Durant, Journal of Non-Crystalline Solids 1995, 186, 1; c) Z. Shao, F. Luo, X. Cheng, Y. Zhang, Materials Chemistry and Physics 2013, 141, 570; d) R. Venkateswara, A., S. D. Bhagat, Solid State Sciences 2004, 6, 945.
[64] Kistler, Nature 1931, 127.
[65] a) C. J. B. Pamela J. Davis, and Douglas M. Smith, J. Non-Cryst. 1992, 142, 189; b) C. J. B. Pamela J. Davis, Douglas M. Smith, and Roger A. Assink, J. Non-Cryst. 1992, 142, 197.
[66] J. Feng, B. L. Su, H. Xia, S. Zhao, C. Gao, L. Wang, O. Ogbeide, J. Feng, T. Hasan, Chem Soc Rev 2021, 50, 3842.
[67] L. Huber, S. Zhao, W. J. Malfait, S. Vares, M. M. Koebel, Angew. Chem., Int. Ed. Engl. 2017, 56, 4753.
[68] a) A. Parvathy Rao, A. Venkateswara Rao, Journal of Materials Science 2010, 45, 51; b) A. P. Rao, A. V. Rao, Journal of Non-Crystalline Solids 2009, 355, 2260.
[69] G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno, H. Kaji, J. Shen, K. Nakanishi, ACS Nano 2018, 12, 521.
[70] a) J. Liu, J. Liu, F. Shi, C. Ma, T. Li, C. Chen, M. Wasim, K. Zhu, H. Sun, Z. Tian, J. Chem. Eng. 2022, 450; b) C. S.-L. Nicholas Leventis, Guohui Zhang, and Abdel-Monem M. Rawashdeh, Nano Lett. 2002, 2, 957; c) J. P. Randall, M. A. Meador, S. C. Jana, ACS Appl. Mater. Interfaces 2011, 3, 613; d) S. Yun, H. Luo, Y. Gao, J. Mater. Chem. A 2015, 3, 3390; e) H. Maleki, L. Durães, A. Portugal, J. Mater. Chem. A 2015, 3, 1594; f) Y. Zhao, Y. Li, R. Zhang, Ceram. Int. 2018, 44, 21262; g) T. Li, A. Du, T. Zhang, W. Ding, M. Liu, J. Shen, Z. Zhang, B. Zhou, RSC Adv. 2018, 8, 17967.
[71] F. Merli, E. Belloni, C. Buratti, Buildings 2021, 11.
[72] F. Asdrubali, F. D'Alessandro, S. Schiavoni, Sustainable Materials and Technologies 2015, 4, 1.
[73] K. Manohar, British Journal of Applied Science & Technology 2012, 2, 227.
[74] S. Panyakaew, S. Fotios, Energy and Buildings 2011, 43, 1732.
[75] J. Pinto, D. Cruz, A. Paiva, S. Pereira, P. Tavares, L. Fernandes, H. Varum, Construction and Building Materials 2012, 34, 28.
[76] A. Paiva, S. Pereira, A. Sá, D. Cruz, H. Varum, J. Pinto, Energy and Buildings 2012, 45, 274.
[77] L. Savio, R. Pennacchio, A. Patrucco, V. Manni, D. Bosia, Materials Circular Economy 2022, 4.
[78] X.-y. Zhou, F. Zheng, H.-g. Li, C.-l. Lu, Energy and Buildings 2010, 42, 1070.
[79] B. Agoudjil, A. Benchabane, A. Boudenne, L. Ibos, M. Fois, Energy and Buildings 2011, 43, 491.
[80] M. Chikhi, B. Agoudjil, A. Boudenne, A. Gherabli, Energy and Buildings 2013, 66, 267.
[81] Joseph Khedari, Sarocha Charoenvai, J. Hirunlabh, Building and Environment 2003, 38, 435.
[82] S. Tangjuank, International Journal of the Physical Sciences 2011, 6, 4528.
[83] D. Yarbrough, K. Wilkes, P. Olivier, R. Graves, A. Vohra, Environmental Science, Materials Science 2003.
[84] S. Goodhew, R. Griffiths, Energy and Buildings 2005, 37, 451.
[85] M. Pruteanu, Environmental Science, Engineering, Materials Science 2010.
[86] A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, Y. Lerari, Powder Technology 2011, 208, 423.
[87] A. Bourguiba, K. Touati, N. Sebaibi, M. Boutouil, F. Khadraoui, Journal of Building Engineering 2020, 31.
[88] a) K. Manohar, D. Ramlakhan, G. S. Kochhar, S. C. Haldar, Journal of the Brazilian Society of Mechanical Sciences and Engineering 2006, 28; b) F. Intini, S. Kühtz, The International Journal of Life Cycle Assessment 2011, 16, 306; c) I. C. Valverde, L. H. Castilla, D. F. Nuñez, E. Rodriguez-Senín, R. de la Mano Ferreira, Waste and Biomass Valorization 2012, 4, 139; d) R. Drochytka, M. Dvorakova, J. Hodna, Procedia Engineering 2017, 195, 236; e) D. G. K. Dissanayake, D. U. Weerasinghe, K. A. P. Wijesinghe, K. Kalpage, Waste Manag 2018, 79, 356.
[89] a) C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger, A. Gong, T. Li, L. Berglund, S. J. Eichhorn, L. Hu, Nat. Rev. Mater. 2020, 5, 642; b) U. Buehlmann, M. Bumgardner, T. Fluharty, J. Clean. Prod. 2009, 17, 271.
[90] a) P. Fratzl, R. Weinkamer, Progress in Materials Science 2007, 52, 1263; b) S. Ling, D. L. Kaplan, M. J. Buehler, Nat Rev Mater 2018, 3; c) M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, Y. Seki, Progress in Materials Science 2008, 53, 1.
[91] a) L. A. Berglund, I. Burgert, Adv Mater 2018, 30, e1704285; b) A. Kumar, T. Jyske, M. Petrič, Advanced Sustainable Systems 2021, 5; c) L. Salmén, Cellulose 2022, 29, 1349.
[92] a) J. S. Segmehl, A. Lauria, T. Keplinger, J. K. Berg, I. Burgert, Front Chem 2018, 6, 28; b) Z. Liu, M. A. Meyers, Z. Zhang, R. O. Ritchie, Progress in Materials Science 2017, 88, 467; c) S. E. Naleway, M. M. Porter, J. McKittrick, M. A. Meyers, Adv Mater 2015, 27, 5455.
[93] a) T. Keplinger, E. Cabane, M. Chanana, P. Hass, V. Merk, N. Gierlinger, I. Burgert, Acta Biomater 2015, 11, 256; b) M. R. Assis, L. Brancheriau, A. Napoli, P. F. Trugilho, Wood Science and Technology 2016, 50, 519; c) H. Guan, Z. Cheng, X. Wang, ACS Nano 2018, 12, 10365.
[94] a) Y. Luan, C.-H. Fang, Y.-F. Ma, B.-H. Fei, Materials and Manufacturing Processes 2021, 37, 359; b) S. K. Pandit, B. K. Tudu, I. M. Mishra, A. Kumar, Progress in Organic Coatings 2020, 139; c) D. Huang, J. Wu, C. Chen, X. Fu, A. H. Brozena, Y. Zhang, P. Gu, C. Li, C. Yuan, H. Ge, M. Lu, M. Zhu, L. Hu, Y. Chen, Adv Mater 2019, 31, e1903270.
[95] a) G. Chen, T. Li, C. Chen, C. Wang, Y. Liu, W. Kong, D. Liu, B. Jiang, S. He, Y. Kuang, L. Hu, Advanced Functional Materials 2019, 29; b) M. Sjoholm, G. Somesfalean, J. A. B. Anderson, S. Svanberg, IEEE 2003, DOI: 10.1109/CLEOE.2003.1313567; c) Y. Cai, J. Wu, K. Wang, Y. Dong, J. Hu, J. Qu, D. Tian, J. Li, Q. Fu, SmartMat 2022, 4; d) Qinqin Xia, Chaoji Chen, Tian Li, Shuaiming He, Jinlong Gao, Xizheng Wang, L. Hu, science 2021, 7; e) W. Gan, C. Chen, M. Giroux, G. Zhong, M. M. Goyal, Y. Wang, W. Ping, J. Song, S. Xu, S. He, M. Jiao, C. Wang, L. Hu, Chemistry of Materials 2020, 32, 5280; f) W. Gan, C. Chen, H. T. Kim, Z. Lin, J. Dai, Z. Dong, Z. Zhou, W. Ping, S. He, S. Xiao, M. Yu, L. Hu, Nat Commun 2019, 10, 5084.
[96] A. Demirbaş, Energy Sources 2006, 27, 761.
[97] E. Hafemann, R. Battisti, C. Marangoni, R. A. F. Machado, Carbohydr Polym 2019, 218, 188.
[98] a) D. Sawada, Y. Nishiyama, R. Shah, V. T. Forsyth, E. Mossou, H. M. O'Neill, M. Wada, P. Langan, Nat Commun 2022, 13, 6189; b) M. Ferro, A. Mannu, W. Panzeri, C. H. J. Theeuwen, A. Mele, Polymers (Basel) 2020, 12; c) D. Tatsumi, A. Kanda, T. Kondo, Journal of Wood Science 2022, 68.
[99] R. G. Zhbankov, S. P. Firsov, D. K. Buslov, N. A. Nikonenko, M. K. Marchewka, H. Ratajczak, Journal of Molecular Structure 2002, 614, 117.
[100] a) R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem Soc Rev 2011, 40, 3941; b) Y. Habibi, L. A. Lucia, O. J. Rojas, Chemical Reviews 2010, 110, 3479; c) A. Isogai, T. Saito, H. Fukuzumi, Nanoscale 2011, 3, 71.
[101] H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, Journal of Materials Chemistry A 2013, 1.
[102] S. Camarero Espinosa, T. Kuhnt, E. J. Foster, C. Weder, Biomacromolecules 2013, 14, 1223.
[103] a) W. Y. Hamad, T. Q. Hu, The Canadian Journal of Chemical Engineering 2010, 88, 392; b) S. Dong, M. J. Bortner, M. Roman, Industrial Crops and Products 2016, 93, 76.
[104] a) D. Bondeson, A. Mathew, K. Oksman, Cellulose 2006, 13, 171; b) Q. Wang, X. Zhao, J. Y. Zhu, Industrial & Engineering Chemistry Research 2014, 53, 11007.
[105] a) M. Nordenstrom, T. Benselfelt, R. Hollertz, S. Wennmalm, P. A. Larsson, A. Mehandzhiyski, N. Rolland, I. Zozoulenko, D. Soderberg, L. Wagberg, Carbohydr Polym 2022, 297, 120046; b) D. Trache, A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, M. H. Hussin, Front Chem 2020, 8, 392; c) O. Nechyporchuk, M. N. Belgacem, J. Bras, Industrial Crops and Products 2016, 93, 2.
[106] a) Q. Q. Wang, J. Y. Zhu, R. Gleisner, T. A. Kuster, U. Baxa, S. E. McNeil, Cellulose 2012, 19, 1631; b) L. N. Megashah, H. Ariffin, M. R. Zakaria, M. A. Hassan, Y. Andou, F. N. M. Padzil, Cellulose 2020, 27, 7417; c) J. L. Sanchez-Salvador, C. Campano, P. Lopez-Exposito, Q. Tarres, P. Mutje, M. Delgado-Aguilar, M. C. Monte, A. Blanco, Nanomaterials (Basel) 2021, 11.
[107] T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Biomacromolecules 2007, 8, 2485.
[108] M. F. Qaseem, H. Shaheen, A.-M. Wu, Renewable and Sustainable Energy Reviews 2021, 144.
[109] T. Nilsson, R. Rowell, Journal of Cultural Heritage 2012, 13, S5.
[110] a) J. Rao, Z. Lv, G. Chen, F. Peng, Progress in Polymer Science 2023, 140; b) J. Puls, Macromolecular Symposia 1997, DOI: doi.org/10.1002/masy.19971200119183; c) H. V. Scheller, P. Ulvskov, Annu Rev Plant Biol 2010, 61, 263.
[111] a) S. C. Fry, Journal of Experimental Botany 1989, 40, 1; b) M. Pauly, P. Albersheim, A. Darvill, W. S. York, Plant J 1999, 20, 629; c) R. H. Farahi, A. M. Charrier, A. Tolbert, A. L. Lereu, A. Ragauskas, B. H. Davison, A. Passian, Sci Rep 2017, 7, 152.
[112] a) A. A. Vaidya, K. D. Murton, D. A. Smith, G. Dedual, Biomass Conversion and Biorefinery 2022, 12, 5427; b) S. Ostadjoo, F. Hammerer, K. Dietrich, M. J. Dumont, T. Friscic, K. Auclair, Molecules 2019, 24; c) S. C. Sun, D. Sun, X. F. Cao, Biotechnol Biofuels 2021, 14, 88.
[113] a) R. B. Stoffel, P. V. Neves, F. E. Felissia, L. P. Ramos, L. M. Gassa, M. C. Area, Biomass and Bioenergy 2017, 107, 93; b) M. Chadni, N. Grimi, O. Bals, I. Ziegler-Devin, N. Brosse, Industrial Crops and Products 2019, 141; c) M. F. Tiappi Deumaga, N. Jacquet, C. Vanderghem, M. Aguedo, H. G. Thomas, P. Gerin, M. Deleu, A. Richel, Waste and Biomass Valorization 2018, 11, 2183.
[114] a) Y. Lu, Q. He, G. Fan, Q. Cheng, G. Song, Green Processing and Synthesis 2021, 10, 779; b) J. Bergrath, J. Rumpf, R. Burger, X. T. Do, M. Wirtz, M. Schulze, Macromolecular Materials and Engineering 2023, 308; c) K. Hruzova, L. Matsakas, U. Rova, P. Christakopoulos, Bioresour Technol 2021, 341, 125855.
[115] F. G. Calvo-Flores, J. A. Dobado, ChemSusChem 2010, 3, 1227.
[116] a) A. Tribot, G. Amer, M. Abdou Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, C. Vial, P. Michaud, C.-G. Dussap, European Polymer Journal 2019, 112, 228; b) A. Eraghi Kazzaz, P. Fatehi, Industrial Crops and Products 2020, 154.
[117] a) R. Vanholme, K. Morreel, J. Ralph, W. Boerjan, Curr Opin Plant Biol 2008, 11, 278; b) H. Onnerud, L. Zhang, G. Gellerstedt, G. Henriksson, Plant Cell 2002, 14, 1953.
[118] H. Sadeghifar, A. Ragauskas, ACS Sustainable Chemistry & Engineering 2020, 8, 8086.
[119] a) P. P. Thoresen, L. Matsakas, U. Rova, P. Christakopoulos, Bioresour Technol 2020, 306, 123189; b) K. G. Kalogiannis, A. Karnaouri, C. Michailof, A. M. Tzika, G. Asimakopoulou, E. Topakas, A. A. Lappas, Bioresour Technol 2020, 313, 123599; c) A. T. Smit, M. Verges, P. Schulze, A. van Zomeren, H. Lorenz, ACS Sustainable Chemistry & Engineering 2022, 10, 10503.
[120] a) H. Wang, Y. Pu, A. Ragauskas, B. Yang, Bioresour Technol 2019, 271, 449; b) Z. Miao, Z. Pei, M. Gao, K. Wan, Q. He, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019, 43, 600; c) J. Li, G. Gellerstedt, K. Toven, Bioresour Technol 2009, 100, 2556.
[121] a) Z. Chen, X. Bai, L. A, C. Wan, ACS Sustainable Chemistry & Engineering 2018, 6, 12205; b) B.-W. Koo, B.-C. Min, K.-S. Gwak, S.-M. Lee, J.-W. Choi, H. Yeo, I.-G. Choi, Biomass and Bioenergy 2012, 42, 24; c) H. Yu, X. Li, W. Zhang, D. Sun, J. Jiang, Z. Liu, Cellulose 2015, 22, 1675.
[122] a) R. Patel, P. Dhar, A. Babaei-Ghazvini, M. Nikkhah Dafchahi, B. Acharya, Bioresource Technology Reports 2023, 22; b) E. Kocaturk, T. Salan, O. Ozcelik, M. H. Alma, Z. Candan, Energies 2023, 16.
[123] a) J. L. L. N'Guessan, B. F. Niamké, N. g. J. C. Yao, N. Amusant, Forest Products Journal 2023, 73, 194; b) E. Roffael, Appl Microbiol Biotechnol 2016, 100, 1589; c) G. T. Kirker, B. Hassan, M. E. Mankowski, F. J. Eller, Insects 2024, 15.
[124] M. Y. Tarigan, M. Ebrahimi, Chemie Ingenieur Technik 2024, 96, 418.
[125] R. Singh, A. Shukla, S. Tiwari, M. Srivastava, Renewable and Sustainable Energy Reviews 2014, 32, 713.
[126] a) U. Mais, A. R. Esteghlalian, J. N. Saddler, S. D. Mansfield, Applied Biochemistry and Biotechnology 2002, 98; b) S. Lafitte-Trouqué, C. F. Forster, Bioresource Technology Reports 2002, 84, 113; c) M. J. Negro, P. Manzanares, I. Ballesteros, J. M. Oliva, A. Cabañas, M. Ballesteros, Applied Biochemistry and Biotechnology 2003, 105, 87.
[127] D. D. S. Argyropoulos, C. Crestini, C. Dahlstrand, E. Furusjo, C. Gioia, K. Jedvert, G. Henriksson, C. Hulteberg, M. Lawoko, C. Pierrou, J. S. M. Samec, E. Subbotina, H. Wallmo, M. Wimby, ChemSusChem 2023, 16, e202300492.
[128] a) J. Shakhes, M. A. B. Marandi, F. Zeinaly, A. Saraian, T. Saghaf, BioResources 2011, 6, 4481; b) J. Shakhes, F. Zeinaly, M. a. b. Marandi, T. Saghafi, BioResources 2011, 6, 4626; c) Y. A. O. Ntifafa, A. Panek, P. W. Hart, TAPPI Journal 2024, 23, 385.
[129] a) W. Huang, L. Zhang, X. Lai, H. Li, X. Zeng, Chemical Engineering Journal 2020, 386; b) Shuang-Yan Zhang, Chuan-Gui Wang, Ben-Hua Fei, Y. Yu, BioResources 2013, 8, 2376; c) Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Biomacromolecules 2016, 17, 1358.
[130] a) R. Mi, T. Li, D. Dalgo, C. Chen, Y. Kuang, S. He, X. Zhao, W. Xie, W. Gan, J. Zhu, J. Srebric, R. Yang, L. Hu, Advanced Functional Materials 2019, 30; b) J. Li, C. Chen, J. Y. Zhu, A. J. Ragauskas, L. Hu, Accounts of Materials Research 2021, 2, 606; c) S. Costa, I. Rugiero, C. Larenas Uria, P. Pedrini, E. Tamburini, Biomolecules 2018, 8.
[131] H. Palonen, A. B. Thomsen, M. Tenkanen, A. S. Schmidt, L. Viikari, Applied Biochemistry and Biotechnology 2004, 117, 1.
[132] a) M. Goto, J. M. Smith, B. J. McCoy, Industrial & Engineering Chemistry Research 1990, 29, 282; b) Khalidatul Athirah Khalid, Asimi Ana Ahmad, T. L.-K. Yong, Journal of the Japan Institute of Energy 2017, 96, 255; c) M. Takada, E. Minami, H. Kawamoto, ACS Omega 2021, 6, 20924.
[133] M. J. Taherzadeh, K. Karimi, Int J Mol Sci 2008, 9, 1621.
[134] a) T. Yang, J. Cao, E. Ma, Industrial Crops and Products 2019, 135, 91; b) W. He, R. Wang, F. Guo, J. Cao, Z. Guo, H. Qiang, S. Liang, Q. Pang, B. Wei, Polymers (Basel) 2022, 14.
[135] a) J. Gierer, Wood Science Technology 1980, 14, 241; b) D. Mboowa, Biomass Conversion and Biorefinery 2021, 14, 1.
[136] a) B. N. Brogdon, D. R. Dimmel, T. J. McDonough, Journal of Wood Chemistry and Technology 2001, 21, 299; b) D. Kaur, N. K. Bhardwaj, R. K. Lohchab, Cellulose 2019, 26, 7469; c) D. Kaur, N. K. Bhardwaj, R. K. Lohchab, Journal of Cleaner Production 2018, 170, 174.
[137] a) S. He, C. Chen, T. Li, J. Song, X. Zhao, Y. Kuang, Y. Liu, Y. Pei, E. Hitz, W. Kong, W. Gan, B. Yang, R. Yang, L. Hu, Small Methods 2019, 4; b) H. Li, X. Guo, Y. He, R. Zheng, Journal of Materials Research 2019, 34, 932.
[138] a) N. A. Mamleeva, S. A. Autlov, N. y. G. Bazarnova, V. V. Lunin, Pure and Applied Chemistry 2009, 81, 2081; b) M. Jablonsky, M. Vrška, S. Katuscak, Wood Research 2004, 49, 71.
[139] P. Neta, R. E. Huie, A. B. Ross, Journal of Physical and Chemical Reference Data 1990, 19, 413.
[140] a) M. Frey, G. Biffi, M. Adobes-Vidal, M. Zirkelbach, Y. Wang, K. Tu, A. M. Hirt, K. Masania, I. Burgert, T. Keplinger, Adv Sci (Weinh) 2019, 6, 1802190; b) K.-C. Park, B. Kim, H. Park, S.-Y. Park, Journal of the Korean Wood Science and Technology 2022, 50, 283.
[141] a) A. Cogulet, P. Blanchet, V. Landry, J Photochem Photobiol B 2016, 158, 184; b) J. D. Green, Journal of Wood Chemistry and Technology 1986, 6, 45.
[142] J. Garemark, X. Yang, X. Sheng, O. Cheung, L. Sun, L. A. Berglund, Y. Li, ACS Nano 2020, 14, 7111.
[143] a) A. H. H. Yano, S. Inaba, J. Mater. Sci. 197, 16, 1906; b) L. A. Berglund, I. Burgert, Adv. Mater. 2018, 30, e1704285.
[144] a) C. Chen, L. Hu, Acc. Chem. Res. 2018, 51, 3154; b) P. Gronquist, M. Frey, T. Keplinger, I. Burgert, ACS Omega 2019, 4, 12425.
[145] a) T. Keplinger, F. K. Wittel, M. Ruggeberg, I. Burgert, Adv. Mater. 2021, 33, e2001375; b) C. C. Qinqin Xia, Tian Li, Shuaiming He, Jinlong Gao, Xizheng Wang, Liangbing Hu, Sci. Adv. 2021, 7.
[146] a) R. Mi, T. Li, D. Dalgo, C. Chen, Y. Kuang, S. He, X. Zhao, W. Xie, W. Gan, J. Zhu, J. Srebric, R. Yang, L. Hu, Adv. Funct. Mater. 2019, 30; b) J. Garemark, J. E. Perea-Buceta, D. Rico Del Cerro, S. Hall, B. Berke, I. Kilpelainen, L. A. Berglund, Y. Li, ACS Appl. Mater. Interfaces 2022, 14, 24697.
[147] a) C. Chen, J. Song, S. Zhu, Y. Li, Y. Kuang, J. Wan, D. Kirsch, L. Xu, Y. Wang, T. Gao, Y. Wang, H. Huang, W. Gan, A. Gong, T. Li, J. Xie, L. Hu, Chem 2018, 4, 544; b) J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li, Y. Li, H. Huang, I. Kierzewski, B. Liu, S. He, T. Gao, S. U. Yuruker, A. Gong, B. Yang, L. Hu, ACS Nano 2018, 12, 140.
[148] H. Li, X. Guo, Y. He, R. Zheng, J. Mater. Res. 2019, 34, 932.
[149] J. K. Pandey, V. Nagarajan, A. K. Mohanty, M. Misra, in Biocomposites, DOI: 10.1016/b978-1-78242-373-7.00001-9 2015, p. 1.
[150] E. E. Gerard M. Pajonk, Patrick Achard, Bruno Chevalier, Jean-Luc Chevalier, and Marcel Durant, J. Non-Cryst. 1995, 186, 1.
[151] Q. Zheng, S. Kaur, C. Dames, R. S. Prasher, Int. J. Heat Mass Transf. 2020, 151.
[152] H. Kangas, T. Liitiä, S. Rovio, T. Ohra-aho, H. Heikkinen, T. Tamminen, K. Poppius-Levlin, Holzforschung 2015, 69, 247.
[153] B. Diffey, Photochem Photobiol 2015, 91, 553.
[154] E.-S. Jang, C.-W. Kang, J. Wood Sci. 2022, 68.
[155] S. Vitas, J. S. Segmehl, I. Burgert, E. Cabane, Materials (Basel) 2019, 12.
[156] A. A. Issa, M. El-Azazy, A. S. Luyt, Sci. Rep. 2019, 9, 17624.
[157] T. Montheil, C. Echalier, J. Martinez, G. Subra, A. Mehdi, J. Mater. Chem. B 2018, 6, 3434.
[158] E. W. Washburn, Phys. Rev. 1921, 17, 273.
[159] M. Naderi, in Filtr. Sep., DOI: 10.1016/b978-0-12-384746-1.00014-8 2015, p. 585.
[160] A. B. R. Mačiulaitis, J. Civ. Eng. Manag. 2007, 13, 97.
[161] L. M. E Linul, T Voiconi and T Sadowski, J. Phys. Conf. Ser. 2013, 451.
[162] J. S. Horvath, DOI: 10.13140/RG.2.2.27703.577622012.
[163] A. M. Douglas M. Smith, Ulrich Boes, J. Non-Cryst. 1998, 225, 254.
[164] G. Reichenauer, U. Heinemann, H. P. Ebert, Colloids Surf. A: Physicochem. Eng. 2007, 300, 204.
[165] N. H. Saeid, Int. J. Therm. Sci. 2007, 46, 531.
[166] W. E. S. R. Byron Bird, Edwin N. Lightfoot, Transport phenomena, John Wiley & Sons, 2002.
[167] A. S. L. Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, Fundamentals of Heat and Mass Transfer, 2011.
[168] M. De Paoli, S. Pirozzoli, F. Zonta, A. Soldati, J. Fluid Mech. 2022, 943.
[169] a) P. G. Siddheshwar, C. Siddabasappa, Meccanica 2020, 55, 1763; b) M. M. Alhazmy, I. Alqadi, A. M. Al-Bahi, Int. J. Heat Mass Transf. 2022, 144; c) D. Das, M. Roy, T. Basak, Int. J. Heat Mass Transf. 2017, 106, 356.
[170] a) L. Berglund, T. Nissila, D. Sivaraman, S. Komulainen, V. V. Telkki, K. Oksman, ACS Appl Mater Interfaces 2021, 13, 34899; b) P. Gupta, B. Singh, A. K. Agrawal, P. K. Maji, Materials & Design 2018, 158, 224; c) C. Jimenez-Saelices, B. Seantier, B. Cathala, Y. Grohens, Carbohydr Polym 2017, 157, 105; d) S. T. Nguyen, J. Feng, S. K. Ng, J. P. W. Wong, V. B. C. Tan, H. M. Duong, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 445, 128; e) W. Wang, Y. Zhao, W. Yan, S. Cui, X. Wu, H. Suo, Journal of Porous Materials 2021, 28, 703; f) B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergstrom, Nat Nanotechnol 2015, 10, 277; g) L. Yang, A. Mukhopadhyay, Y. Jiao, Q. Yong, L. Chen, Y. Xing, J. Hamel, H. Zhu, Nanoscale 2017, 9, 11452; h) H. Zhang, C. Zhang, W. Ji, X. Wang, Y. Li, W. Tao, Molecules 2018, 23; i) S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R. V. Rivera Virtudazo, P. Tingaut, M. M. Koebel, Advanced Functional Materials 2015, 25, 2326.
[171] S. B. A. B. D. Cassie, Trans. Faraday Soc. 1944, 40, 546.
[172] C. M. Hansen, Hansen Solubility Parameters, CRC Press, 2000.
[173] I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón, Build Environ. 2011, 46, 1133.
[174] J. B. D. Felix Adom, 2015.
[175] World Food and Agriculture – Statistical Yearbook 2022, 2022.
[176] C. Mohammed, L. Lalgee, M. Kistow, N. Jalsa, K. Ward, Carbohydrate Polymer Technologies and Applications 2022, 3.
[177] D. Kumar, P. Kalita, Foods 2017, 6.
[178] a) G. Chiaraluce, D. Bentivoglio, A. Finco, Sustainability 2021, 13; b) R. Krishnan, R. Agarwal, C. Bajada, K. Arshinder, Journal of Cleaner Production 2020, 242; c) K. Slimani, A. Mohamed, Z. Liet, D. Goru, J. David, O. Gerasymov, M. L. Kerkeb, E3S Web of Conferences 2024, 477.
[179] a) A. A. Wani, P. Singh, H. C. Langowski, in Encyclopedia of Food Safety, DOI: 10.1016/b978-0-12-378612-8.00273-0 2014, p. 211; b) A. Ojha, A. Sharma, M. Sihag, S. Ojha, Agricultural Reviews 2015, 36.
[180] Karina Petersen, Per Væggemose Nielsen, Grete Bertelsen, Mark Lawther, Mette B. Olsen, Nils H. Nilsson, Grith Mortensen, Trends in Food Science & Technology 1999, 10, 52.
[181] G. L. Robertson, Food Packaging - Principles and Practice, 2012.
[182] Pankaj B. Pathare, U. L. Opara, Eds., in Mechanical Damage in Fresh Horticultural Produce, Springer, 2024.
[183] P. R. Salgado, L. Di Giorgio, Y. S. Musso, A. N. Mauri, Frontiers in Sustainable Food Systems 2021, 5.
[184] A. Dey, S. Neogi, Trends in Food Science & Technology 2019, 90, 26.
[185] K. K. Gaikwad, S. Singh, A. Ajji, Environmental Chemistry Letters 2018, 17, 609.
[186] M. Ozdemir, J. D. Floros, Crit Rev Food Sci Nutr 2004, 44, 185.
[187] S. Singh, M. Ho Lee, L. Park, Y. Shin, Y. S. Lee, J Food Sci Technol 2016, 53, 2505.
[188] F. Bai, G. Chen, Y. Hu, Y. Liu, R. Yang, J. Liu, R. Hou, H. Li, X. Wan, H. Cai, Trends in Food Science & Technology 2024, 148.
[189] T. Gao, Y. Tian, Z. Zhu, D.-W. Sun, Trends in Food Science & Technology 2020, 99, 311.
[190] X. Wu, X. Yan, J. Zhang, X. Wu, M. Luan, Q. Zhang, Lwt 2024, 194.
[191] W. Heo, S. Lim, Foods 2024, 13.
[192] P. Shao, L. Liu, J. Yu, Y. Lin, H. Gao, H. Chen, P. Sun, Trends in Food Science & Technology 2021, 118, 285.
[193] J. Zuo, J. Feng, M. G. Gameiro, Y. Tian, J. Liang, Y. Wang, J. Ding, Q. He, Future Foods 2022, 6, 100198.
[194] R. Sander, Atmospheric Chemistry and Physics 2023, 23, 10901.
[195] a) A. Sangroniz, J. B. Zhu, X. Tang, A. Etxeberria, E. Y. Chen, H. Sardon, Nat Commun 2019, 10, 3559; b) P. Lu, W. Zhang, M. He, Y. Yan, H. Xiao, Cellulose 2015, 23, 891; c) D. Todorova, N. Yavorov, V. Lasheva, Sustainable Chemistry and Pharmacy 2022, 27.
[196] a) S. Ebnesajjad, Ed. in Plastic Films in Food Packaging: Materials, Technology and Applications, 2012; b) K. K. Mokwena, J. Tang, Critical Reviews in Food Science and Nutrition 2012, 52, 640.
[197] J. Wang, D. J. Gardner, N. M. Stark, D. W. Bousfield, M. Tajvidi, Z. Cai, ACS Sustainable Chemistry & Engineering 2017, 6, 49.
[198] R. R. Lamonte, D. Mcnally, AM&P Technical Articles 2001, 159.
[199] F. Wu, M. Misra, A. K. Mohanty, Progress in Polymer Science 2021, 117.
[200] Y. Zhang, W. Jiang, Trends in Food Science & Technology 2023, 139.
[201] B. Rukmanikrishnan, S. S. Kim, J. Lee, J. Lee, Int J Biol Macromol 2019, 123, 1020.
[202] J. Kerry, in Packaging Technology, DOI: 10.1533/9780857095701.2.163 2012, p. 163.
[203] W. J. Schrenk, J. T. Alfrey, Polymer blends 1978, DOI: doi.org/10.1016/B978-0-12-546802-2.50011-7129.
[204] a) T. Hebrink, in American Society for Precision Engineering 2015 Annual Meeting, Austin, TX 2015; b) T. Hebrink, in TechConnect World Innovation Conference, Anaheim, CA 2018; c) T. J. Nevitt, M. F. Weber, Thin Solid Films 2013, 532, 106; d) T. Alfrey Jr., E. F. Gurnee, W. J. Schrenk, Polymer Engineering & Science 1969, 9.
[205] B. Tan, N. L. Thomas, Applied Clay Science 2017, 141, 46.
[206] a) S. D. F. Mihindukulasuriya, L. T. Lim, Trends in Food Science & Technology 2014, 40, 149; b) D. Drummer, M. Medina-Hernández, M. Drexler, K. Wudy, Procedia Engineering 2015, 102, 1918.
[207] a) E. Kirchner, Progress in Organic Coatings 2018, 125, 525; b) E. Kirchner, Progress in Organic Coatings 2018, 124, 104; c) I. Charfeddine, J. C. Majesté, C. Carrot, O. Lhost, Polymer 2020, 193; d) G. W. de Kort, S. Rastogi, C. Wilsens, Macromolecules 2019, 52, 6005.
[208] T. Sasayama, H. Okamoto, J. Kawada, N. Sato, T. Ishibashi, Powder Technology 2023, 428.
[209] C. Wang, Y. Su, Q. Ouyang, D. Zhang, Diamond and Related Materials 2021, 116.
[210] J. Derocher, B. Gettelfinger, J. Wang, E. Nuxoll, E. Cussler, Journal of Membrane Science 2005, 254, 21.
[211] S. Wu, R. B. Ladani, J. Zhang, E. Bafekrpour, K. Ghorbani, A. P. Mouritz, A. J. Kinloch, C. H. Wang, Carbon 2015, 94, 607.
[212] A. A. Ahmad, N. M. Sarbon, Food Bioscience 2021, 43.
[213] T. J. Madera-Santana, Y. Freile-Pelegrin, J. A. Azamar-Barrios, Int J Biol Macromol 2014, 69, 176.
[214] N. Suderman, N. M. Sarbon, J Food Sci Technol 2020, 57, 463.
[215] A. M. Wagner, D. S. Spencer, N. A. Peppas, J Appl Polym Sci 2018, 135.
[216] a) A. R. Alias, M. K. Wan, N. M. Sarbon, Food Control 2022, 136; b) Q. Wang, W. Chen, W. Zhu, D. J. McClements, X. Liu, F. Liu, NPJ Sci Food 2022, 6, 18.
[217] a) Z. Wu, S. Chen, J. Li, B. Wang, M. Jin, Q. Liang, D. Zhang, Z. Han, L. Deng, X. Qu, H. Wang, Advanced Functional Materials 2023, 33; b) F. G. Torres, J. J. Arroyo, O. P. Troncoso, Materials Science & Engineering C-Materials for Biological Applications 2019, 98, 1277; c) James M Dugan, Julie E Gough, S. J. Eichhorn, Nanomedicine 2013, 8, 287.
[218] a) Y. Ding, Z. Pang, K. Lan, Y. Yao, G. Panzarasa, L. Xu, M. Lo Ricco, D. R. Rammer, J. Y. Zhu, M. Hu, X. Pan, T. Li, I. Burgert, L. Hu, Chemical Reviews 2023, 123, 1843; b) H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Y. Zhu, G. Henriksson, M. E. Himmel, L. Hu, Chemical Reviews 2016, 116, 9305.
[219] A. J. Brown, journal of the chemical society, transactions 1887, 51, 638.
[220] a) S. M. A. S. Keshk, Journal of Bioprocessing & Biotechniques 2014, 04; b) P. Cerrutti, P. Roldán, R. M. García, M. A. Galvagno, A. Vázquez, M. L. Foresti, Journal of Applied Polymer Science 2015, 133; c) D. Lahiri, M. Nag, B. Dutta, A. Dey, T. Sarkar, S. Pati, H. A. Edinur, Z. Abdul Kari, N. H. Mohd Noor, R. R. Ray, International Journal of Molecular Sciences 2021, 22.
[221] a) A. F. S. Costa, F. C. G. Almeida, G. M. Vinhas, L. A. Sarubbo, Front Microbiol 2017, 8, 2027; b) D. R. Ruka, G. P. Simon, K. M. Dean, Carbohydrate Polymers 2012, 89, 613; c) A. F. Jozala, R. A. Pertile, C. A. dos Santos, V. de Carvalho Santos-Ebinuma, M. M. Seckler, F. M. Gama, A. Pessoa, Jr., Appl Microbiol Biotechnol 2015, 99, 1181.
[222] a) A. Zywicka, D. Ciecholewska-Jusko, R. Drozd, R. Rakoczy, M. Konopacki, M. Kordas, A. Junka, P. Migdal, K. Fijalkowski, Polymers (Basel) 2021, 13; b) T. G. Volova, S. V. Prudnikova, A. G. Sukovatyi, E. I. Shishatskaya, Applied Microbiology and Biotechnology 2018, 102, 7417; c) X. He, H. Meng, H. Song, S. Deng, T. He, S. Wang, D. Wei, Z. Zhang, Carbohydrate Research 2020, 493, 108030.
[223] a) F. Esa, S. M. Tasirin, N. A. Rahman, Agriculture and Agricultural Science Procedia 2014, 2, 113; b) J. Wang, J. Tavakoli, Y. Tang, Carbohydrate Polymers 2019, 219, 63.
[224] M. E. García-Sánchez, J. R. Robledo-Ortiz, I. Jiménez-Palomar, O. González-Reynoso, Y. González-García, Revista Mexicana de Ingeniería Química 2019, 19, 851.
[225] S. La China, L. De Vero, K. Anguluri, M. Brugnoli, D. Mamlouk, M. Gullo, Applied Sciences 2021, 11.
[226] K.V. Ramana, A. Tomar, L. Singh, World Journal of Microbiology and Biotechnology 2000, 16, 245.
[227] a) F. Mohammadkazemi, M. Azin, A. Ashori, Carbohydrate Polymers 2015, 117, 518; b) D. Mikkelsen, B. M. Flanagan, G. A. Dykes, M. J. Gidley, Journal of Applied Microbiology 2009, 107, 576.
[228] J. H. Ha, N. Shah, M. Ul-Islam, T. Khan, J. K. Park, Process Biochemistry 2011, 46, 1717.
[229] Y. E. Oz, M. Kalender, International Journal of Biological Macromolecules 2023, 225, 1306.
[230] E. Metreveli, T. Khardziani, V. Elisashvili, Biomolecules 2021, 11.
[231] R. Singh, A. Mathur, N. Goswami, G. Mathur, e-Polymers 2016, 16, 331.
[232] N. Tyagi, S. Suresh, Journal of Cleaner Production 2016, 112, 71.
[233] K. C. de Souza, G. R. dos Santos, F. C. S. Trindade, A. F. d. S Costa, Y. M. B. de Almeida, L. A. Sarubbo, G. M. Vinhas, Polymers and Polymer Composites 2021, 29, S1466.
[234] S. Lotfiman, D. R. Awang Biak, T. B. Ti, S. Kamarudin, S. Nikbin, Advances in Polymer Technology 2016, 37, 1085.
[235] R. J. Gomes, E. I. Ida, W. A. Spinosa, Applied Biochemistry and Biotechnology 2022, 194, 5017.
[236] P. V. Krasteva, J. Bernal-Bayard, L. Travier, F. A. Martin, P. A. Kaminski, G. Karimova, R. Fronzes, J. M. Ghigo, Nature Communications 2017, 8, 2065.
[237] G. Buldum, A. Bismarck, A. Mantalaris, Bioprocess Biosyst Eng 2018, 41, 265.
[238] L. Meissner, K. Kauffmann, T. Wengeler, H. Mitsunaga, E. Fukusaki, J. Buchs, Journal of Industrial Microbiology and Biotechnology 2015, 42, 1203.
[239] J. Zhang, N. Zhao, L. Guo, P. Li, S. Gu, J. Yuan, M. Fan, Lwt 2023, 187.
[240] S. S. A. Rahman, T. Vaishnavi, G. S. Vidyasri, K. Sathya, P. Priyanka, P. Venkatachalam, S. Karuppiah, Scientific Reports 2021, 11, 2912.
[241] F. Çakar, A. Katı, I. Özer, D. D. Demirbağ, F. Şahin, A. Ö. Aytekin, Biochemical Engineering Journal 2014, 92, 35.
[242] S. Kolesovs, K. Neiberts, S. Beluns, S. Gaidukovs, P. Semjonovs, Appl Microbiol Biotechnol 2022, 106, 7449.
[243] I. Kamaruddi, A. Dirpan, F. Bastian, IOP Conference Series: Earth and Environmental Science 2021, 807.
[244] A. K. Saleh, H. El-Gendi, N. A. Soliman, W. K. El-Zawawy, Y. R. Abdel-Fattah, Scientific Reports 2022, 12, 2181.
[245] J. M. Chai, A. Adnan, IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering 2018, 440.
[246] M. U. Rani, A. Appaiah, Annals of Microbiology 2011, 61, 781.
[247] a) L. F. A. Amorim, L. Li, A. P. Gomes, R. Fangueiro, I. C. Gouveia, Cellulose 2023, 30, 5589; b) I. A. P. Suryanti, I. M. P. A. Santiasa, Journal of Physics: Conference Series 2020, 1503.
[248] H. Weinhouse, S. Sapir, D. Amikam, Y. Shilo, G. Volman, P. Ohana, M. Benziman, FEBS Lett 1997, 416, 207.
[249] S. Hestrin, M. Schramm, Biochemical Journal 1954, 58, 345.
[250] a) A. Kadier, R. A. Ilyas, M. R. M. Huzaifah, N. Harihastuti, S. M. Sapuan, M. M. Harussani, M. N. M. Azlin, R. Yuliasni, R. Ibrahim, M. S. N. Atikah, J. Wang, K. Chandrasekhar, M. A. Islam, S. Sharma, S. Punia, A. Rajasekar, M. R. M. Asyraf, M. R. Ishak, Polymers (Basel) 2021, 13; b) Z. Hussain, W. Sajjad, T. Khan, F. Wahid, Cellulose 2019, 26, 2895; c) E. Tsouko, C. Kourmentza, D. Ladakis, N. Kopsahelis, I. Mandala, S. Papanikolaou, F. Paloukis, V. Alves, A. Koutinas, International Journal of Molecular Sciences 2015, 16, 14832.
[251] V. D. Girard, J. Chaussé, P. Vermette, Journal of Applied Polymer Science 2024, 141.
[252] a) J.-T. Hsieh, M.-J. Wang, J.-T. Lai, H.-S. Liu, Journal of the Taiwan Institute of Chemical Engineers 2016, 63, 46; b) H. Lu, X. Jiang, Appl Biochem Biotechnol 2014, 172, 3844.
[253] a) G. Serafica, R. Mormino, H. Bungay, Appl Microbiol Biotechnol 2002, 58, 756; b) S.-P. Lin, S.-C. Hsieh, K.-I. Chen, A. Demirci, K.-C. Cheng, Cellulose 2013, 21, 835; c) R. Mormino, H. Bungay, Appl Microbiol Biotechnol 2003, 62, 503.
[254] a) I. Reiniati, A. N. Hrymak, A. Margaritis, Biochemical Engineering Journal 2017, 127, 21; b) R. R. Singhania, A. K. Patel, Y. S. Tseng, V. Kumar, C. W. Chen, D. Haldar, J. K. Saini, C. D. Dong, Bioresour Technol 2022, 344, 126343; c) T. Kouda, H. Yano, F. Yoshinaga, Journal of Fermentation and Bioengineering 1997, 83, 371.
[255] a) Y. Chao, T. Ishida, Y. Sugano, M. Shoda, Biotechnology and Bioengineering 2000, 68, 345; b) Y. Chao, Y. Sugano, M. Shoda, Appl Microbiol Biotechnol 2001, 55, 673; c) H. P. Cheng, P. M. Wang, J. W. Chen, W. T. Wu, Biotechnology and Applied Biochemistry 2010, 35, 125.
[256] a) M. Hornung, M. Ludwig, H. P. Schmauder, Engineering in Life Sciences 2007, 7, 35; b) Q.-F. Guan, Z.-M. Han, Z.-C. Ling, H.-B. Yang, S.-H. Yu, Accounts of Materials Research 2022, 3, 608; c) P. J. Weathers, R. W. Zobel, Biotechnology Advances 1992, 10, 93.
[257] a) K. C. Cheng, J. M. Catchmark, A. Demirci, Journal of Biological Engineering 2009, 3, 12; b) K. C. Cheng, J. M. Catchmark, A. Demirci, Biomacromolecules 2011, 12, 730.
[258] J. R. Colvin, G. G. Leppard, Canadian Journal of Microbiology 1977, 23, 701.
[259] a) A. N. Nakagaito, S. Iwamoto, H. Yano, Applied Physics A 2005, 80, 93; b) C. Ruan, Y. Zhu, X. Zhou, N. Abidi, Y. Hu, J. M. Catchmark, Cellulose 2016, 23, 3417; c) H. Luo, J. Zhang, G. Xiong, Y. Wan, Carbohydrate Polymers 2014, 111, 722.
[260] a) G. Li, L. Wang, Y. Deng, Q. Wei, Journal of Industrial Microbiology and Biotechnology 2022, 49; b) Y.-K. Lin, K.-H. Chen, K.-L. Ou, L. Min, Journal of Bioactive and Compatible Polymers 2011, 26, 508.
[261] M. Nogi, K. Abe, Applied Physics Letters 2006, 89.
[262] H. Boerstoel, H. Maatman, S. J. Picken, R. Remmers, J. B. Westerink, Polymer 2001, 42, 7363.
[263] Z. Jiang, Z. Shi, K. M. Cheung, T. Ngai, ACS Sustainable Chemistry & Engineering 2023, 11, 2486.
[264] S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Biomacromolecules 2007, 8, 1973.
[265] Q. Wang, T.-A. Asoh, H. Uyama, Bulletin of the Chemical Society of Japan 2018, 91, 1537.
[266] A. Retegi, I. Algar, L. Martin, F. Altuna, P. Stefani, R. Zuluaga, P. Gañán, I. Mondragon, Cellulose 2011, 19, 103.
[267] a) C. Fang, X. Zhou, Q. Yu, S. Liu, D. Guo, R. Yu, J. Hu, Progress in Organic Coatings 2014, 77, 61; b) B. Ghosh, S. Gogoi, S. Thakur, N. Karak, Progress in Organic Coatings 2016, 90, 324; c) K.-L. Noble, Progress in Organic Coatings 1997, 32, 131.
[268] a) H. Hao, J. Shao, Y. Deng, S. He, F. Luo, Y. Wu, J. Li, H. Tan, J. Li, Q. Fu, Biomater Sci 2016, 4, 1682; b) M. Li, Q. Dong, Y. Xiao, Q. Du, C. Huselsteind, T. Zhang, X. He, W. Tian, Y. Chen, J Mater Sci Mater Med 2020, 31, 120; c) W.-B. Lim, J.-G. Min, M.-J. Seo, J.-H. Lee, J.-H. Bae, P. Huh, Results in Materials 2023, 19.
[269] R. Li, J. A. Ton Loontjens, Z. Shan, European Polymer Journal 2019, 112, 423.
[270] S. A. Madbouly, Molecules 2021, 26.
[271] a) Y. Wu, H. Wang, Y. Y. Wang, Russian Journal of Applied Chemistry 2018, 91, 1179; b) J.-L. You, I. T. Liu, Y.-H. Chen, R. Balaji, S.-H. Tung, Y.-C. Liao, Additive Manufacturing 2024, 82.
[272] a) S. Diao, Y. Zhang, C. Zhao, M. Wang, J. Yu, Journal of Polymer Research 2022, 29; b) Y.-H. Liao, Y.-C. Chen, Journal of the Taiwan Institute of Chemical Engineers 2023, 145; c) A. Patti, D. Acierno, Journal of Vinyl and Additive Technology 2023, 29, 589.
[273] a) Z. Sun, H. Fan, Y. Chen, J. Huang, Polymer International 2017, 67, 78; b) M. Malik, R. Kaur, Polymer Engineering & Science 2017, 58, 112; c) L. Meng, X. Shi, R. Zhang, L. Yan, Z. Liang, Y. Nie, Z. Zhou, T. Hao, Journal of Applied Polymer Science 2020, 137.
[274] a) L. Hu, Z. Pu, Y. Zhong, L. Liu, J. Cheng, J. Zhong, Journal of Polymer Research 2020, 27; b) Y. Jiang, X. Wang, Y. Han, D. Gong, Y. Gu, L. Tan, Polymer 2024, 290; c) H. J. Son, M. S. Heo, Y. G. Kim, S. J. Lee, Biotechnol Appl Biochem 2001, 33, 1.
[275] Junpei Yamanaka, Tohru Okuzono, Akiko Toyotama, Colloidal Self-Assembly, Springer, Singapore 2023.
[276] A. Overbeek, F. Bückmann, E. Martin, P. Steenwinkel, T. Annable, Progress in Organic Coatings 2003, 48, 125.
[277] Y. Xie, P. Gao, F. He, C. Zhang, Gels 2022, 8.
[278] Y. Wang, Y. Zhao, J. He, C. Sun, W. Lu, Y. Zhang, Y. Fang, J Colloid Interface Sci 2023, 634, 747.
[279] a) Z. Li, Y. Fu, D. J. McClements, T. Li, Lwt 2022, 162; b) P. E. Ramos, P. Silva, M. M. Alario, L. M. Pastrana, J. A. Teixeira, M. A. Cerqueira, A. A. Vicente, Food Hydrocolloids 2018, 77, 8; c) B. Enobakhare, D. L. Bader, D. A. Lee, Journal of Applied Biomaterials & Biomechanics 2006, 4, 87.
[280] H. Daemi, M. Barikani, M. Barmar, Carbohydrate Polymers 2013, 92, 490.
[281] R. F. N. Quadrado, A. R. Fajardo, Carbohydrate Polymers 2017, 177, 443.
[282] F. Belalia, N.-E. Djelali, Revue Roumaine de Chimie 2014, 59, 135.
[283] T. A. Becker, D. R. Kipke, T. Brandon, Journal of Biomedical Materials Research 2000, 54, 76.
[284] M. D. Cathell, C. L. Schauer, Biomacromolecules 2007, 8, 33.
[285] L. Zha, F. L. Aachmann, H. Sletta, O. Arlov, Q. Zhou, Biomacromolecules 2024, 25, 4797.
[286] Y. Jiang, G. Yu, Y. Zhou, Y. Liu, Y. Feng, J. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 607.
[287] A. E. Pavlath, C. Gossett, W. Camirand, G. H. Robertson, Journal of Food Science 1999, 64, 61.
[288] J.-W. Rhim, LWT - Food Science and Technology 2004, 37, 323.
[289] a) C. Habel, M. Schöttle, M. Daab, N. J. Eichstaedt, D. Wagner, H. Bakhshi, S. Agarwal, M. A. Horn, J. Breu, Macromolecular Materials and Engineering 2018, 303; b) T. I. Butler, B. A. Morris, in Multilayer Flexible Packaging, DOI: 10.1016/b978-0-323-37100-1.00017-x 2016, p. 281; c) L. Bastarrachea, S. Dhawan, S. S. Sablani, Food Engineering Reviews 2011, 3, 79; d) P. Tyagi, K. S. Salem, M. A. Hubbe, L. Pal, Trends in Food Science & Technology 2021, 115, 461; e) J. Lange, Y. Wyser, Packaging Technology and Science 2003, 16, 149.
[290] B. Bamps, M. Buntinx, R. Peeters, Packaging Technology and Science 2023, 36, 507.
[291] D. F. Holderbaum, T. Kon, T. Kudo, M. P. Guerra, American Society for Horticultural Science 2010, 45, 1150.
[292] a) H. Abral, J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, E. Sugiarti, A. N. Muslimin, S. D. Rosanti, Carbohydr Polym 2020, 240, 116287; b) D. Dag, J. Jung, Y. Zhao, Food Packaging and Shelf Life 2023, 39; c) J. Huie, Z. Suqiu, J. Haiyan, L. Zhijian, C. Lijuan, L. Nihao, L. Xinhua, Chemical Engineering Journal 2023, 473; d) W. Wang, X. Liu, F. Guo, Y. Yu, J. Lu, Y. Li, Q. Cheng, J. Peng, G. Yu, Carbohydr Polym 2024, 324, 121516; e) D. Wu, J. Wang, Y. Zhao, S. Li, H. Yang, R. Tan, T. Zhang, Chemical Engineering Journal 2024, 479; f) C. Metha, S. Pawar, V. Suvarna, Sustainable Food Technology 2024, 2, 1246; g) F. Li, T. Zhe, K. Ma, Y. Zhang, R. Li, Y. Cao, M. Li, L. Wang, Chemical Engineering Journal 2023, 453; h) Y. Zhao, C. Li, X. Xia, M. Tan, H. Wang, Y. Lv, Y. Cheng, Y. Tao, J. Lu, D. Li, J. Du, Chemical Engineering Journal 2023, 474.
[293] B. L. Tardy, E. Lizundia, C. Guizani, M. Hakkarainen, M. H. Sipponen, Materials Today 2023, 65, 122.
[294] X. Lu, X. Gu, Int J Biol Macromol 2023, 229, 778.
[295] A. Duval, L. Avérous, Green Chemistry 2020, 22, 1671.
[296] Y. Zuo, S. Zhu, Y. Liu, J. Zhao, S. Zhang, C. Zhong, ACS Omega 2023, 8, 7057.
[297] N. Alwadani, N. Ghavidel, P. Fatehi, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 609.
[298] C. W. Park, S. Y. Han, R. Bandi, R. Dadigala, E. A. Lee, J. K. Kim, A. W. Cindradewi, G. J. Kwon, S. H. Lee, Polymers (Basel) 2021, 13.
[299] M. Castellano, A. Gandini, P. Fabbri, M. N. Belgacem, J Colloid Interface Sci 2004, 273, 505.
[300] T. Elschner, J. Adam, H. Lesny, Y. Joseph, S. Fischer, Biomacromolecules 2022, 23, 2089.
[301] X. Jiang, J. Liu, X. Du, Z. Hu, H.-m. Chang, H. Jameel, ACS Sustainable Chemistry & Engineering 2018, 6, 5504.
[302] C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, M. N. Belgacem, Industrial & Engineering Chemistry Research 2009, 48, 2583.
[303] N. Mohamad Aini, N. Othman, M. Hussin, K. Sahakaro, N. Hayeemasae, Processes 2019, 7.
[304] T. Aro, P. Fatehi, ChemSusChem 2017, 10, 1861.
[305] N. Thungphotraku, P. Dittanet, S. Loykulnunt, S. Tanpichai, P. Parpainainar, in The International Conference on Materials Research and Innovation, DOI: 10.1088/1757-899X/526/1/012022, 2019.
[306] X. Wu, E. Smet, F. Brandi, D. Raikwar, Z. Zhang, B. U. W. Maes, B. F. Sels, Angew Chem Int Ed Engl 2024, 63, e202317257.
[307] Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, J. Xu, Energy & Environmental Science 2013, 6.
[308] G. Griffini, V. Passoni, R. Suriano, M. Levi, S. Turri, ACS Sustainable Chemistry & Engineering 2015, 3, 1145.
[309] S. Wang, W. Liu, D. Yang, X. Qiu, Industrial & Engineering Chemistry Research 2018, 58, 496.
[310] Y. Zhang, J. Liao, X. Fang, F. Bai, K. Qiao, L. Wang, ACS Sustainable Chemistry & Engineering 2017, 5, 4276.
[311] R. J. Li, J. Gutierrez, Y.-L. Chung, C. W. Frank, S. L. Billington, E. S. Sattely, Green Chemistry 2018, 20, 1459.
[312] B. Sun, Y. Liu, J. Li, C. Liu, Z. Liu, X. Zhao, B. Liu, W. Hu, X. Liu, Macromol Rapid Commun 2024, 45, e2400414.
[313] X. Gong, Y. Meng, J. Lu, Y. Tao, Y. Cheng, H. Wang, Macromolecular Chemistry and Physics 2022, 223.
[314] Y.-L. Chung, J. V. Olsson, R. J. Li, C. W. Frank, R. M. Waymouth, S. L. Billington, E. S. Sattely, ACS Sustainable Chemistry & Engineering 2013, 1, 1231.
[315] D. Kai, K. Zhang, L. Jiang, H. Z. Wong, Z. Li, Z. Zhang, X. J. Loh, ACS Sustainable Chemistry & Engineering 2017, 5, 6016.
[316] T. Christoff-Tempesta, R. M. O’Dea, T. H. Epps, Macromolecules 2023, 56, 9796.
[317] A. Ghorai, H. Chung, Advanced Functional Materials 2024, 34.
[318] Y. Xu, K. Odelius, M. Hakkarainen, ACS Applied Polymer Materials 2020, 2, 1917.
[319] Y. Xu, K. Odelius, M. Hakkarainen, ACS Sustainable Chemistry & Engineering 2020, 8, 17272.
[320] a) P. Chakma, D. Konkolewicz, Angew Chem Int Ed Engl 2019, 58, 9682; b) T. Maeda, H. Otsuka, A. Takahara, Progress in Polymer Science 2009, 34, 581.
[321] M. Capelot, M. M. Unterlass, F. Tournilhac, L. Leibler, ACS Macro Lett 2012, 1, 789.
[322] P. K. Karoki, S. Zhang, Y. Pu, A. J. Ragauskas, Materials Advances 2024, 5, 7075.
[323] A. Liguori, M. Hakkarainen, Macromol Rapid Commun 2022, 43, e2100816.
[324] M. Mili, S. A. R. Hashmi, M. Ather, V. Hada, N. Markandeya, S. Kamble, M. Mohapatra, S. K. S. Rathore, A. K. Srivastava, S. Verma, J. Appl. Polym. Sci. 2021, 139.
[325] J. Ruwoldt, F. H. Blindheim, G. Chinga-Carrasco, RSC Adv. 2023, 13, 12529.
[326] a) Y. Fei, Z. Jiang, D. Zhou, F. Meng, Y. Wu, Y. Xiong, Y. Ye, T. Liu, Z. Fei, T. Kuang, M. Zhong, Y. Li, F. Chen, J. Energy Storage 2023, 73; b) R. Tang, B. Xue, J. Tan, Y. Guan, J. Wen, X. Li, W. Zhao, ACS Appl. Polym. Mater. 2022, 4, 1117; c) S. Zhao, M. M. Abu-Omar, ACS Sustain. Chem. Eng. 2017, 5, 5059.
[327] a) Y. Cao, Z. Liu, B. Zheng, R. Ou, Q. Fan, L. Li, C. Guo, T. Liu, Q. Wang, Compos. B: Eng. 2020, 200; b) Y. Zhang, J. Liao, X. Fang, F. Bai, K. Qiao, L. Wang, ACS Sustain. Chem. Eng. 2017, 5, 4276; c) S. Wang, W. Liu, D. Yang, X. Qiu, Ind. Eng. Chem. Res. 2018, 58, 496.
[328] a) H. Wang, T. L. Eberhardt, C. Wang, S. Gao, H. Pan, Polymers (Basel) 2019, 11; b) Y. Zhang, Z. Yuan, N. Mahmood, S. Huang, C. Xu, Ind. Crop. Prod. 2016, 79, 84; c) S. Chen, Y. Xin, C. Zhao, ACS Sustain. Chem. Eng. 2021, 9, 15653.
[329] M. Akazawa, Y. Kojima, Y. Kato, J. Anal. Appl. Pyrol. 2016, 118, 164.
[330] a) K. Lian, S. Yang, D. Lu, W. Tang, J. Zhang, ACS Appl. Polym. Mater. 2024, DOI: 10.1021/acsapm.4c03420; b) J. Stanzione, J. La Scala, J. Appl. Polym. Sci. 2016, 133; c) H. Luo, X. Hua, W. Liu, Y. Xu, F. Cao, S. Nikafshar, Z. Fang, ACS Appl. Polym. Mater. 2023, 5, 6061.
[331] a) Z. C. Liu, Z. W. Wang, S. Gao, Y. X. Tong, X. Le, N. W. Hu, Q. S. Yan, X. G. Zhou, Y. R. He, L. Wang, Front. Bioeng. Biotechnol. 2021, 9, 811287; b) T. Renders, S. Van den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551; c) A. T. Smit, M. Verges, P. Schulze, A. van Zomeren, H. Lorenz, ACS Sustain. Chem. Eng. 2022, 10, 10503.
[332] a) A. Toledano, L. Serrano, J. Labidi, J. Chem. Technol. Biotechnol. 2012, 87, 1593; b) X. Yang, Z. Li, L. Li, N. Li, F. Jing, L. Hu, Q. Shang, X. Zhang, Y. Zhou, X. Pan, J. Agric. Food Chem. 2021, 69, 13568; c) Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta, Chem. Rev. 2018, 118, 614.
[333] a) Y. Chen, J. Shen, W. Wang, L. Lin, R. Lv, S. Zhang, J. Ma, Int. J. Biol. Macromol. 2023, 242, 124462; b) Y. Han, Z. Ma, X. Wang, Y. Sheng, Y. Liu, Sustain. Chem. Pharm. 2023, 36.
[334] a) T. Ročnik, B. Likozar, E. Jasiukaitytė-Grojzdek, M. Grilc, J. Chem. Eng. 2022, 448; b) B. Venkatesagowda, R. F. H. Dekker, Biomass Convers. Biorefin. 2019, 10, 203; c) B. Venkatesagowda, Fungal Biol. Rev. 2019, 33, 190.
[335] a) H. Wang, G. J. Giardino, R. Chen, C. Yang, J. Niu, D. Wang, ACS Cent. Sci. 2023, 9, 48; b) Y. S. Ma, C. N. Chang, Y. P. Chiang, H. F. Sung, A. C. Chao, Chemosphere 2008, 71, 998; c) H. Li, Z. Lei, C. Liu, Z. Zhang, B. Lu, Bioresour. Technol. 2015, 175, 494.
[336] a) C. Cai, Z. Xu, H. Zhou, S. Chen, M. Jin, Sci. Adv. 7; b) E. S. Ellis, D. J. Hinchen, A. Bleem, L. Bu, S. J. B. Mallinson, M. D. Allen, B. R. Streit, M. M. Machovina, Q. V. Doolin, W. E. Michener, C. W. Johnson, B. C. Knott, G. T. Beckham, J. E. McGeehan, J. L. DuBois, JACS Au 2021, 1, 252; c) B. Venkatesagowda, R. F. H. Dekker, Enzyme Microb. Technol. 2021, 147, 109780.
[337] X. Wu, E. Smet, F. Brandi, D. Raikwar, Z. Zhang, B. U. W. Maes, B. F. Sels, Angew Chem. Int. Ed. Engl. 2024, 63, e202317257.
[338] a) H. Chung, N. R. Washburn, ACS Appl. Mater. Interfaces. 2012, 4, 2840; b) J. Bomon, M. Bal, T. K. Achar, S. Sergeyev, X. Wu, B. Wambacq, F. Lemière, B. F. Sels, B. U. W. Maes, Green Chem. 2021, 23, 1995.
[339] B. Palmieri, F. Cilento, E. Amendola, T. Valente, S. Dello Iacono, M. Giordano, A. Martone, Polymers (Basel) 2023, 15.
[340] B. L. Tardy, E. Lizundia, C. Guizani, M. Hakkarainen, M. H. Sipponen, Mater. Today. 2023, 65, 122.
[341] X. Liu, Y. Li, C. M. Ewulonu, J. Ralph, F. Xu, Q. Zhang, M. Wu, Y. Huang, ACS Sustain. Chem. Eng. 2019, 7, 14135.
[342] J. L. Wen, S. L. Sun, B. L. Xue, R. C. Sun, Materials (Basel) 2013, 6, 359.
[343] C. Gioia, G. Lo Re, M. Lawoko, L. Berglund, J. Am. Chem. Soc. 2018, 140, 4054.
[344] A. K. Deepa, P. L. Dhepe, ACS Catalysis 2014, 5, 365.
[345] F. Ferdosian, Z. Yuan, M. Anderson, C. Xu, Ind. Crop. Prod. 2016, 91, 295.
[346] S. Zhang, T. Liu, C. Hao, L. Wang, J. Han, H. Liu, J. Zhang, Green Chemistry 2018, 20, 2995.
[347] S. Zhang, T. Liu, C. Hao, L. Wang, J. Han, H. Liu, J. Zhang, Green Chem. 2018, 20, 2995.
[348] A. Moreno, M. Morsali, M. H. Sipponen, ACS Appl. Mater. Interfaces. 2021, 13, 57952.
[349] J. Wu, X. Yu, H. Zhang, J. Guo, J. Hu, M.-H. Li, ACS Sustain. Chem. Eng. 2020, 8, 6479.
[350] M. Nardi, L. Ceseracciu, V. Scribano, M. Contardi, A. Athanassiou, A. Zych, J. Chem. Eng. 2024, 495.
[351] L. Du, X. Jin, G. Qian, W. Yang, L. Su, Y. Ma, S. Ren, S. Li, Ind. Crop. Prod. 2022, 187.
[352] G. Allen, J. C. Bevington, Eds., in Comprehensive Polymer Science and Supplements, Vol. 7, Elsevier Science, 1996.
[353] C. Martin, AAPS PharmSciTech 2016, 17, 3.
[354] a) W. A. Gordon US, 1926; b) W. A. Gordon US, 1930.
[355] a) Vernon E Royle US, 1933; b) V. E. Royle US, 1937.
[356] a) C. M. Parshall, G. Paul US, 1956; b) I. E. Bankey US, 1946; c) F. E. Dulmage, 1951; d) F. E. Dulmage, 1953; e) H. G. L. Menges, E. G. H. Harms, R. Hegele US, 1978; f) H. G. L. Menges, E. G. Harms, R. Hegele US, 1978; g) W. A. Magerkurth US, 1953; h) C. F. Schnuck, W. C. Whittum US, 1952; i) V. Zona US, 1951.
[357] D. J. v. Zuilichem, E. Kuiper, W. Stolp, T. Jager, Powder Technology 1999, 106, 147.
[358] a) S. Bandari, D. Nyavanandi, V. R. Kallakunta, K. Y. Janga, S. Sarabu, A. Butreddy, M. A. Repka, Int J Pharm 2020, 580, 119215; b) M. Dhaval, S. Sharma, K. Dudhat, J. Chavda, Journal of Pharmaceutical Innovation 2020, 17, 294.
[359] a) D. Bigio, L. Erwin, Polymer Engineering & Science 1992, 32, 760; b) Y. H. Feng, J. P. Qu, H. Z. He, B. Liu, X. W. Cao, S. P. Wen, Journal of Applied Polymer Science 2008, 108, 3917.
[360] a) I. Manas-Zloczower, H. Cheng, Journal of Reinforced Plastics and Composites 1998, 17; b) V. Pandey, J. M. Maia, Polymer Engineering & Science 2020, 60, 2390.
[361] a) S.-P. Wen, Polymer Engineering and Science 2001, 41; b) A. Sarhangi Fard, P. D. Anderson, Computers & Fluids 2013, 87, 79.
[362] a) S. Choulak, Y. Le Gorrec, F. Couenne, C. Jallut, P. Cassagnau, A. Michel, IFAC Proceedings Volumes 2004, 37, 239; b) J. P. Puaux, G. Bozga, A. Ainser, Chemical Engineering Science 2000, 55, 1641.
[363] T. Jager, D. J. v. Zuilichem, J. G. d. S. wart, K. van't Riet, Journal of Food Engineering 1991, 14, 203.
[364] G. F. Froment, K. B. Bischoff, J. D. Wilde, Chemical Reactor Analysis and Design, 3rd Edition, 2010.
[365] M. A. Sharaf, A. Kloczkowski, Macromolecular Chemistry and Physics 2023, 225.
[366] a) J. Xie, L. Yin, Y. Wu, R. Xu, C. Lei, Polymer Testing 2021, 104; b) R. Xu, S. Zeng, J. Wang, J. Kang, M. Xiang, F. Yang, Journal of Polymer Research 2018, 25.
[367] a) Y. J. Lin, P. Dias, H. Y. Chen, A. Hiltner, E. Baer, Polymer 2008, 49, 2578; b) S. H. Tabatabaei, P. J. Carreau, A. Ajji, Polymer 2009, 50, 3981.
[368] a) M. A. Maksoud, in Polyethylene - New Developments and Application, DOI: 0.5772/intechopen.111214 (Eds: A. Sand, J. Tuteja) 2021; b) J. Chang, J. Xu, X. Duan, K. Wang, Y. Du, Energy Reports 2021, 7, 1453; c) A. Pietrosanto, P. Scarfato, L. D. Maio, L. Incarnato, Macromolecular Symposia 2022, 405.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101053-
dc.description.abstract傳統石化塑膠長期主導包裝材料市場,主要歸因於其低成本、易於大規模製造能力以及良好的加工性。然而,這些材料往往因缺乏經濟誘因而難以回收,在廢棄處理過程中還會造成嚴重且長期的環境污染,例如塑膠微粒的釋放與高碳排放。隨著全球永續發展與循環經濟理念的推動,石化塑膠正逐漸受到來自社會與產業的挑戰與質疑。因此,如何尋找兼具性能與永續性的替代方案,成為材料科學與綠色製造領域亟需解決的課題。
本論文以「永續生質高分子取代石化塑膠包裝材料」為核心理念,選擇纖維素與木質素兩種自然界中含量豐富、容易取得、可再生且尚未被充分利用的生質資源作為材料設計基石。透過由上而下(top-down)與由下而上(bottom-up)的雙重策略,建構出兼顧結構強度、阻隔性能與多重複合功能的材料發展平台。整體規劃涵蓋三個研究主題,分別從宏觀結構、介觀組裝到分子設計三個層面,逐層展現核心概念的技術可行性與價值。
在宏觀層級(macroscopic system),研究一著重於木材資源的再利用。雖然傳統發泡聚苯乙烯(EPS)材料良好的絕熱性質,但在耐溶劑、阻燃性及永續性方面表現不足。本研究利用回收木材(RW)為基材,透過氣相反應形成多孔的纖維素骨架,再填充二氧化矽氣凝膠(silica aerogel)製備木材複合材料(SAWc)。經結構導入後,SAWc同時展現低熱傳導率、高抗壓強度、優異耐溶劑性與耐燃性,能應用於冷鏈運輸、保溫建材及高值化綠色包裝材料,為傳統發泡塑膠提供低碳且具生物降解性的替代方案,凸顯宏觀結構設計在循環經濟中的潛在貢獻。
在介觀層級(mesoscopic system),研究二以細菌纖維素(BC)為主要基材。BC具有高結晶度與奈米纖維網絡結構,能提供優異的機械強度與氣體阻隔性,然而原生BC膜在耐水性與光學透光性上仍有不足。為克服此挑戰,本研究引入水性聚氨酯(WPU)與海藻酸鈉(SA)作為輔助相,並透過金屬離子(Zr4+)螯合進一步提升結構緊密性。所得到的BC/WPU/SA@Zr-0.10多層薄膜兼具高透明度、耐水性與優異氧氣阻隔性。同時由於完全採用天然高分子,更能夠符合可降解與環境友善的需求。此成果驗證了介觀層次的多相組裝策略能有效將生質高分子轉化為具競爭力的綠色功能薄膜。
在分子設計(molecular design)層級,研究三則聚焦於木質素的高值化利用。木質素因富含芳香族結構而具備天然剛性與本質阻燃性,然而其高度複雜且不均一的化學結構限制了其規模化的工業應用。本研究透過化學改質將木質磺酸鹽(lignosulfonate)修飾為可反應的環氧基體,並進一步製備成類玻璃態高分子(vitrimer)。藉由引入動態共價鍵 (DCBs),賦予該材料可回收性、自我修復與熱觸發再加工特性。在最佳化配方下,木質素基可以取代80%傳統雙酚A二縮水甘油醚(DGEBA),且該木質素基vitrimer同時展現高玻璃轉換溫度(Tg)、良好機械強度與優異阻燃性,不僅可應用於結構黏著劑或玻纖複合材料基體,也突顯木質素作為功能性高分子的潛力,突破其過往僅作為燃料或低值填料的侷限。
綜合三個研究案例,本論文建構出一套跨尺度的永續材料發展藍圖:宏觀層級的木材複合材料,提供隔熱與阻燃解決方案;介觀層級的BC多層膜,展現高透明與阻隔性能,適用於綠色食品包裝;分子設計層級的木質素vitrimer,則帶來可回收、再加工與黏著功能。纖維素提供穩固結構與阻隔效能,木質素則賦予高性能與動態可設計性。兩者互補,不僅展現其取代石化塑膠的可行性,更拓展功能材料的應用場域及產品化的可能性。相關成果可望推廣至冷鏈物流、食品安全包裝、可回收黏著劑與綠色建材等產業。此研究強調唯有從結構、功能與循環全方位思考,才能建立真正的綠色材料的典範轉移(paradigm shift),為全球減碳與資源再利用目標貢獻實質力量。
zh_TW
dc.description.abstractConventional petrochemical plastics have long dominated the packaging industry, primarily due to their low cost, scalability in mass production, and excellent processability. However, these materials are difficult to recycle because of limited economic incentives, and their disposal generates severe and long-lasting environmental issues, including microplastic release and high carbon emissions. With the global advancement of sustainability and circular economy concepts, petrochemical plastics are increasingly subject to societal scrutiny and industrial challenges. Consequently, the urgent task for materials science and green manufacturing is to identify alternatives that balance high performance with sustainability.
This dissertation embraces the central concept of “sustainable bio-polymers as substitutes for petrochemical plastics in packaging applications” by selecting cellulose and lignin as the foundational resources. These natural polymers are abundant, renewable, easily accessible, and remain underutilized. By integrating top-down and bottom-up design strategies, this work establishes a multiscale materials platform that simultaneously addresses structural robustness, barrier performance, and multifunctionality. The overall framework encompasses three research themes, investigated across the macroscopic, mesoscopic, and molecular levels, thereby validating the technical feasibility and intrinsic value of this approach.
At the macroscopic level, the first study focuses on the reutilization of wood resources. While conventional expanded polystyrene (EPS) exhibits favorable thermal insulation, it lacks solvent resistance, flame retardancy, and sustainability. In this work, recycled wood (RW) serves as the base material, which is modified through vapor-phase processing to form a porous cellulose scaffold subsequently impregnated with silica aerogel, yielding a silica aerogel-wood composite (SAWc). This engineered composite exhibits low thermal conductivity, high compressive strength, and superior resistance to solvents and flames. These properties position SAWc as a low-carbon and biodegradable alternative to traditional foamed plastics, with potential applications in cold-chain transport, thermal insulation in construction, and high-value green packaging. This outcome underscores the role of macroscopic structural design in advancing the circular economy.
At the mesoscopic scale, the second study utilizes bacterial cellulose (BC) as the major substrate. BC has high crystallinity and nanoscale fibrous network structures that are endowed with superior mechanical toughness as well as excellent gas barrier capability. In spite of that, pure BC films are handicapped by poor water resistance as well as optical non-transparency. In an endeavor for mitigation, waterborne polyurethane (WPU) as well as sodium alginate (SA) served as working phases, with the addition of zirconium ion (Zr4+) chelating functioning to advance structural density further. Obtained BC/WPU/SA@Zr-0.10 multilayer film possesses high visibility, impressive water resistance, with remarkable barrier performance. In addition, consisting solely of natural polymers, it completely corresponds with biodegradability as well as environmental compatibility specifications. This paper substantiates that mesoscopic multiphase assembling chemistry strategies could efficiently convert bio-polymers into competitive functional green films.
At the molecular design level, the third study valorization of lignin. Largely due to its rigid-construct aromatic skeleton, lignin intrinsically possesses stiffness as well as flame retardancy, but its highly complexed heterogenic-chemical constitution has limited bulk quantities large-scale deployments. In the current study, lignosulfonate was chemically converted to an accessible reactive epoxy precursor, subsequently compounded to a vitrimer network. Insertion of dynamic covalent bonds (DCBs) grants recyclability, self-healing, with heat-triggered reprocessability. With optimized formulation settings, lignin-centered vitrimers successfully substitute up to 80% contents for the traditional diglycidyl ether of bisphenol A (DGEBA), retaining high glass transition temperature (Tg), high mechanical property, with high flame retardancy. With these materials possessing the possibility for structural adhesive or matrix application in the situation for the glass fiber reinforcement matrix formats, lignin indicates its potential for becoming a useful high-performance polymer with its historical contemplative reservations for becoming simply combustion material or filler.
In summary, the three researches create multiscale roadmaps for sustainable material construction: macroscopic silica aerogel-wood hybrids providing thermal insulation and flame retardancy; mesoscopic BC multilayered sheets providing optical transparency and barrier property for sustainable food packaging; and molecular-level lignin vitrimers providing recyclability, reprocessability, and adhesive properties. Cellulose provides structural reinforcement and barrier property, while lignin provides high-performance functionality and dynamic tunability. Correlative findings will also be put to use on the cold-chain logistics, multi-function food package, reusable adhesive, and green construction material. In the current research, this dissertation has also indicated that the paradigm shift for the green material will only become reality by adopting an ecosystem perspective on structural performance, performance, and lifecycle circularities. Through doing so, the current research will fulfill the carbon mitigation and resource reusing goals for the entire planet.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:37:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:37:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgement ii
中文摘要 iv
Abstract vi
Table of Contents ix
List of Figures xiii
List of Tables xxiv
List of Abbreviations xxv
Chapter 1. Introduction 1
1.1 Packaging Materials Overview 1
1.2 Trend for Sustainable Packaging Alternatives 3
1.2.1 Petro- and Bio-Based Materials and Biodegradability 3
1.2.2 Life Cycle Assessment and Techno-economic Assessment 7
1.2.3 Why Cellulose 9
1.2.4 Structure of Cellulose Molecules 11
1.2.5 Ex-situ and In-situ Modifications of Cellulose 14
1.3 Structure of Lignin and Derivative Monomer/Oligomers 16
1.3.1 Why Lignin 16
1.3.2 Structure of Lignin Molecules 17
1.4 Structure of the Dissertation 20
Chapter 2. Sustainable Super-Insulating Packaging Composite from Recycled Wood 23
2.1 Background 23
2.1.1 Thermal Insulation Materials and Their Manufacturing 24
2.1.2 Natural Fibers (NFs) 31
2.1.3 Multi-functionalization of Wood Aerogel 44
2.2 Experimental Section 47
2.2.1 Preparation of Silica Aerogel-Wood Composite (SAWc) 48
2.2.2 Materials and Characterizations 51
2.3 Results and Discussion 54
2.3.1 Delignification and Infiltration Process and Characterization 54
2.3.2 Silica Precursor and Infiltration 59
2.3.3 Thermal Conductivity and Insulation 63
2.3.4 Mechanical Properties 67
2.3.5 Water Contact Angle and Water Resistance 70
2.3.6 Solvent Resistance 73
2.3.7 Flame Retardancy 75
2.3.8 Packaging Application and Biodegradability 77
2.3.9 Life Cycle Assessment of SAWc 79
2.4 Conclusion 81
Chapter 3. Sustainable Multi-Purpose Bacterial Cellulose Composite for Food Packaging via Facile Successive Infiltration 83
3.1 Background 83
3.1.1 Food Packaging 84
3.1.2 Intelligent and Active Packaging 88
3.1.3 Permeation Mechanism and Barriers 91
3.1.4 Multi-layer Film for Food Packaging 102
3.1.5 Bacterial Cellulose 104
3.1.6 Waterborne Polyurethane 112
3.1.7 Sodium Alginate and Metal Complexes 118
3.2 Experimental Section 122
3.2.1 Preparation of BC/WPU/SA@M composite film 122
3.2.2 Materials and Characterizations 124
3.3 Results and Discussion 129
3.3.1 WPU Infiltration of BC Specimens 129
3.3.2 Sodium Alginate Selection 132
3.3.3 SA Infiltration and Metal Chelation 136
3.3.4 Packaging Applications 144
3.4 Conclusion 150
Chapter 4. A Sustainable Vitrimer from Depolymerized Lignin: Synthesis and Recoverable Application Potential 152
4.1 Background 152
4.1.1 Integration of Lignin Derivatives into Circular Economy 152
4.1.2 Chemical Modification of Technical Lignin 153
4.1.3 Lignin-derived Polymers and Their Applications 156
4.1.4 Lignin Integration in Circular Economy 159
4.1.5 Objective of This Chapter 165
4.2 Experimental Section 168
4.2.1 Materials 168
4.2.2 Chemical Modification of LS 169
4.2.3 Curing of EpddLS-x% 169
4.2.4 Characterizations 170
4.3 Results and Discussion 173
4.3.1 Strategic Mechanism Design for Lignosulfonate Modification 173
4.3.2 Structural Characterization and Validation of Modified Lignosulfonate 178
4.3.3 Optimized Composition and Morphology of Lignin Vitrimer Networks 185
4.3.4 Curing Behavior and Thermal Performance of Lignin Vitrimer 188
4.3.5 Dynamic Bond Exchange, Stress Relaxation, and Self-healing Ability 191
4.3.6 Solvent Resistance and Flame Retardancy EpddLS-80% 193
4.3.7 Thermal Reworkability and Application 198
4.4 Conclusion 201
Chapter 5. Conclusion and Future Perspectives 202
5.1 Conclusion 202
5.2 Future Perspectives for Cellulose 203
5.2.1 Plant-derived Cellulose 203
5.2.2 Bacteria-derived Cellulose 204
5.3 Future Perspectives for Lignin 205
Chapter 6. Appendices 207
6.1 Conventional Packaging Materials Manufacturing 207
6.1.1 Mixing Screws 207
6.1.2 Converting 213
Chapter 7. References 223
Curriculum Vitae 248
-
dc.language.isoen-
dc.subject永續包裝-
dc.subject生質複合材料-
dc.subject纖維素複合材料-
dc.subject木質素基環氧類玻璃高分子-
dc.subject高效能塑膠替代品-
dc.subject循環經濟-
dc.subjectsustainable packaging-
dc.subjectbio-based materials-
dc.subjectcellulose composites-
dc.subjectlignin-derived vitrimer-
dc.subjectpetroleum alternatives-
dc.subjectcircular economy-
dc.title永續生質複合材料於高效能包裝之應用zh_TW
dc.titleSustainable Bio-based Composites for High-performance Packaging Applicationsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳賢燁;杜育銘;童世煌;林慶炫;游竹淋;黃雅惠zh_TW
dc.contributor.oralexamcommitteeHsien-Yeh Chen;Yu-Ming Tu;Shih-Huang Tung;Ching-Hsuan Lin;Jhu-Lin You;Ya-Hui Huangen
dc.subject.keyword永續包裝,生質複合材料纖維素複合材料木質素基環氧類玻璃高分子高效能塑膠替代品循環經濟zh_TW
dc.subject.keywordsustainable packaging,bio-based materialscellulose compositeslignin-derived vitrimerpetroleum alternativescircular economyen
dc.relation.page249-
dc.identifier.doi10.6342/NTU202504553-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-10-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-10-07-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
  未授權公開取用
18.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved